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Introduction

There have been major advances in the understanding of 
isocitrate dehydrogenase (IDH) mutations in various types 
of cancers since their discovery in 2008 by Parsons et al. (1). 
In their integrated genomic analysis of human glioblastoma 
(GBM), IDH mutation was observed in 12% of GBM 
samples and the majority of these were in tumors that had 
progressed from lower grade gliomas (secondary GBM). 

Subsequently >70% of WHO grade II/III gliomas were 
found to harbor an IDH mutation (2). IDH mutations also 
occur in acute myeloid leukemia (AML), myelodysplastic 
syndrome (MSD), myeloproliferative neoplasm (MPN), 
cholangiocarcinoma, enchondroma and chondrosarcoma, 
and other solid cancers. Significant efforts have been made 
since its discovery to improve our knowledge about the role 
IDH mutations play in tumorigenesis and progression. It 
has become clear that IDH mutations are associated with 
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many epigenetic and metabolic changes in these tumors. 
In this review we provide an overview of the function of 
mutant IDH and the current understanding of the role IDH 
mutations play in tumorigenesis. In addition, we discuss 
several potential therapeutic strategies for IDH-mutant 
gliomas based on emerging preclinical and clinical data, 
including therapies targeting mutant IDH and other IDH 
mutation-associated pathways. 

Functions of normal IDH

There are three isozymes in the IDH family: IDH1 is 
located in the cytosol and peroxisome and IDH 2 and IDH3 
are located in the mitochondria. Normal IDH catalyzes the 
NADP+-dependent oxidative decarboxylation of isocitrate 
to α-ketoglutarate (α-KG), producing CO2 and NADPH 
in the process (3). It, therefore, plays an important role 
in biosynthesis of central metabolites in the tricarboxylic 
acid (TCA) cycle as well as in the generation of cellular 
NADPH. IDH1 is particularly important in the brain as 
this is the main source of NADPH (4). 

Functions of mutant IDH

The majority of IDH mutations involve the catalytic pocket 
of the enzyme. IDH1 mutations predominantly occur at 
arginine 132 resulting in substitutions, including R132H 
(most common, 88%), R132C, R132L, R132S, and R132G (2). 
IDH2 mutations typically occur at R140 or R172. Of IDH2 
mutations, R172K is most common. IDH1 and IDH2 
mutations are mutually exclusive. 

A landmark study of a large-scale metabolomics 
screen in IDH-mutant GBM cells found that IDH1R132H 
mutation leads to a neomorphic ability to produce (R)-
2-hydroxyglutarate (2HG) while oxidizing NADPH to 
NADP+ (5). This process results in 2HG accumulation with 
levels up to 100-fold higher in IDH mutant versus IDH 
wild type cells (6). 2HG is converted directly from α-KG 
by the mutant IDH, therefore relies on the presence of a 
wild-type IDH which converts isocitrate to α-KG in the 
TCA cycle (7). This may explain the rareness of loss of 
heterozygosity of IDH.

2HG is considered as an ‘oncometabolite’ which is 
thought to be responsible for many, if not all, biologic 
effects of IDH mutations. In normal cells without IDH 
mutation, 2HG is present at trace levels and has no known 
metabolic function (8). It is rapidly converted back to 
α-KG by 2HG dehydrogenases. In IDH-mutant cells, the 

production of 2HG is far greater than its clearance, leading 
to high concentrations of 2HG in these cells. 

Role of IDH mutations in tumor formation and 
progression

IDH mutations have been suggested as an important early 
event in tumorigenesis. Large scale genomic analyses of 
IDH-mutant gliomas found that IDH1 mutation occurred 
before acquisition of other mutations such as TP53 
mutations or 1p/19q co-deletion (9,10), and IDH1R132H 
was the only mutation that was consistently present in 
both the initial and recurrent glioma samples (11). IDH 
mutation was also maintained in 95% of recurrent 
secondary GBMs (12). Further supporting evidence 
of IDH mutation being an early genetic event comes 
from studies of hematopoietic disorders where IDH1/2 
mutations have been found in premalignant diseases such as 
early MDS, MDS/MPN (13-15). IDH mutations have also 
been identified in other premalignant solid tumors, such as 
enchondromas, cartilaginous tumors that can progress to 
malignant chondrosarcomas. 

