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Introduction

Background

Gastric cancer is one of the top ten common malignant 
tumors worldwide (1). According to Global Cancer Statistics 
2020 (GLOBOCAN 2020) (1), 43.9% of new cases and 

48.6% of deaths occured in China. Hebei Province, located 
in North China, is the only province that includes all 
landforms in China. The incidence and mortality of gastric 
cancer of Hebei Province are higher than that of China (2). 
In recent decades, the incidence and mortality of gastric 
cancer patients are declining in many developed countries, 
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but it still causes a huge disease burden (3). More than 90% 
of early gastric cancer patients survive for 5 years or more 
after receiving surgery (4,5). However, the prognosis of late 
gastric cancer patients is poor, with a 5-year survival rate of 
about 20% for stage III patients and about 7% for stage IV 
patients (6). The Tumor Node Metastasis (TNM) staging 
system, established by the American Joint Committee on 
Cancer (AJCC) and Union for International Cancer Control 
(UICC), is a practical method for evaluating the prognosis 
of gastric cancer patients and is widely used worldwide (6).  
However, TNM staging system, which is only based on 
tumor infiltration, tumor size, lymph node metastasis, 
and distant metastasis, has inevitable limitations. The 
patients within the same stage may have different survival 
outcomes, and patients in different stages may also have 
the same survival outcome (7). In addition, many studies 
have shown that age, gender, tumor size, and therapy are 
closely related to the survival of gastric cancer patients (7-9).  
The occurrence and development of gastric cancer are 
very complex. Many clinical and pathological features can 
influence prognosis, most of which are multidimensional 
and non-linear relationships (10). Therefore, it is necessary 
to integrate prognostic factors selected from comprehensive 
clinical information and establish a more accurate survival 
prediction model for gastric cancer patients.

Rationale and knowledge gap

In order to obtain better models for predicting patients’ 
survival, many survival prediction tools have been developed, 
including parametric, semi-parametric, and non-parametric 
methods. The parametric method requires that the survival 
time meet the normal distribution, and the accelerated failure 
time (AFT) model is commonly used (11). Most survival data 
are non-normal distribution, so parametric method is not 
commonly used. The semi-parametric method is based on 
the Cox proportional hazard (PH) regression model, which 
has been applied in many studies to predict the survival of 
gastric cancer (8,12-18). However, due to the need to comply 
with the PH assumption, the use of Cox is limited. In order 
to eliminate these constraints, a series of non-parametric 
methods have been developed for cancer survival prediction, 
which can consider the interaction effects among variables. 
In the non-parametric methods, the most common methods 
were tree-based machine learning methods [including 
survival trees (ST), random survival forests (RSF), gradient 
boosting machines (GBM), etc.] (19-30). The ST is a 
machine learning method that constructs a tree structure 
by splitting nodes by maximizing survival differences until 
all terminal nodes containing only the minimum number of 
unique events (31,32). Both RSF and GBM are combined 
of a large number of ST. RSF uses the bootstrap method to 
extract sub samples from the original samples to construct a 
ST, averaging the cumulative risk function of each ST and 
ultimately obtaining the total cumulative risk function (33). 
GBM is a machine learning method based on gradient 
descent boosting. The fundamentals of GBM are training a 
new ST according to the negative gradient information of 
the loss function based on the current ST, and combining 
the trained newborn ST with the existing ST (34).

Machine learning has been widely applied in data analysis 
such as medical care, and is an effective tool for improving 
clinical strategies. Banerjee et al., Qiu et al., Du et al., van 
Zutphen et al. and Lin et al. showed that RSF performs 
better than Cox in predicting the survival of thyroid 
cancer, glioma, oropharyngeal cancer, colorectal cancer 
and liver cancer (35-40). Samara’s research shows that RSF 
performs better than linear support vector machine (SVM), 
Adaboost, Bagging and other machine learning algorithms 
in predicting the survival of glioblastoma (41). At present, 
there is no research on the survival prediction of gastric 
cancer patients in Hebei Province, and it is unknown 
whether the existing survival prediction models are suitable 
for the survival prediction of gastric cancer patients in 
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•	 The multivariable group outperformed Tumor Node Metastasis 

(TNM) group. Cox and random survival forest performed better 
than survival tree and gradient boosting machine. The nomogram 
may facilitate clinicians to predict survival of gastric cancer patients 
in Hebei Province.
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Hebei Province. 

Objective

This study was based on the information of hospitalized 
gastric cancer patients from the Hebei Cancer Registration 
Project during 2016 and 2017. Three tree-based machine 
learning methods (ST, RSF, and GBM) and the Cox PH 
regression model, were used to build gastric cancer patients 
survival prediction models. Additionally, California Chinese 
gastric cancer patients from hospitals in the Surveillance, 
Epidemiology, and End Results (SEER) database were 
used as external test dataset. In addition, we compared the 
multivariable group with TNM group. This study aimed 
to build the best survival prediction model, identify high-
risk gastric cancer patients as soon as possible, and provide 
reference for clinical doctors to develop specific treatment 
plans for patients and allocate medical resources reasonably. 

This manuscript is written in accordance with the TRIPOD 
reporting checklist (available at https://cco.amegroups.com/
article/view/10.21037/cco-23-85/rc). 

Methods

Data source

Data of development dataset were recruited from Hebei 
Cancer Registration Project. We included 1,993 hospitalized 
gastric cancer patients who were diagnosed between 1 
January 2016 to 31 December 2017. The following patients 
were excluded: (I) repeatable cases (N=6); (II) non-initial 
diagnosed cases (N=6); (III) previously suffered from other 
malignant tumors (N=17); (IV) individuals with incomplete 
survival information (N=124) (Figure 1).

