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Epidemiology of cancers associated with 
inflammation

Approximately 16% of all malignancies world-wide are 
linked to viral and bacterial infections, which cause chronic 
inflammation (1,2). More than 90% of these cancers are 
attributed to 4 infectious organisms: Hepatitis viruses 
(B and C), high-risk type human papilloma viruses, and 
helicobacter pylori, which are linked to hepatocellular 
cancer, gastric cancer, and squamous cell cancers of 
the oropharynx, cervix, and other origins, respectively. 
Other infectious organisms etiologically linked to cancers 
comprise Epstein Barr virus (Hodgkin’s lymphoma, 
Burkitt’s lymphoma, and nasopharyngeal carcinoma), 
Human Herpes Virus type 8 (HHV-8), Human T-cell 
lymphotropic virus type 1 (HLTV-1) (Adult T-cell leukemia 
and lymphoma), liver flukes (cholangiocarcinoma), and 

schistosoma hematobium (bladder carcinoma). There are 
large geographical differences in the overall percentages of 
malignancies attributable to infection, reaching from 3.3% 
in Australia and New Zealand to 26.1% in China and 32.7% 
in Sub-Saharan Africa. Furthermore, there are differences 
in the relative contribution of infectious organisms to 
cancer burden; for example a higher proportion of gastric 
cancers are linked to H. pylori in more developed compared 
to less developed regions, whereas the reverse is true for 
hepatocellular cancers and Hepatitis B/C infection. 

Inflammation and the tumor microenvironment

In addition to direct host-virus interactions such as viral 
integration into the host genome and targeted activation 
of oncogenic pathways by viral proteins, the mechanisms 
of tumorigenesis caused by infectious organisms are largely 
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inflammatory (3,4). Various types of immune cells including 
macrophages, dendritic cells (DC), T cells, neutrophils, 
mast cells, myeloid derived suppressor cells (MDSC), 
tissue macrophages, and tumor associated macrophages 
(TAM) migrate to the tumor microenvironment. These 
cells are attracted by chemokines and directed by 
interactions with stromal/tumor cells through surface 
receptors such as adhesion molecules (e.g., members of 
the selectin family L-, P-and and E-Selectin) (3). Integrins 
on leukocyte membranes interacting with endothelial 
cells through vascular cell adhesion molecule-1 (VCAM-
1) orchestrate the directed invasion of leukocytes into the 
tumor microenvironment. Furthermore, immune cells 
as well as tumor and stromal cells produce a multitude 
of cytokines (e.g., IL-6, IL-8, IL-10, VEGF, TNF-α, 
TGF-beta),  angiogenic and other soluble factors, 
promoting tumorigenesis through multiple autocrine and 
paracrine loops. Extracellular proteases such as matrix 
metalloproteinases are also involved in facilitating the 
migration of various cells through the endothelium to the 
site of inflammation. These mechanisms suggest that the 
innate immune response triggered by infectious agents is 
intimately linked to cancer initiation and progression. 

The adaptive immune response to tumor cells is 
intricately connected with the innate response and the 
inflammatory process. These responses are generally viewed 
as directed at tumor surveillance and prevention/eradication 
of tumor cells through recognition of tumor (neo) antigens 
as non-self. Nonetheless, even T cells specific for viral 
antigens such as the HBV surface antigen and B cells have 
been implicated in the propagation of inflammation and 
tumor progression (4-6). Cells of the innate immune system 
are an integral part of the priming and effector phases of 
T cell responses; for instance, the presentation of antigen 
to T cells by macrophages and DCs is critical for the T 
cell response. The interplay of both adaptive and innate 
immune responses in the inflammatory tumor environment, 
driving both cancer development and progression as well 
as immune-mediated tumor rejection is highly complex. 
In tumors that become established, the net impact favors 
tumor promotion (Figure 1).