It remains unclear whether IDH mutation by itself 
causes cancer or if it requires other oncogenic events to 
initiate tumorigenesis. IDH-mutant tumors typically harbor 
other cancer-associated genetic alterations. IDH mutation 
is associated with ATRX, TP53 and TERT mutations 
in diffuse astrocytoma, and co-deletion of chromosome 
arms 1p and 19q in oligodendroglioma (16). In mouse 
IDH-mutant AML models, there was a long latency and 
incomplete penetrance of tumors, suggesting IDH mutation 
is not sufficient to fully drive tumorigenesis by itself (17-19). 
Similarly, IDH1R132H expression in several cell types of 
the murine central nervous system failed to form tumor 
on its own (20). However, once established, at least in 
IDH1-mutant glioma xenograft models in mice, ongoing 
expression of IDH1 mutation appears to be necessary for 
tumor maintenance as pharmacological inhibition of mutant 
IDH1 results in tumor growth delay and induction of cell 
differentiation (21). 

Epigenetic modifications by IDH mutations via 
2HG accumulation

2HG is structurally similar to α-KG. At high concentrations, 
2HG competitively inhibits α-KG-dependent dioxygenases 
including the Jumonji domain containing (JmjC) family 
of histone lysine demethylases (KDMs) and the ten-
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eleven translocation (TET) family of DNA hydroxylases 
that catalyze the sequential oxidation of 5-methylcytosine 
(5mC) to eventual DNA demethylation (22-27). These 
inhibitory effects on histone and DNA demethylases result 
in a hypermethylation phenotype with alterations in cellular 
epigenetic status. IDH-mutant tumors have been shown to 
display a CpG island methylator phenotype (CIMP) (28,29). 
In glioma, this DNA hypermethylation signature is known 
as glioma CIMP (G-CIMP). The notion that IDH mutation 
is the molecular basis of G-CIMP has been supported by 
preclinical data showing that introduction of mutant IDH1 
into primary human astrocytes induces extensive DNA 
hypermethylation and reshapes the methylome in a fashion 
that mirrors the changes observed in G-CIMP (30). 

IDH mutations and subsequent accumulation of 2HG 
have been shown to prevent the histone demethylation 
that is required for lineage-specific progenitor cells to 
differentiate (31). This suggests that IDH mutations can 
promote tumorigenesis by blocking cellular differentiation 
via hypermethylation of genes involved in differentiation. 

CTCF insulator protein organizes the genome into 
topological domains by creating chromatin loops and 
boundaries (32,33). The hypermethylator phenotype of 
IDH-mutant gliomas has been shown to disrupt CTCF 
binding and domain boundaries, allowing a potent 
constitutive enhancer to interact with the normally 
quiescent PDGFRA oncogene promoter (34). This provides 
an epigenetic mechanistic link between IDH mutation and 
activation of PDGFRA. Furthermore, a demethylating 
agent was able to restore the insulator function, resulting 
in reduction of PDGRFA expression in IDH-mutant 
astrocytoma model. Widespread CTCF and domain 
boundary disruption is likely and this could lead to other 
oncogene activations in IDH-mutant tumors. 

Potential therapeutic targets in IDH-mutant 
gliomas 

Patients with WHO grade II and III gliomas that harbor 
an IDH mutation have a better response to treatment and 
a prolonged survival compared to those with IDH wild-
type gliomas (35,36). In addition, these lower grade gliomas 
respond better to chemo-radiotherapy than to radiotherapy 
alone (37,38). IDH mutant gliomas maintain the mutant 
IDH allele even after acquiring further oncogenic 
driver mutations (11,39). This may indicate that IDH 
mutant gliomas, even at progression or after malignant 
transformation to higher grade glioma, may remain 

vulnerable to the targeted therapies developed specifically 
for IDH mutations. The therapeutic effects may be further 
enhanced by combining different targeted therapies or with 
traditional chemotherapeutics or radiation. In this section, 
various potential therapeutic targets in IDH-mutant 
gliomas are discussed based on emerging preclinical and 
clinical data. 