Data of external test dataset were obtained from the 
“Incidence - SEER Research Plus Data, 17 Registries, 
Nov 2021 Sub (2000-2019)” of SEER database. To exclude 

Gastric cancer patients from hospital of Hebei 
Cancer Registration Project from 2016 to 2017

(N=1,993)

Development dataset (N=1,840)

Train dataset

Build models
(Multivariable group and TNM group)

Cox ST RSF GBM

Internal test dataset External test dataset (N=748)

•	 Repeatable cases (N=6)
•	 Non-initial diagnosed gastric 

cancer patients (N=6) 
•	 Previously suffering from other 

malignant tumors (N=17) 
•	 Individuals with incomplete 

survival information (N=124)

•	 Non primary malignant 
tumor (N=141) 

•	 Individuals with incomplete 
survival information (N=57)

California Chinese gastric cancer patients  
from hospital from 2010 to 2015

(N=946)

Excluded Excluded

Internal test

Ten-fold cross validation
(200 iterations)

External test

Figure 1 Flowchart of study design and patient selection. ST, survival trees; RSF, random survival forests; GBM, gradient boosting 
machines; TNM, Tumor Node Metastasis.

https://cco.amegroups.com/article/view/10.21037/cco-23-85/rc
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differences among hospital source data and population 
data, as well as differences between different races, we 
selected the hospitalized gastric cancer patients of California 
Chinese from 2010 to 2015. A total of 946 patients were 
included. The exclusion criteria are as follows: (I) non-initial 
diagnosed cases (N=141); (II) individuals with incomplete 
survival information (N=57) (Figure 1).

Predictors and outcomes

This study included 13 predictors, including gender, age, 
area, marital status, tumor site, grade, TNM stage, T 
(tumor) stage, N (node) stage, M (metastasis) stage, surgery, 
radiotherapy, and chemotherapy. The predictors of TNM 
stage, T stage, N stage, M stage were referring to AJCC 
Clinical Stage, 7th edition.

The outcome variables included “survival months” and 
“3-year cancer-specific survival (CSS) status” or “5-year 
CSS status”.

Data of development dataset were collected and strictly 
controlled by trained cancer registration professionals. 
The survival outcomes were obtained by active and passive 
follow-up. Passive follow-up was mainly obtained through 
all-causes-of-death survey database, rehospitalization 
information, outpatient information and medical insurance 
information. Active follow-up was obtained by trained 
professionals trimonthly. The deadline date of follow-up 
was December 31, 2022. 

Establishment and validation of the model

The development dataset was used to train and internally 
test the model with ten-fold cross validation of 200 
iterations. The external test dataset was used for external 
test. Four models (including Cox, ST, RSF and GBM) were 
used to establish the survival prediction model for gastric 
cancer in Hebei Province. Additionally, we compared the 
multivariable group (including multiple variables) with 
TNM group (including AJCC 7th edition T stage, N stage, 
and M stage) (Figure 1).

Evaluation indicators of the model

The Harrell’s consistency index (C-index) and area under 
the receiver operating characteristic curve (AUC) were used 
to evaluate the model’s differentiation. The calibration curve 
was used to evaluate the consistency between the predicted 
values and the actual observed values. The 45-degree 

straight gray line of calibration curve represents the perfect 
match between the observed (y-axis) and predicted (x-axis) 
survival probabilities. A closer distance between two curves 
indicates higher consistency. 

Statistical analysis

Software R (version 4.1.2) was used for data analysis. 
“randomForestSRC” package was used to impute missing 
values. “survival”, “rpart”, “randomForestSRC” and “gbm” 
packages were used to develop the models. The value of 
P<0.05 indicates a statistically significant difference.

Ethical statement

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). For external test dataset from 
the SEER database, the authors obtained authorization to 
access the SEER Research Data supported by the National 
Cancer Institute with approval number 11241-Nov2021. 
Because public and anonymous data from the SEER database 
were used, informed patient consent was not required. 
For development dataset from Hebei Cancer Registration 
Project, the Ethics Committee of the Fourth Hospital of 
Hebei Medical University/the Tumor Hospital of Hebei 
Province has confirmed that no ethical approval is required. 
Individual consent for this retrospective analysis was waived.

Results

Demographic characteristics of gastric cancer patients

After inclusion and exclusion, 1,840 patients and 748 patients 
with gastric cancer were included in the development dataset 
and external test dataset, respectively. The 1-, 3-, and 5-year 
CSS rates of the development dataset were 82.61%, 57.07%, 
and 44.48%, respectively. The 1-, 3-, and 5-year CSS rates of 
the external test dataset were 68.58%, 47.99%, and 42.91%, 
respectively. The detail of demographic characteristics of the 
imputation data were shown in Table 1.

Figure 2 shows the proportion of stages of gastric cancer 
patients in the development dataset and external test 
dataset. The proportion of stage I, II, III, and IV of gastric 
cancer patients in the development dataset were 19.35%, 
19.24%, 49.45%, and 11.96%, respectively. The proportion 
of stage I, II, III, and IV of gastric cancer patients in the 
external test dataset were 28.07%, 16.58%, 26.07%, and 
29.28%, respectively. The proportion of stage III and IV 
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Table 1 Demographic characteristics of gastric cancer patients in development dataset and external test dataset

Variables Development dataset, n (%) External test dataset, n (%) P value†

Total 1,840 (100.00) 748 (100.00)

Gender <0.001

Male 1,442 (78.37) 413 (55.21)

Female 398 (21.63) 335 (44.79)

Age (years) <0.001

<55 373 (20.27) 131 (17.51)