Targeting immune checkpoint pathways 
upregulated in the inflammatory tumor 
environment

A potential means to combat neoplasms that arise in the 
context of infection and chronic inflammation could 

involve immune checkpoint pathways, based on the known 
biology of host immune responses. Specifically, PD-1 is an 
inhibitory receptor expressed on the surface of activated 
T cells. PD-1 is a known marker of T-cell exhaustion in 
animal models of viral infection. This manifests itself as 
loss of effector functions such as the secretion of cytokines 
(IFN-γ, IL-2, TNF-α), production of the cytolytic effector 
molecules perforin and granzyme B, and eventually, 
apoptosis (7-9). The immune infiltrates of chronic 
inflammation frequently employ the B7-H1/PD-1 axis. Both 
PD-1 ligands, B7-H1 (PD-L1) and B7-DC (PD-L2) are 
up-regulated in peripheral tissues during an inflammatory 
response to infectious agents, in response to type I (α, β) 
and type 2 (IFN-γ) interferons (10). The biologic role 
of this upregulation is the prevention of collateral tissue 
damage mediated by antigen-experienced T cells during 
inflammation (11-14). Other immune-checkpoint molecules 
such as 2B4, CD160, T cell Immunoglobulin and Mucin 
domain-3 (Tim-3), Lymphocyte Activation Gene-3 (Lag-3) 
are upregulated in conjunction with PD-1 on “exhausted” 
CD8 T cells in tumor and chronic viral models.

Tumor activity of B7-H1/PD-1 pathway blockade 
in patients with advanced solid tumors

Tumor cells of various origins have been found to 
upregulate B7-H1 expression. Frequently, tumor infiltrating 
lymphocytes express PD-1 on their surface (15-19). Therapy 
with monoclonal antibodies directed against PD-1 and B7-
H1 have recently shown encouraging successes in advanced 
melanoma, RCC, and metastatic non-small cell lung cancer 
(NSCLC). Objective tumor responses were seen in 18% 
of heavily pre-treated patients with advanced non-small 
cell lung cancer, 27% of patients with RCC, and 28% of 
patients with advanced melanoma treated in a phase I study 
with the IgG4 monoclonal antibody MDX-1106 (BMS, 
Bristol-Myers-Squibb) (20). More than two thirds of the 
responses lasted for more than one year. The treatment was 
well tolerated with grade 3 or 4 adverse events in the range 
of 15% and consisting predominantly of likely immune-
related events affecting skin, lung, liver, gastrointestinal, and 
endocrine systems (20). Interestingly, none of 17 patients 
whose tumors were negative for B7-H1 had a response, 
whereas 9 of 25 patients (36%) with B7-H1 positive tumors 
experienced an objective response, suggesting that tumor 
B7-H1 expression may be a predictive marker for treatment 
with PD-1 blockade.

A monoclonal antibody directed against B7-H1 (MDX-
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1105) (BMS) induced objective tumor responses in 5 of 
49 patients (10%) with extensively pre-treated metastatic 
non-small cell lung cancer, in 2 of 17 patients (12%) with 
RCC, and in 9 of 52 patients (17%) with melanoma (21). 
Treatment with this antibody was also well tolerated with 
grade 3 or 4 adverse events observed in less than 10% of 
patients. 

The inflammatory context of cancers linked to viral or 
bacterial infection and associated overexpression of B7-
H1 suggests that these tumors may be ideal candidates 
for therapy with immune checkpoint blockade. As will be 
discussed in the following sections, B7-H1 is overexpressed 
in many tumors associated with infections and chronic 
inflammation, likely mediated by type I (α, β) and type 
2 (IFN-γ) interferons. Furthermore, T cells infiltrating 
these tumors express PD-1. It is intriguing that in cancers 
associated with infections and chronic inflammation, the B7-
H1/PD-1 axis is upregulated not only as a result of a tumor 
immune defense mechanism, but also naturally in response 
to the inflammation mediated by the infectious organism. 