Mutant IDH enzymes

The notion that these neomorphic mutations of IDH1 
and IDH2 are the mechanistic basis for malignant 
transformation led to the development of drugs targeting 
the mutant IDH1/2 enzymes. Moreover, IDH mutations 
are tumor-specific and expressed uniformly in all tumor 
cells (10). In a preclinical study using a fully transformed 
cells with endogenous IDH1 mutation, a targeted inhibitor 
of mutant IDH1 induced demethylation of histone 
H3K9me3 and expression of genes associated with gliogenic 
differentiation via reduction of 2HG production (21). 
Mutant IDH1 inhibition also delayed the growth of IDH1-
mutant, but not IDH1 wildtype, glioma cells. In another 
study, a mutant IDH2 inhibitor was able to induce cellular 
differentiation of primary human AML cells harboring 
an IDH2 mutation (40). Mechanistic studies in an IDH2 
mutant erythroleukemia model showed that inhibition of 
IDH2 by a small molecule inhibitor reversed both histone 
and DNA methylation changes within days and weeks, 
respectively (41). Methylation of histone and DNA is closely 
linked to mRNA expression and differentiation, therefore 
these preclinical study results provide proof-of-concept that 
targeting mutant IDH1/2 is a potential therapeutic strategy 
for IDH-mutant tumors. 

Whether inhibition of mutant IDH and subsequent 
reduction in 2HG production are sufficient to halt tumor 
growth in IDH-mutant gliomas and other solid tumors 
remains unclear. There are studies that have shown no or 
minimal effects on CIMP or tumor growth despite near 
complete abrogation of 2HG production by pharmacologic 
inhibition alone (42-45). These conflicting observations 
between tumor types and cell lines may be due to potentially 
differing effector pathways of mutant IDH and 2HG in 
cellular-, (epi)genetic-, and organ-level context. 

Multiple IDH inhibitors have been developed and 
several of them are currently undergoing clinical evaluation 
in phase I/II trials in patients with IDH mutant tumors. 
AG-221, a selective small molecule inhibitor of IDH2 was 
the first to enter clinical trial in late 2013. Preliminary 
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data from phase I trial of this agent in patients with IDH2-
mutant relapsed or refractory AML demonstrated clinical 
responses in about 40% of the patients (46). Preliminary 
data of the dose escalation phase I trial of AG-120, an IDH1 
inhibitor, in solid tumors reported a clinical benefit rate 
(defined as progression free at 6 months) of 37% among 
all patients and 25% in glioma patients (47). AG-881, a 
pan-inhibitor of the mutant IDH1 and IDH 2 enzymes, 
has been shown to fully penetrate the brain-blood barrier 

in preclinical studies, therefore it is of particular interest 
whether this agent has better clinical efficacy in glioma 
patients. At the time of writing, there are six IDH inhibitor 
clinical trials for gliomas (Table 1). 

DNA hypermethylation

Given the evidence that IDH mutations cause epigenetic 
alterations and a cellular differentiation block by inhibiting 

Table 1 Targeted therapies for IDH-mutant gliomas currently undergoing clinical evaluation

Drug Mechanism of action Indication Trial phase Comments
Clinicaltrials.gov 
identifier

Mutant IDH inhibitors

AG-881 Mutant IDH1 and IDH2 
inhibitor

Advanced solid tumors, including 
gliomas, with an IDH1/2 mutation

Phase I Recruiting, 
penetrates blood-
brain barrier

NCT02481154

AG-120 Mutant IDH1 inhibitor Advanced solid tumors, including 
gliomas, with an IDH1 mutation

Phase I Active, not 
recruiting

NCT02073994

AG-221 Mutant IDH2 inhibitor Advanced solid tumors, including 
gliomas, with an IDH2 mutation

Phase I/II Completed,  
results awaited

NCT02273739

BAY1436032 Mutant IDH1 inhibitor IDH1 mutant advanced solid tumors Phase I Recruiting NCT02746081

DS-1001b Mutant IDH1 inhibitor IDH1
R132

 mutant glioma Phase I Recruiting NCT03030066

IDH305 Mutant IDH1 inhibitor Advanced malignancies, including 
gliomas, with an IDH1

R132 
mutation

Phase I Suspended 
recruitment

NCT02381886

Metabolic pathway

Metformin and 
chloroquine

Antidiabetic and 
antimalarial (to exploit 
metabolic vulnerability 
exhibited by IDH  
mutant tumors)

IDH1/2 mutant glioma, 
cholangiocarcinoma, 
cholangiosarcoma

Phase Ib Recruiting NCT02496741

Immunotherapy

Avelumab (with 
hypofractionated 
radiation)