55–64 692 (37.61) 119 (15.91)

65–74 626 (34.02) 183 (24.47)

≥75 149 (8.10) 315 (42.11)

Areas <0.001

Urban 649 (35.27) 726 (97.06)

Rural 1191 (64.73) 22 (2.94)

Marital status <0.001

Married 1,820 (98.91) 532 (71.12)

Unmarried 6 (0.33) 75 (10.03)

Others‡ 14 (0.76) 141 (18.85)

Tumor site <0.001

Cardia 910 (49.46) 93 (12.43)

Overlapping 31 (1.68) 53 (7.09)

Other site 899 (48.86) 602 (80.48)

Grade 0.494

G1–G2§ 519 (28.21) 221 (29.55)

G3–G4¶ 1,321 (71.79) 527 (70.45)

TNM stage <0.001

I 356 (19.35) 210 (28.07)

II 354 (19.24) 124 (16.58)

III 910 (49.46) 195 (26.07)

IV 220 (11.96) 219 (29.28)

T stage <0.001

T1 267 (14.51) 217 (29.01)

T2 201 (10.92) 92 (12.30)

T3–T4 1,372 (74.57) 439 (58.69)

N stage <0.001

N0 671 (36.47) 389 (52.01)

N1 298 (16.20) 192 (25.67)

N2 372 (20.22) 70 (9.36)

N3 499 (27.12) 97 (12.97)

Table 1 (continued)



Hao et al. A prognostic model for gastric cancer patientsPage 6 of 17

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2023;12(6):63 | https://dx.doi.org/10.21037/cco-23-85

of overall patients in the development dataset (61.41%), 
was higher than that in the external test dataset (55.35%). 
The proportion of stage III and IV of female patients 

(65.83%) was higher than that of male patients (60.19%) 
in the development dataset. The proportion of stage III 
and IV of rural patients (62.46%) was higher than that of 

Table 1 (continued)

Variables Development dataset, n (%) External test dataset, n (%) P value†

M stage <0.001

M0 1,626 (88.37) 538 (71.93)

M1 214 (11.63) 210 (28.07)

Surgery <0.001

No 347 (18.86) 321 (42.91)

Yes 1,493 (81.14) 427 (57.09)

Radiotherapy <0.001

No 1,790 (97.28) 592 (79.14)

Yes 50 (2.72) 156 (20.86)

Chemotherapy <0.001

No 709 (38.53) 376 (50.27)

Yes 1,131 (61.47) 372 (49.73)
†, P value was derived from the Chi-square test performed to compare the development dataset and external test dataset; ‡, others included 
divorced, separated and widowed; §, G1–G2 represented well differentiated or moderately differentiated; ¶, G3–G4 represented poorly 
differentiated or undifferentiated. TNM, Tumor Node Metastasis; T stage, tumor stage; N stage, node stage; M stage, metastasis stage.
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Figure 2 The proportion of stages of gastric cancer patients in the development dataset and external test dataset.
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urban patients (59.48%) in the development dataset. The 
proportion of stage III and IV of female patients (58.51%) 
was higher than that of male patients (52.78%) in the 
external test dataset. The proportion of stage III and IV 
of rural patients (59.09%) was higher than that of urban 
patients (55.24%) in the external test dataset. 

Variables selection

According to Kaplan-Meier curves and log-rank tests on the 
above variables, it can be concluded that the ten variables 
(including TNM stage, gender, age, tumor site, grade, T 
stage, N stage, M stage, surgery, and radiotherapy) met the 
PH hypothesis (Figures S1,S2).

Considering that TNM stage was obtained by combining 
T stage, N stage and M stage, we excluded TNM stage 
from predictors. In the multivariable group of ST, RSF and 
GBM, we included 12 predictors (including gender, age, 
area, marital status, tumor site, grade, T stage, N stage, 
M stage, surgery, radiotherapy, and chemotherapy). In the 
multivariable group of Cox, we only included nine variables 
which met the PH assumption (including gender, age, 
tumor site, grade, T stage, N stage, M stage, surgery, and 
radiotherapy). 

Model performance

Table 2 and Figure 3 showed the C-index of different models 

for predicting 3- and 5-year CSS of gastric cancer patients 
in the multivariable group and TNM group. In the 3-year 
CSS cohort, the Cox [C-index: 0.75, 95% confidence 
interval (CI): 0.71–0.79], RSF (C-index: 0.79, 95% CI: 
0.75–0.82), and GBM (C-index: 0.76, 95% CI: 0.72–0.79) 
were greater than ST (C-index: 0.72, 95% CI: 0.69–0.76) 
of train dataset of multivariable group. In the multivariable 
group, except for ST, the C-index of other models were 
higher than 0.70. The Cox (C-index: 0.71, 95% CI: 0.67–
0.75), RSF (C-index: 0.72, 95% CI: 0.68–0.75), and C-index 
of GBM (C-index: 0.71, 95% CI: 0.68–0.75) were greater 
than ST (C-index: 0.69, 95% CI: 0.65–0.73) of train dataset 
of TNM group. The C-index of Cox, RSF and GBM were 
greater than ST in every cohort and group.

In the 5-year CSS cohort, the C-index of Cox (C-index: 
0.71, 95% CI: 0.68–0.74), RSF (C-index: 0.74, 95% CI: 
0.71–0.77), and GBM (C-index: 0.72, 95% CI: 0.69–0.75) 
were greater than ST (C-index: 0.68, 95% CI: 0.65–0.71) 
of train dataset of multivariable group. The Cox (C-index: 
0.67, 95% CI: 0.64–0.71), RSF (C-index: 0.68, 95% CI: 
0.64–0.71), and C-index of GBM (C-index: 0.67, 95% CI: 
0.64–0.71) were greater than ST (C-index: 0.66, 95% CI: 
0.63–0.69) of train dataset of TNM group. All C-index of 
TNM group were less than 0.70 in 5-year CSS cohort.