The inflammatory context leading to upregulation of the 
B7-H1/PD-1 pathway in these tumors, in conjunction with 
the demonstrated anti-tumor activity of PD-1 and B7-
H1 blockade in melanoma, RCC, and NSCLC therefore 
suggests that B7-H1/PD-1 inhibition may be particularly 
valuable in these tumors. 

 

The preclinical and clinical role of the B7-
H1/PD-1 pathway in cancers associated with 
infections and chronic inflammation

Hepatocellular cancer (HCC)

PD-1 expression on peripheral T cells and B7-H1 
expression on peripheral mononocytes was correlated with 
tumor progression in 141 patients with Hepatitis B-related 
HCC (22). Intratumoral and peripheral B7-H1 expression 
was positively correlated in the 23 patients for whom tumor 
tissue was available (22). Furthermore, expression of B7-
H1 in tumor tissue from patients with HCC was associated 

Figure 1 The B7-H1/PD-1 axis in the tumor environment: PD-1 is upregulated on antigen-experienced memory T cells in peripheral 
tissues; the biologic function is the protection of tissue from collateral damage during an inflammatory response. By expressing the PD-1 
ligands B7-H1 and B7-DC, tumor cells take advantage of this suppressive mechanism to evade a tumor-directed T cell response. This 
presumably occurs especially in the inflammatory context of a cancer associated with infection. TCR, T cell receptor; HLA, Human 
Leukocyte Antigen; T reg, T regulatory cell
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with tumor vascular invasion as well as shorter disease-
free and overall survival (23). An intriguing observation is 
the association of de novo hepatocarcinogenesis as defined 
by late (>1 year) intrahepatic recurrence with increased 
B7-H1 expression (23). Multicentric HCC occurs in 20-
60% of patients with HCC after resection and is thought 
to be mediated by continuous viral infection and chronic 
inflammation, paralleling the pathogenesis of the primary 
HCC (24). PD-1 expression has been associated with 
Hepatitis B and C-specific T cell dysfunction, which is 
reversible by anti-B7-H1 blockade (25-29). The data 
suggest that B7-H1/PD-1 pathway blockade may be 
beneficial in the context of primary Hepatitis B/C 
associated HCC prevention, for the treatment/prevention 
of intra-hepatic second primary HCC, and for the 
treatment of metastatic HCC. Of particular interest with 
regard to chronic hepatitis C and hepatitis C-mediated 
HCC is the upregulation of B7-H1 by interferon-α, a 
type 2 interferon, which is part of any standard treatment 
regimen for Hepatitis C. This potential synergy provides 
a strong rationale for PD-1 blockade in this patient 
population; a phase 1 clinical trial assessing the safety and 
tumor activity of the anti-PD1 antibody MDX-1106 in 
patients with advanced HCC is currently ongoing (30).

Gastric cancer

Gastric cancer is one of the leading causes of cancer 
mortality worldwide (24). Helicobacter Pylori (H. Pylori) 
infection of the gastric mucosa leads to chronic gastritis 
and gastric/duodenal ulcers. Infection of the gastric mucosa 
with H. Pylori induces infiltration with T and B cells, 
macrophages, and neutrophils (31,32). Gastric epithelial 
cells lines upregulate B7-H1 upon exposure to H. pylori 
and gastric mucosa from H. Pylori infected subjects is 
higher compared to H. pylori negative subjects (33). 
Moreover, proliferation and IL-2 secretion of T cells co-
cultured with H. Pylori infected gastric epithelial cells were 
found to be downregulated, suggesting a potential role in 
the adaptive immune response directed at premalignant or 
malignant cells during gastric carcinogenesis (33). H. Pylori 
is a critical element in the carcinogenesis of gastric cancer 
as demonstrated by the presence of the organism in 
gastric cancer samples and premalignant lesions of gastric 
mucosa (34), the strong association between H. Pylori 
Infection and gastric cancer shown in many studies (35), and 
the ability of the H. Pylori to cause gastric cancer in animal 
models (36). Evidence from two small studies indicates that 