Programmed death-
ligand 1 (PD-L1) 
inhibitor 

Progressive or recurrent IDH1/2 
mutant glioblastoma 

Phase II Recruiting NCT02968940

IDH1
R132H

-dendritic 
cell vaccine

Immunotherapy IDH1
R132

 mutant glioma Phase I Recruiting NCT02771301

IDH1
R132H

 peptide 
vaccine

Immunotherapy IDH1
R132

 mutant glioma Phase I Recruiting NCT02454634

PEPIDH1M  
vaccine

Immunotherapy Progressive or recurrent grade II 
glioma with IDH1 mutation

Phase I Recruiting NCT02193347

CB-839 Glutaminase inhibitor Advanced and/or treatment  
refractory solid tumors,  
including IDH1/2 mutant gliomas

Phase I Recruiting NCT02071862

IDH, isocitrate dehydrogenase.
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histone and DNA demethylases and the implication 
that these epigenetic alterations lead to malignant 
transformation, histone deacetylase inhibitors and DNA 
demethylating agents have been investigated in preclinical 
models of IDH-mutant tumors (42,45,48). Decitabine and 
azacytidine are DNA demethylating agents, approved by 
Food and Drug Administration (FDA) for MSD, and they 
inhibit DNA (cytosine-5-)-methyltransferase 1 (DNMT1). 
A preclinical study of decitabine in patient-derived IDH1 
mutant glioma cells demonstrated that decitabine can 
effectively reverse the pathologic DNA hypermethylation 
induced by mutant IDH, and induce cellular differentiation 
in these cells (45). In this study, decitabine also decreased 
growth of these cells in vitro and IDH1-mutant xenografts 
in mice. Similarly, another study showed that long-term 
administration of low dose azacytidine results in reduction 
of DNA methylation of promoter loci, induction of 
glial differentiation, reduction of cell proliferation and a 
significant reduction in tumor growth in an endogenous 
IDH1 anaplastic astrocytoma model (42). The effects of 
both decitabine and azacytidine were durable even after the 
treatment was stopped. 

These demethylating agents may be useful not only in 
the recurrent setting but also as a maintenance therapy 
following surgical resection of IDH-mutant gliomas. Due 
to the infiltrative growth pattern of gliomas it is almost 
impossible to remove all of the tumor cells by resection, 
therefore tumor recurrence is virtually inevitable over 
time despite gross total resection and adjuvant chemo-
radiotherapy, and often these tumors recur as higher grade 
gliomas. Long-term low dose treatment with a DNA 
demethylating agent following initial treatment may induce 
cell differentiation in the remaining IDH-mutant glioma 
cells, thereby delaying or even preventing recurrence. 
Targeting the pathologic DNA hypermethylation in IDH-
mutant cells with DNA demethylating agents may represent 
a potential therapeutic strategy that warrant further clinical 
evaluation in patients with IDH-mutant gliomas. 

Vulnerability of IDH-mutant cells to NAD+ depletion

IDH mutations have also been shown to affect canonical 
metabolic pathways including NAD+ production, glutamine 
catabolism and the TCA cycle (3,43,44,49-51). Tateishi 
et al. reported intriguing data showing that depletion of 
2HG via direct inhibition of mutant IDH1 was insufficient 
to halt the formation or growth of progressive IDH1-
mutant gliomas in vitro and in vivo in mice (44). This 