Whether in the 3-year CSS cohort or in the 5-year CSS 
cohort, the C-index of multivariable group was greater than 
that of the TNM group (Figure 3).

Figure 4 depicted the receiver operating characteristic 

Table 2 The C-index of different models of 3- and 5-year CSS in gastric cancer patients

Cohort
Three-year CSS cohort, mean (95% CI) Five-year CSS cohort, mean (95% CI)

Train dataset Internal test dataset External test dataset Train dataset Internal test dataset External test dataset

Multivariable group

Cox 0.75 (0.71–0.79) 0.73 (0.63–0.84) 0.75 (0.70–0.80) 0.71 (0.68–0.74) 0.71 (0.62–0.80) 0.76 (0.72–0.81)

ST 0.72 (0.69–0.76) 0.70 (0.59–0.80) 0.73 (0.68–0.77) 0.68 (0.65–0.71) 0.68 (0.60–0.77) 0.73 (0.68–0.77)

RSF 0.79 (0.75–0.82) 0.79 (0.68–0.90) 0.77 (0.72–0.81) 0.74 (0.71–0.77) 0.71 (0.62–0.80) 0.76 (0.72–0.81)

GBM 0.76 (0.72–0.79) 0.79 (0.69–0.90) 0.78 (0.74–0.83) 0.72 (0.69–0.75) 0.71 (0.62–0.80) 0.78 (0.73–0.82)

TNM group

Cox 0.71 (0.67–0.75) 0.71 (0.59–0.82) 0.66 (0.61–0.71) 0.67 (0.64–0.71) 0.68 (0.58–0.78) 0.68 (0.63–0.73)

ST 0.69 (0.65–0.73) 0.70 (0.58–0.81) 0.60 (0.54–0.65) 0.66 (0.63–0.69) 0.66 (0.57–0.75) 0.68 (0.63–0.73)

RSF 0.72 (0.68–0.75) 0.70 (0.58–0.81) 0.68 (0.62–0.73) 0.68 (0.64–0.71) 0.68 (0.58–0.77) 0.67 (0.62–0.73)

GBM 0.71 (0.68–0.75) 0.70 (0.59–0.81) 0.67 (0.61–0.72) 0.67 (0.64–0.71) 0.68 (0.58–0.77) 0.67 (0.62–0.72)

CSS, cancer-specific survival; CI, confidence interval; ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines; 
TNM, Tumor Node Metastasis.

https://cdn.amegroups.cn/static/public/CCO-23-85-Supplementary.pdf
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C-index in 3-year CSS cohorts of train dataset. (B) Histogram of C-index in 3-year CSS cohorts of internal test dataset. (C) Histogram of 
C-index in 3-year CSS cohorts of external test dataset. (D) Histogram of C-index in 5-year CSS cohorts of train dataset. (E) Histogram of 
C-index in 5-year CSS cohorts of internal test dataset. (F) Histogram of C-index in 5-year CSS cohorts of external test dataset. CSS, cancer-
specific survival; C-index, the Harrell’s consistency index; TNM, Tumor Node Metastasis; ST, survival trees; RSF, random survival forests; 
GBM, gradient boosting machines.

(ROC) curves of different models for predicting the 3-year 
CSS of gastric cancer in the multivariable group and TNM 
group. In the train dataset of multivariable group, the AUC 
values of Cox, ST, RSF, and GBM were 0.81 (95% CI: 
0.79–0.83), 0.78 (95% CI: 0.76–0.80), 0.86 (95% CI: 0.84–
0.87), and 0.82 (95% CI: 0.80–0.84), respectively. In the 
train dataset of TNM group, the AUC values of Cox, ST, 
RSF, and GBM were 0.76 (95% CI: 0.74–0.79), 0.74 (95% 
CI: 0.72–0.76), 0.77 (95% CI: 0.75–0.79), and 0.77 (95% 
CI: 0.74–0.79), respectively. In every dataset or every group, 
the AUC value of ST was lower than that of other three 
models. In every dataset, the AUC values of multivariable 
group were higher than those of the TNM group.

Figure S3 depicted the ROC curves of different models 
for predicting the 5-year CSS of gastric cancer in the 
multivariable group and TNM group. In the train dataset 
of multivariable group, the AUC values of Cox, ST, RSF 
and GBM are 0.72 (95% CI: 0.70–0.75), 0.70 (95% CI: 
0.67–0.72), 0.81 (95% CI: 0.79–0.83) and 0.74 (95% CI: 
0.71–0.77), respectively. In the train dataset of TNM group, 
the AUC values of Cox, ST, RSF, and GBM were 0.69 

(95% CI: 0.67–0.72), 0.68 (95% CI: 0.65–0.71), 0.69 (95% 
CI: 0.66–0.72), and 0.69 (95% CI: 0.67–0.72), respectively. 
In every dataset or every group, the AUC value of ST was 
lower than that of other three models. In every dataset, the 
AUC values of multivariable group were higher than those 
of the TNM group.