B7-H1 and PD-1 may be upregulated in human gastric 
carcinoma samples as assessed by immunohistochemistry 
and RT-PCR (37,38). However, the role of B7-H1 in the 
gastric tumor immune-microenvironment has not been 
studied extensively to date. Of note, seven patients with 
advanced gastric cancer were included in the phase 1 
study of the B7-H1 directed monoclonal antibody MDX-
1105 (BMS) (21), whereas no patients with gastric cancer 
were enrolled in the phase 1 study of the PD-1 antibody 
MDX-1106 (BMS). No objective responses were seen 
in the 7 gastric cancer patients treated with MDX-1105. 
Nevertheless, given the importance of the B7-H1/PD-1 
axis in the inflammatory context and the inflammatory 
pathogenesis of gastric carcinoma in conjunction with 
the lack of effective systemic therapies in the advanced 
stage, more comprehensive investigation of the B7-H1/
PD-1 pathway or other immune checkpoint molecules 
such as Tim-3 or LAG-3 should be a potentially fruitful 
undertaking in gastric cancer. 

Squamous cell carcinoma of the oropharynx

Squamous cell cancers of the head and neck are diagnosed 
in approximately 500,000 individuals worldwide each 
year (39). In contrast to the traditional risk factors for 
head and neck cancers, smoking and alcohol consumption, 
up to 80% of oropharyngeal cancers (particularly of the 
tonsils and the base of the tongue) are now associated with 
Human Papillomavirus subtype 16 (HPV-16) and carry a 
much better prognosis than HPV-negative tumors (40,41). 
HPV-16 infected cancer cells express the virally derived 
oncoproteins E6 and E7; T cells specific for E7 have been 
detected with increased frequencies in the peripheral blood 
of patients with HPV E7 positive tumors compared to 
patients with HPV E7 negative tumors and were found to 
be reactive in vitro against E7 positive tumor cells (42,43). 
The majority of HPV positive tumors are infiltrated with 
T cells and exhibit a gene signature consistent with an 
adaptive immune response, suggesting that HPV infection 
may induce a tumor-specific T cell response (44,45). The 
induction of an immune response may be one explanation 
for the improved outcome in this subset of squamous 
cell cancers. Nevertheless, tumor progression despite the 
induction of an immune response suggests the presence of 
immune evasion, presumably including the upregulation 
of immune checkpoint molecules on tumor cells, T-cells, 
or antigen presenting cells such as macrophages, dendritic 
cells, or B cells. There have been reports of PD-1 and B7-
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H1 overexpression in peripheral T cells and tumor samples 
from patients with oral squamous cell carcinoma (46-48), 
however, the data was generated in animal studies, cell lines, 
and small patient series. To our knowledge, patients with 
squamous cell carcinoma of the oropharynx have not been 
treated with PD-1 or B7-H1 inhibitors to date. 

Nasopharyngeal cancer (NPC)