finding suggests that other genetic and/or epigenetic 
factors may modulate the effect of direct mutant IDH1 
inhibition. The authors then discovered that IDH-mutant 
cells were more sensitive, compared to IDH wild-type 
cells, to depletion of the coenzyme NAD+, an essential 
component of intracellular signaling pathways implicated 
in cancer cell growth (52). Depletion of NAD+ using 
small molecule inhibitors of NAMPT, a salvage NAD+ 
synthesis enzyme, resulted in selective cytotoxicity in IDH-
mutant glioma cells, and in mice harboring intracerebral 
IDH-mutant glioma xenografts, treatment with NAMPT 
inhibitors resulted in a marked survival extension (44). They 
also found that IDH1 mutation led to reduced expression 
of Naprt1, a rate-limiting enzyme in the salvage NAD+ 
pathway, via 2HG-mediated hypermethylation of the 
NAPRT1 promoter CpG island. This explains the lower 
basal levels of NAD+ found in IDH-mutant cells which may 
render them less able to compensate for further depletion of 
NAD+ induced by NAMPT inhibition. A metabolic study 
of IDH-mutant glioma cell lines treated with NAMPT 
inhibitors showed that NAD+ depletion disrupts TCA cycle 
metabolism and induces autophagy by activating AMP-
activated protein kinase (AMPK), a key regulator of the 
metabolic checkpoint which responds to nutrient- and 
energy-poor conditions (44). Collectively, these data suggest 
that NAMPT inhibition represents a promising synthetic 
lethal therapeutic approach that effectively inhibits both 
NAD+ salvage pathways (NAMPT and Naprt1), leading 
to a metabolic crisis that activates AMPK and initiates 
autophagy in IDH-mutant gliomas. 

IDH mutation-associated genome instability

Mutant IDH uses NADPH as a cofactor in the conversion 
of α-KG to 2HG, resulting in alterations in the NADPH/
NADP+ ratio. A significantly reduced NADPH production 
has been reported in IDH-mutant glioma samples (4). 
NADPH is an essential reducing factor required for cellular 
defense mechanism against reactive oxygen species through 
regeneration of reduced glutathione (GSH) from oxidized 
glutathione (GSSG) by glutathione reductase. In IDH-
mutant cell lines, IDH mutation resulted in increased 
DNA double-strand breaks after ionizing radiation via 
reduction of IDH-mediated NADPH production (53). This 
observation suggests that IDH mutations lead to DNA 
damage and genome instability, which in turn render these 
IDH-mutant cells more sensitive to radiation. Mutant IDH 
inhibitor restored IDH-mediated NADPH production 
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with a subsequent radioresistance of IDH-mutant cells, 
suggesting that treatment with mutant IDH inhibitor 
during radiation therapy may abolish the beneficial effects 
on survival of IDH-mutant glioma patients. 

Alkylating agents, such as temozolomide, procarbazine 
and lomustine, are commonly used chemotherapeutics 
in gl ioma patients .  Chemotherapy-induced DNA 
lesions are repaired by DNA repair enzymes such as O6-
methylguanine-DNA methyltransferase (MGMT) and 
alkB homolog (ALKBH) proteins (54-56). The G-CIMP 
status correlates well with MGMT promoter methylation 
in gliomas (30), suggesting a link between IDH mutation 
and MGMT methylation. ALKBHs are α-KG dependent, 
therefore, 2HG accumulation in IDH-mutant cells inhibit 
the function of these DNA repair proteins, leading to 
increased DNA double-strand breaks after alkylating 
treatment (56). As a result, IDH mutations sensitize IDH-
mutant tumor cells to alkylating agents compared to IDH 
wildtype. 

Recently IDH1/2 mutations have been shown to cause a 
homologous recombination (HR) defect via 2HG-induced 
inhibition of α-KG-dependent dioxygenases, particularly 
KDM4A and KDM4B (57). This “BRCAness” phenotype 
was demonstrated in a range of clinically relevant models, 
including patient-derived IDH-mutant glioma cell lines, and 
these cells showed a selective sensitivity to poly(adenosine 
5'-diphosphate-ribose) polymerase (PARP) inhibition via 
synthetic lethal interactions. Treatment with a mutant 
IDH inhibitor reversed this HR defect and eliminated 
the associated PARP inhibitor sensitivity. Olaparib and 
veliparib, PARP inhibitors, have been shown to penetrate 
the blood-brain barrier (58-60). PARP inhibition using 
these drugs as a potential treatment for IDH-mutant 
gliomas warrant further investigation. 

Collectively, these studies provide evidence that IDH 
mutations are associated with increased genome instability, 
thereby greater vulnerability to therapies causing further 
DNA damage or interfering with DNA repair. This may 
explain, at least partly, the more favorable therapeutic 
responses and better prognosis observed in IDH-mutant 
gliomas (37,61).