Figure 5 depicted the calibration curves of different 
models for predicting the 3-year CSS of gastric cancer 
patients in the multivariable group and TNM group. In 
multivariable group, the consistency of RSF and Cox were 
superior than that of GBM and ST; the predicted value of 
GBM was higher than the actual value, and the predicted 
value of ST was lower than the actual value. In the TNM 
group, the performance of the calibration curves for the 
train dataset and internal test dataset were similar to that 
in the multivariable group. The consistency of calibration 
curve of every model in the external test dataset was slightly 
inferior to that in train dataset and internal test dataset. In 
the 3-year CSS, the consistency of the calibration curves of 
all models in the multivariable group were better than that 
in the TNM group.

https://cdn.amegroups.cn/static/public/CCO-23-85-Supplementary.pdf
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Figure 4 The ROC curve of different models of 3-year CSS in gastric cancer patients. (A) ROC curves in 3-year CSS in multivariable group 
of train dataset. (B) ROC curves in 3-year CSS in multivariable group of internal test dataset. (C) ROC curves in 3-year CSS in multivariable 
group of external test dataset. (D) ROC curves in 3-year CSS in TNM group of train dataset. (E) ROC curves in 3-year CSS in TNM group 
of internal test dataset. (F) ROC curves in 3-year CSS in TNM group of external test dataset. AUC, area under the ROC curve; ROC, 
receiver operating characteristic; ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines; TNM, Tumor Node 
Metastasis; CSS, cancer-specific survival.

Figure S4 plotted the calibration curves of different 
models for predicting the 5-year CSS of gastric cancer 
patients in the multivariable group and TNM group. The 
results were similar to those of the 3-year CSS cohort. 
In the multivariable group, the consistency of Cox and 
RSF were superior to that of GBM and ST. In the TNM 
group, the performance of the calibration curves of the 
train dataset and internal test dataset were similar to that of 
the multivariable group, with RSF and Cox having better 
consistency than GBM and ST. The calibration curve 
consistency of each model in the external test dataset was 
poor. In the 5-year CSS cohort, the consistency of the 
calibration curves of all models in the multivariable group 
was better than that of the TNM group.

Outcome of Cox

From above analysis, we can achieve that the predictive 
performance of Cox and RSF were superior to that of ST 
and GBM, and the predictive performance of Cox was 
similar to that of RSF. Due to the fact that the current 

application of RSF wasn’t as simple as Cox, in order to 
better apply the model to practice, we visualized the 
Cox’s results by drawing a forest plot and constructed a 
nomogram for clinicians to predict patients’ survival.

Figure S5 drawn a forest plot of influencing factor 
of gastric cancer patients’ survival based on the Cox of 
development dataset in multivariable group. The results 
show that age, tumor site, T stage, N stage, M stage, 
and surgery situation were the influencing factors for the 
survival prognosis of gastric cancer patients (P<0.05). 
Poorer CSS was associated with elder in age [≥75 years 
with hazard ratio (HR) =1.48, 95% CI: 1.15–1.89, P=0.002] 
compared to <55 years; having overlapping tumor sites 
(HR =1.68, 95% CI: 1.11–2.55, P=0.014) compared to 
gastric cardia; T3–T4 stage (HR =2.91, 95% CI: 2.07–4.09, 
P<0.001) compared to T1 stage; N2 stage (HR =1.68, 95% 
CI: 1.36–2.06, P<0.001) and N3 stage (HR =2.22, 95% CI: 
1.83–2.70, P<0.001) compared to N0 stage; M1 stage (HR 
=1.85, 95% CI: 1.53–2.24, P<0.001) compared to M0 stage. 
Improved CSS was associated with other tumor sites (HR 
=0.79, 95% CI: 0.69–0.91, P=0.001) compared to gastric 

https://cdn.amegroups.cn/static/public/CCO-23-85-Supplementary.pdf
https://cdn.amegroups.cn/static/public/CCO-23-85-Supplementary.pdf
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cardia; and underwent surgery (HR =0.42, 95% CI: 0.35–
0.49, P<0.001) compared to didn’t undergo surgery.

Figure 6 depicted a nomogram established based on 
multivariable Cox PH regression model to predict the 
3- and 5-year CSS of gastric cancer patients based on 
development dataset. By bringing the variables of the 
patient in nomogram, the scores of each variable can be 
obtained. Finally, the scores of each variable were added up 
to obtain the 3- and 5-year CSS of the patient. For example, 
we brought the variables of patient number 36189409 of 
external test dataset into the nomogram, we obtained the 3- 
and 5-year CSS were 0.264 (0.150–0.466) and 0.180 (0.087–
0.374), respectively.

Sensitivity analysis

To eliminate the bias caused by different variables of 
different models, we built a same variables group for 
sensitivity analysis. In the same variables group, the variables 
included in the ST, RSF, and GBM were consistent with 

that in Cox. The variables included gender, age, tumor site, 
grade, T stage, N stage, M stage, surgery, and radiotherapy. 
Table 3 and Figures S6,S7 respectively showed the C-indexes, 
ROC curves and calibration curves of different models that 
predicted the 3- and 5-year CSS of gastric cancer patients 
in the same variables group. From the obtained results, it 
can be seen that the predicting performance of the same 
variables group were similar to those of the multivariable 
group.

Table 3 presents the C-indexes of different models for 
predicting 3- and 5-year CSS of gastric cancer patients in 
same variables group. In the 3-year CSS cohort, the C-index 
of Cox (C-index: 0.75, 95% CI: 0.72–0.79), RSF (C-index: 
0.77, 95% CI: 0.74–0.80), and GBM (C-index: 0.75, 95% 
CI: 0.72–0.79) in the train dataset were greater than that of 
ST (C-index: 0.73, 95% CI: 0.69–0.76). In the 5-year CSS 
cohort, the C-index of Cox (C-index: 0.71, 95% CI: 0.67–
0.74), RSF (C-index: 0.72, 95% CI: 0.70–0.75), and GBM 
(C-index: 0.71, 95% CI: 0.68–0.74) in the train dataset were 
greater than that of ST (C-index: 0.68, 95% CI: 0.65–0.71). 