The incidence of NPC is 80,000 worldwide with 50,000 
deaths every year (49). NPC is endemic in Southern China 
(especially in the Guandong and Guangxi provinces), 
Southeast Asia, North and Central Africa, the Middle 
East, and the Arctic (50). The etiology of NPC is 
complex and includes genetic, environmental, and viral 
components. Epstein-Barr Virus has been closely linked 
to NPC as is evident by the finding of EBV DNA in 
both precursor lesions and NPC tumor cells and the 
expression of EBV proteins such as EBNA-1, LMP1, and 
LMP2 (51-54). Although NPC is relatively radiotherapy 
and chemotherapy-sensitive, a significant proportion of 
patients develop locoregional or distant recurrence. NPC is 
categorized in 3 different histopathologic subtypes (WHO): 
(I) a well-differentiated, (II) moderately-differentiated, 
nonkeratinizing, and (III) undifferentiated. In southern 
China, the majority of tumors (>90%) are undifferentiated. 
A characteristic feature of NPC, particularly of the 
undifferentiated type, is the presence of a substantial 
immune infiltrate in the primary tumor consisting mainly 
of T cells, in addition to B cells, dendritic cells, monocytes, 
and eosinophils. Highly immunogenic antigens, such as 
the early lytic transactivator BZL1, have been identified in 
NPC tumor cells (55) and the antigen presenting function 
of NPC tumor cells as well as the function of peripheral 
EBV-specific T cells appear intact (56,57), suggesting 
that local immune suppression accounts for the inability 
of tumor specific T cells to clear malignant cells. There 
is evidence for functional inactivation of NPC primary 
tumor infiltrating lymphocytes (TIL): TIL from NPC, 
in contrast to peripheral T cells, failed to produce IFN-γ 
and to exert cytotoxicity when stimulated with autologous 
lymphoblastoid cell lines (LCL) (58). Recently, PD-1 
expression on CD8 cells from NPC tumors was found 
to be upregulated compared to CD8 cells from control 
nasopharyngeal tissue (59). PD-1 overexpression was 
associated with shorter overall survival, disease-free survival, 
and recurrence-free survival and was an independent risk 
factor for death, treatment failure, and local recurrence 

of NPC, indicating that targeting the B7-H1/PD-1 
pathway may benefit patients with NPC. Of note, no 
differences in B7-H1 expression were found between NPC 
tumor and control nasopharyngeal in that study. Other 
immunosuppressive mechanisms found in NPC tumors 
include immune checkpoint pathways such as Galectin-9/
Tim-3 and CD4+CD25+FoxP3 regulatory cells (60,61).

EBV-associated lymphoma

Approximately half of the ca. 70,000 cases of Hodgkin’s 
lymphoma diagnosed world-wide every year are associated 
with EBV (2). EBV infection was recently shown to 
be linked to B7-H1 expression in primary Hodgkin’s 
lymphoma cells and EBV transformed lymphoblastoid cell 
lines with increased activity of both the B7-H1 promoter 
and enhancer. Furthermore, PD-1 was identified on 
EBV-specific CD8 cells in patients with acute infectious 
mononucleosis (62). These data support a role for B7-H1/
PD-1 pathway inhibition in this group of lymphomas.

Concluding remarks

About one quarter of cancers diagnosed in China are 
inflammatory cancers that are linked to bacterial and 
viral pathogens. Approximately half of all hepatocellular 
carcinomas worldwide are diagnosed in China and more 
than 80% of them are associated with chronic Hepatitis 
B infection. Gastric cancer, which is related to H. Pylori 
infection, is the 3rd most common cancer worldwide in 
both men and women, while NPC is endemic in southern 
China. Inflammatory cancers, by their nature, occur in the 
context of an adaptive and innate immune response which is 
triggered initially by the infectious organism. The immune 
response then evolves into a complex interplay between 
T cells (specific to tumor antigens and/or infectious 
antigens), macrophages, monocytes, dendritic cells, and 
other cells of the innate immune response, stromal cells, 
in addition to soluble factors such as chemokines and 
cytokines. The balance of (anti-tumor and anti infectious 
organism-directed) adaptive T cell response and immune 
regulatory mechanisms as well as directly tumor promoting 
mechanisms in the tumor microenviroment of inflammatory 
tumors is most often tilted towards cancer progression. 
However, inflammation by itself is a positive prognostic 
marker in certain tumor types; for example in melanoma the 
inflamed phenotype seems to include the clinical responders 
to tumor vaccines (63). This may be explained by the fact 
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that a tumor-specific T cell response is already present 
in the tumor environment, which, in a therapeutic sense 
“merely” needs to be uncoupled from the suppression by 
regulatory mechanisms. In this context, the identification of 
the B7-H1/PD-1 pathway as a critical immune regulatory 
checkpoint in conjunction with the recent demonstrated 
clinical efficacy of monoclonal antibodies targeting this 
pathway provides a strong rationale for B7-H1/PD-1 
directed immunotherapy in cancers associated with 
infections and chronic inflammation.
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