Dependence of IDH-mutant cells on oxidative 
mitochondrial metabolism

IDH1 mutations have been shown to compromise 
cellular metabolism under hypoxic conditions in IDH1-
mutant cell lines, resulting in increased dependence on 

oxidative mitochondrial metabolism and inability to induce 
reductive glutamine metabolism (43). This suggests that 
IDH-mutant cells may be more sensitive to inhibitors 
that perturb mitochondrial metabolism. Interestingly, 
inhibition of mutant IDH1 was unable to reverse the 
metabolic phenotype, a defect in reductive carboxylation 
activity, suggesting that the metabolic alterations may be 
independent of 2HG production (43). 

Further evidence that IDH-mutant cells are vulnerable 
to mitochondrial metabolism inhibition was provided by 
a preclinical metabolomics study of IDH1R132H-mutant  
cells (62). Metabolic reprogramming of IDH1-mutant cells 
resulted in an inability of these cells to generate energy 
from various carbon substrate fuels. Treatment with 
metformin, a mitochondrial biguanide poison, decreased 
cell growth and survival of IDH1-mutant cells by altering 
the oxidative metabolism of glutamine and glucose via the 
TCA cycle. In addition, this study also showed that the 
metabolic vulnerability of IDH1-mutant cells to metformin 
appeared independent of 2HG production. 

The importance of mitochondria on the growth of 
IDH-mutant tumors was also suggested by another study 
in which IDH1 mutant glioma samples and IDH1R132H-
expressing cancer cells were found to be hypersuccinylated, 
preferentially in the mitochondria (63). 2HG was shown 
to inhibit the mitochondrial TCA cycle enzyme succinate 
dehydrogenase (SDH) resulting in mitochondrial 
respiration impairment via succinyl-CoA accumulation 
and hypersuccinylation. This mitochondrial dysfunction 
induced anti-apoptotic protein BCL-2 accumulation at the 
mitochondria membrane, leading to apoptosis resistance 
in these cells. Overexpression of a desuccinylase SIRT5 
was shown to reverse these processes and inhibit growth of 
hypersuccinylated tumors. 

There is currently one phase I trial exploring the 
combination of metformin and chloroquine in IDH-mutant 
tumors including gliomas (Table 1). Further investigations 
exploring the combination of mutant IDH inhibition and 
oxidative mitochondrial metabolism inhibition as a potential 
therapeutic strategy for IDH-mutant tumors are warranted. 

α-KG homeostasis via glutaminase inhibition 

2HG has been shown to primarily drive from glutamine, 
where glutamine is hydrolyzed by glutaminase to produce 
glutamate which is converted to α-KG (5). α-KG is then 
converted to 2HG by mutant IDH. A small molecule 
glutaminase inhibitor, BPTES, has been shown to reduce 
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glutaminase activity with subsequent reduction in glutamate 
and α-KG levels in both IDH-mutant and IDH-wildtype 
GBM cells, but interestingly, only the growth of IDH 
mutant cells was slowed (64). The growth reduction seen 
in this study was modest (about 20% reduction) although 
the reduction of glutaminase activity was significant, 
indicating that cellular metabolism is able to compensate 
for changes made by glutaminase inhibition. Glutaminase 
inhibition alone, therefore, is unlikely to be an effective 
therapy, however, it may exert synergistic effects on tumor 
growth when combined with other therapeutic strategies. 
Another potent glutaminase inhibitor, CB-839, is currently 
undergoing phase I evaluation in various solid tumors 
including IDH mutant tumors (Table 1).

IDH mutation-associated hypoxia-inducible factor-1α 
(HIF-1α) pathway

α-KG is essential for prolyl hydroxylases (PHD) which 
promotes HIF-1α degradation therefore a reduction in 
α-KG, as in IDH mutant cells, abrogate degradation of 
HIF-1α. In glioma cell lines, IDH1 knockdown induced 
the expression of HIF-1α target genes, including glucose 
transporter 1 (Glut1), vascular endothelial growth factor 
(VEGF), and phosphoglycerate kinase 1 (PGK1), that 
are implicated in glucose metabolism, angiogenesis, and 
other signaling pathways that are critical to tumor growth (65). 
Consistent with this, IDH1 mutations correlated with 
elevated HIF-1α and VEGF levels in human glioma 
samples. Similarly, another preclinical study also found 
increased HIF-1α and cell proliferation in IDH-mutant 
glioma cell lines (66). In addition, this study showed that 
IDH mutation activated nuclear factor-κB (NF-κB) in a 
HIF-1α dependent manner, which induced high expression 
levels of oncogenes, cyclins D1 and E and c-Myc in these 
cells. These results suggest that IDH mutations contribute 
to tumor angiogenesis and proliferation by promoting 
the HIF-1α pathway. In cultured cells expressing IDH1 
mutation, it has been shown that an α-KG derivative 
reversed the induction of HIF-1α levels (65). Drugs 
targeting HIF-1α or drugs mimicking α-KG may thus 
warrant further investigation as a potential therapy for 
IDH-mutant gliomas. 