Figure 5 The calibration curve of different models of 3-year CSS in gastric cancer patients. (A) Calibration curves in 3-year CSS in 
multivariable group of train dataset. (B) Calibration curves in 3-year CSS in multivariable group of internal test dataset. (C) Calibration 
curves in 3-year CSS in multivariable group of external test dataset. (D) Calibration curves in 3-year CSS in TNM group of train dataset. (E) 
Calibration curves in 3-year CSS in TNM group of internal test dataset. (F) Calibration curves in 3-year CSS in TNM group of external test 
dataset. ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines; TNM, Tumor Node Metastasis; CSS, cancer-
specific survival.

Train dataset Internal test dataset External test dataset

0.00 0.00 0.00

0.00 0.00 0.00

0.25 0.25 0.25

0.25 0.25 0.25

0.50 0.50 0.50

0.50 0.50 0.50

0.75 0.75 0.75

0.75 0.75 0.75

1.00 1.00 1.00

1.00 1.00 1.00

Predicted survival probabilities Predicted survival probabilities Predicted survival probabilities

Predicted survival probabilities Predicted survival probabilities Predicted survival probabilities

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

M
ul

ti
va

ri
ab

le
 g

ro
up

T
N

M
 g

ro
up

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

O
bs

er
ve

d 
su

rv
iv

al
 p

ro
ba

bi
lit

ie
s

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Cox

Cox

Cox

Cox

Cox

Cox

ST

ST

ST

ST

ST

ST

RSF

RSF

RSF

RSF

RSF

RSF

GBM

GBM

GBM

GBM

GBM

GBM

A

D

B

E

C

F

https://cdn.amegroups.cn/static/public/CCO-23-85-Supplementary.pdf


Chinese Clinical Oncology, Vol 12, No 6 December 2023 Page 11 of 17

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2023;12(6):63 | https://dx.doi.org/10.21037/cco-23-85

The C-index of Cox, RSF, and GBM were greater than ST 
in every dataset.

Figure S6 draws the ROC curves of different models 
that predict the 3- and 5-year CSS of gastric cancer in the 
same variables group. In the train dataset of the 3-year 
CSS cohort, the AUC values of Cox, ST, RSF, and GBM 
were 0.81 (95% CI: 0.79–0.83), 0.78 (95% CI: 0.76–0.80), 
0.84 (95% CI: 0.83–0.86), and 0.82 (95% CI: 0.80–0.84), 
respectively. In the train dataset of the 5-year CSS cohort, 
the AUC values of Cox, ST, RSF, and GBM were 0.73 
(95% CI: 0.70–0.76), 0.70 (95% CI: 0.67–0.73), 0.78 (95% 
CI: 0.75–0.80), and 0.73 (95% CI: 0.71–0.76), respectively. 
Among the four models in every dataset, the AUC value of 

ST was lower than other three models.
Figure S7 plots the calibration curves of different models 

for predicting 3- and 5-year CSS of gastric cancer in the 
same variables group. Whether in 3- or 5-year CSS cohorts, 
the consistency of RSF and Cox were better than those of 
GBM and ST. The predicted value of GBM was higher than 
the actual value, while the predicted value of ST was lower 
than the actual value. 

Discussion

Key findings

This study developed four models (Cox, ST, RSF and 
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Figure 6 A nomogram for predicting the specific survival rate of gastric cancer patients based on Cox proportional hazard regression model. 
T stage, tumor stage; N stage, node stage; M stage, metastasis stage. **, P<0.01; ***, P<0.001.
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GBM) to predict the survival of gastric cancer patients. 
Whether in 3-year CSS cohort or 5-year CSS cohort, the 
C-index or AUC of Cox, RSF, and GBM were greater 
than ST in every dataset. The performance of calibration 
curves of Cox and RSF were better than those of GBM 
and ST in both the multivariable group and TNM 
group. The performance of the calibration curves of all 
models in the multivariable group were better than that 
in the TNM group. In addition, we also established a 
nomogram to predict the 3- and 5-year CSS of gastric 
cancer patients.

Explanations of findings

The proportion of stage III and IV hospitalized gastric 
cancer patients in the Hebei Cancer Registration Project 
(61.41%) was higher than that of Chinese California gastric 
cancer patients (55.35%). Previous studies have shown 
that the prognosis of patients with stage III and IV gastric 
cancer is much worse than that of patients with stage I and 
II gastric cancer (42,43). The survival rate of hospitalized 
gastric cancer patients in Hebei Province (1-, 3-, and 5-year 
CSS were 82.61%, 57.07%, and 44.48%, respectively) 
were higher than that of Chinese California hospitalized 
gastric cancer patients (1-, 3-, and 5-year CSS were 
68.58%, 47.99%, and 42.91%, respectively), which may 
be due to Hebei Province was a high-risk area for gastric 
cancer and had relatively advanced gastric cancer diagnosis 
and treatment technologies. In addition, it may be related 
to treatment, tumor biology or follow-up time. Further 

exploration is still needed.
The C-index or AUC of Cox, RSF, and GBM were 

greater than ST in every dataset. The performance of 
calibration curves of Cox and RSF were better than those 
of GBM and ST. The results of this study were similar to 
our previous results of osteosarcoma (44). It indicated that 
Cox and RSF not only outperform ST and GBM in the 
survival prognosis of osteosarcoma, but also in the survival 
prognosis of gastric cancer, which may be extrapolated 
to other cancers in future studies. ST splitting nodes 
by maximizing survival differences among nodes using 
log-rank testing. However, the prediction error is large, 
resulting in low prediction accuracy (31,32). Both RSF 
and GBM are combined of a large number of ST. The 
fundamentals of GBM are training a new ST according to 
the negative gradient information of the loss function based 
on the current ST, and combining the trained newborn ST 
with the existing ST (34). In this study, The C-index and 
AUC of GBM are similar to that of Cox or RSF. However, 
the consistency of calibration curve of GBM performs 
poorer, which means it needs to be improved. RSF uses the 
bootstrap method to extract sub-samples from the original 
samples to construct a ST, averaging the cumulative risk 
function of each ST and ultimately obtaining the total 
cumulative risk function (33). RSF considers all possible 
connections among outcome variables and predictors, 
as well as all possible interactions among variables. 
Therefore, it approximates the data generation mechanism 
in observed value, obtains the predicted value that is closest 
to the actual value (37). RSF may be an alternative non-

Table 3 The C-index of different models of 3- and 5-year CSS of gastric cancer patients in same variables group

Models Train dataset, mean (95% CI) Internal test dataset, mean (95% CI) External test dataset, mean (95% CI)

Three-year CSS cohort

Cox 0.75 (0.72–0.79) 0.70 (0.58–0.82) 0.75 (0.70–0.80)

ST 0.73 (0.69–0.76) 0.68 (0.56–0.80) 0.73 (0.69–0.78)

RSF 0.77 (0.74–0.80) 0.76 (0.65–0.86) 0.76 (0.71–0.81)

GBM 0.75 (0.72–0.79) 0.77 (0.67–0.87) 0.77 (0.73–0.82)

Five-year CSS cohort

Cox 0.71 (0.67–0.74) 0.71 (0.61–0.80) 0.76 (0.72–0.80)

ST 0.68 (0.65–0.71) 0.68 (0.59–0.76) 0.73 (0.68–0.77)

RSF 0.72 (0.70–0.75) 0.70 (0.61–0.80) 0.76 (0.71–0.80)

GBM 0.71 (0.68–0.74) 0.71 (0.62–0.80) 0.76 (0.72–0.81)

CSS, cancer-specific survival; CI, confidence interval; ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines.
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parametric method to Cox. 

Comparison with similar researches

The survival prediction model constructed based on 
multiple variables was superior to that based on T stage, 
N stage, and M stage. This may be due to the fact that the 
TNM staging system only considers tumor infiltration, 
lymph node metastasis, and tumor metastasis, without 
considering biological differences among different patients. 
This leads to different survival outcomes for patients in 
the same stage, and same survival outcome for patients in 
different stages. Therefore, the TNM staging system is 
not sufficient to predict the prognosis of tumors (45-47). 
The results of Cox PH regression model showed that age, 
tumor site, T stage, N stage, M stage, and surgery situation 
were the influencing factors for the survival prognosis of 
gastric cancer patients. The survival prognosis of gastric 
cancer patients aged ≥75 years old is significantly worse 
than those aged <55 years old, which is similar to previous 
research results (42). This may because that compared 
to young patients, elderly patients have relatively poor 
physical condition and more basic diseases. They are prone 
to recurrence after receiving treatment such as surgery or 
chemotherapy, so the survival prognosis is poor (48-51). The 
survival prognosis of patients with overlapping sites were 
significantly worse than those with cardiac sites; the survival 
prognosis of patients with T3–T4 stage were significantly 
worse than those with T1 stage; the survival prognosis of 
patients with N2 stage and N3 stage were significantly 
worse than those with N0 stage; the survival prognosis 
of patients with M1 stage were significantly worse than 
those with M0 stage; the survival prognosis of patients 
who underwent surgery were better than those who didn’t 
undergo surgery, and these research results were consistent 
with previous studies (52-56). The results of this study 
showed that there was no statistical difference in survival 
prognosis between different genders, which was consistent 
with previous research results (57,58). 

Strengths and limitations

The advantages of this study were as follow: firstly, in this 
study, we set hospitalized gastric cancer patients of the 
Hebei Cancer Registration Project as the development 
dataset to develop models, and used Chinese California 
hospitalized gastric cancer patients as the external test 
dataset to external validate models. This external test 

dataset can exclude differences between hospital source 
data and population data, as well as differences among 
different races. The external test dataset proves that our 
model is not only suitable for hospitalized gastric cancer 
patients in Hebei Province, but also for Chinese California 
hospitalized gastric cancer patients. Such differences 
between development dataset and external test dataset can 
serve as a valuable tool for effective external validation. At 
the same time, all models were established using ten-fold 
cross validation with 200 iterations, which further increased 
the reliability of the model. Secondly, in this study, we 
compared multivariable group with TNM group. In our 
study, we used a TNM group, composed of three variables 
(T stage, N stage, and M stage), which were more detailed 
and had more accurate predictive effects than TNM stage. 
Thirdly, we set up same variables group (Cox, ST, RSF and 
GBM include the same variables) for sensitivity analysis 
to avoid bias caused by different models include different 
variables. Fourthly, we use the “random forest” multiple 
imputation method to impute the missing data, which can 
reduce the information bias caused by excluding samples 
due to the missing of some variables. Fifthly, we developed 
a nomogram based on Cox PH regression model to predict 
the CSS rate of gastric cancer patients. By bringing various 
variables of the patient in nomogram, we can obtain the 
3- and 5-year CSS of the patient. This prognostic tool 
not only allows doctors and patients to know the patients’ 
probability of survival, but also provides recommendations 
for clinical doctors’ treatment decisions and methods.