Mammalian target of rapamycin (mTOR) signaling 
pathway

KDM4 is a subfamily of the Jumanji family of histone 

demethylases  and is  inhibited by 2HG via  α-KG 
inhibition (25). 2HG-induced KDM4 inhibition was 
recently shown to promote oncogenic activation of mTOR 
independently of the PI3K/AKT/TSC1–2 pathway by 
reducing the levels of DEPTOR (67), a negative regulator 
of both mTORC1 and mTORC2 which are associated with 
cell growth and autophagy (mTORC1), and cell survival and 
cytoskeleton organization (mTORC2) (68). This mTOR 
activation via the mutant IDH/2HG/KDM4/DEPTOR 
pathway may provide an additional molecular mechanism 
to explain the oncogenic activity of IDH1/2 mutant gliomas 
and represents a potential therapeutic strategy. 

Immunotherapy

Given the evidence that IDH mutation is an early event in 
tumorigenesis and is present homogenously in all glioma 
tumor cells at specific codons, these mutations are ideal 
immunotherapy targets, especially as a maintenance therapy 
for preventing recurrence of these diffuse infiltrating 
tumors. Schumacher et al. demonstrated that IDH1R132H 
contained an immunogenic epitope suitable for mutation-
specific vaccination (69). Immunization with mutated IDH1 
peptides resulted in a significant prolongation of survival in 
an intracranial glioma mouse model (70). Immunotherapy 
using peptide and dendritic cell vaccinations are currently 
being investigated in patients with IDH-mutant gliomas 
(Table 1). 

Natural killer (NK) cells are critical to the innate 
immune system and respond to tumor formation. Lysis of 
tumor cells by NK cells is mediated by interaction between 
NK group 2D (NKG2D) receptor on NK cells and stress-
inducible ligands on target cells, such as NKG2D ligand 
(NKG2D-L) (71). Correlation between NKG2D-L 
expression and improved clinical outcomes have been 
shown in human cancers (72). Zhang et al. discovered that 
IDH-mutant glioma cells were resistant to NK-mediated 
lysis due to transcriptional silencing of NKG2D-L by 
2HG-induced genomic hypermethylation (71). Decitabine 
upregulated the expression of NKG2D-L and sensitized the 
cells to NK cell-mediated cytotoxicity. 

In the IDH1-vaccine study by Schumacher et al., only 4 
of 25 patients with IDH-mutant gliomas exhibited evidence 
of spontaneous T-cell response to the IDH1 epitope (69). 
This may be explained by the impaired innate immune 
activity shown by Zhang et al., as innate immune activity is 
required for induction and maintenance of T-cell mediated 
immunity. Demethylating agents may therefore facilitate 
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potent antitumor T-cell mediated immune responses 
of vaccine therapy for IDH-mutant gliomas. Further 
investigations in clinical trials are warranted for this 
combined approach. 

Conclusions

An IDH mutation is found in the vast majority of low 
grade gliomas and secondary GBM and it appears to be an 
early event. Significant efforts have been made to better 
understand the role IDH mutations play in tumor initiation, 
maintenance and progression. A wide range of epigenetic 
and metabolic alterations caused by mutant IDH-mediated 
2HG accumulation via inhibition of α-KG-dependent 
dioxygenases have been implicated, and many different 
potential therapeutic avenues are being explored. Specific 
aberrant changes, that drive tumor formation and growth, 
may differ in different tumor types, further complicating 
identification of therapeutic targets in these tumors. Drug 
combinations that exert synergistic effects on more than 
one target simultaneously may be more effective. Finally, 
although a matter of controvery IDH mutations represent 
a “hit and run” genetic event in gliomas potentially 
explaining the general lack of efficacy of first-generation 
IDH1 inhibitors and suggesting that other synthetic lethal 
or immune-targeting strategies may be more effective. 
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