This study still has some limitations: firstly, the variables 
included in this study are limited. Previous studies have 
shown that some other variables, such as patient nutritional 
status (42,59), Eastern Cooperative Oncology Group 
(ECOG) performance (60), radiomics (61), and Helicobacter 
pylori infection (62), may be related to the survival of gastric 
cancer patients. In future research, we will attempt to 
incorporate these factors into the model. Secondly, due to 
technical reasons, we only used three tree-based machine 
learning methods (ST, RSF, and GBM) to compare with the 
Cox model. 

Implications and actions needed

This study fills in the blank of prognostic models for 
hospitalized gastric cancer patients in Hebei Province. 
The proposed nomogram can be used to calculate the 3- 
and 5-year CSS of gastric cancer patients based on the 
clinical information. It may be utilized practically to help 



Hao et al. A prognostic model for gastric cancer patientsPage 14 of 17

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2023;12(6):63 | https://dx.doi.org/10.21037/cco-23-85

clinicians to obtain individualized survival prediction and 
provide better treatment allocation. In the future, we will 
try to compare more models [such as SVM, artificial neural 
networks, XGBoost (eXtreme gradient boosting), etc.] to 
establish a more comprehensive and excellent prognostic 
model.

Conclusions

The performance of the multivariable group was superior 
to TNM group. Cox and RSF have better predictive 
effects than ST and GBM. The nomogram was useful for 
facilitating clinicians to predict the survival of gastric cancer 
patients, and identifying high-risk patients so as to adopt 
more reasonable treatment plans.
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Supplementary

Figure S1 Kaplan-Meier curve of different TNM stages. TNM, Tumor Node Metastasis.

Figure S2 Kaplan-Meier curves of meaningful variables by log-rank test. (A) Kaplan-Meier curves of different genders; (B) Kaplan-Meier 
curves of different age; (C) Kaplan-Meier curves of different tumor sites; (D) Kaplan-Meier curves of different T stages; (E) Kaplan-Meier 
curves of different N stages; (F) Kaplan-Meier curves of different M stages; (G) Kaplan-Meier curves of different grades; (H) Kaplan-Meier 
curves of different surgery situations; (I) Kaplan-Meier curves of different radiotherapy situations. G1–G2: well-differentiated or moderately 
differentiated; G3–G4: poorly differentiated or undifferentiated. T stage, tumor stage; N stage, node stage; M stage, metastasis stage.

A

D

G

B

E

H

C

F

I

© Chinese Clinical Oncology. All rights reserved.  https://dx.doi.org/10.21037/cco-23-85



Figure S3 The ROC curve of different models of 5-year CSS in gastric cancer patients; (A) ROC curves in 5-year CSS in multivariable 
group of train dataset; (B) ROC curves in 5-year CSS in multivariable group of internal test dataset; (C) ROC curves in 5-year CSS in 
multivariable group of external test dataset; (D) ROC curves in 5-year CSS in TNM group of train dataset; (E) ROC curves in 5-year CSS 
in TNM group of internal test dataset; (F) ROC curves in 5-year CSS in TNM group of external test dataset. AUC, area under the ROC 
curve; ROC, receiver operating characteristic; ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines; TNM, 
Tumor Node Metastasis; CSS, cancer-specific survival.

Figure S4 The calibration curve of different models of 5-year CSS in gastric cancer patients; (A) Calibration curves in 5-year CSS in 
multivariable group of train dataset; (B) calibration curves in 5-year CSS in multivariable group of internal test dataset; (C) calibration 
curves in 5-year CSS in multivariable group of external test dataset; (D) calibration curves in 5-year CSS in TNM group of train dataset; (E) 
calibration curves in 5-year CSS in TNM group of internal test dataset; (F) calibration curves in 5-year CSS in TNM group of external test 
dataset. ST, survival trees; RSF, random survival forests; GBM, gradient boosting machines; TNM, Tumor Node Metastasis; CSS, cancer-
specific survival.
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Figure S5 The outcome of multivariate Cox analysis of the specific survival of gastric cancer patients in the hospitals of the Hebei Cancer 
Registration Project. G1–G2: well-differentiated or moderately differentiated; G3–G4: poorly differentiated or undifferentiated. HR, hazard 
ratio; CI, confidence interval; T stage, tumor stage; N stage, node stage; M stage, metastasis stage. 



Figure S6 The ROC curve of different models of 3- and 5-year CSS in gastric cancer patients in the same variables group. (A) ROC curves 
in 3-year CSS in the same variables group of train dataset; (B) ROC curves in 3-year CSS in the same variables group of internal test dataset; 
(C) ROC curves in 3-year CSS in the same variables group of external test dataset; (D) ROC curves in 5-year CSS in the same variables 
group of train dataset; (E) ROC curves in 5-year CSS in the same variables group of internal test dataset; (F) ROC curves in 5-year CSS 
in the same variables group of external test dataset. AUC, area under the ROC curve; ROC, receiver operating characteristic; ST, survival 
trees; RSF, random survival forests; GBM, gradient boosting machines; TNM, Tumor Node Metastasis; CSS, cancer-specific survival.

Figure S7 The calibration curve of different models of 3- and 5-year CSS in gastric cancer patients in the same variables group. (A) 
Calibration curves in 3-year CSS in the same variables group of train dataset; (B) calibration curves in 3-year CSS in the same variables 
group of internal test dataset; (C) calibration curves in 3-year CSS in the same variables group of external test dataset; (D) calibration curves 
in 5-year CSS in the same variables group of train dataset; (E) calibration curves in 5-year CSS in the same variables group of internal test 
dataset; (F) calibration curves in 5-year CSS in the same variables group of external test dataset. ST, survival trees; RSF, random survival 
forests; GBM, gradient boosting machines; TNM, Tumor Node Metastasis; CSS, cancer-specific survival.
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