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Introduction 

Since the mid-1980s, efforts have been made to improve 
outcomes in non-small cell lung cancer (NSCLC) through 
escalating radiotherapy doses (1). However, attempts to dose 
escalate through either conventional fractionation or even 
altered fractionation has led to either disappointing tumour 
control or unacceptable toxicities (2-4). In the mid-1990s, 
the application of “intracranial radiosurgery” extra-cranially 
to treat small lung tumour targets was made possible with 
incremental technological advancements, starting first with 
the use of the rigid stereotactic body frame and then becoming 
mainstream when improvements in image guidance enabled 
frameless treatments and respiratory motion management. 
This was subsequently followed by a series of well-planned 
clinical studies in the early-2000s, which demonstrated efficacy 

and low rates of treatment-related toxicities (5-8). Since 
then, lung stereotactic body radiotherapy (SBRT) has firmly 
established itself as a standard treatment in early stage node 
negative medically inoperable NSCLC, effectively doubling 
biological effective dose (BED) and tumour control rates that 
were previously achieved with conventional radiotherapy (2). 
No other development in the management of NSCLC has had 
quite the same dramatic success. In this review, we will discuss 
the radiobiological principles underlying lung SBRT, technical 
considerations that are vital to its safe delivery, existing evidence 
supporting its use in various clinical settings and finally explore 
various strategies to optimise the therapeutic ratio in lung SBRT.

Search strategy 

We searched the PubMed and MEDLINE databases for 
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articles published in English from 1 January 2000 to 31 
Dec 2016 with the keywords “conventional fractionation”, 
“stereotactic body radiotherapy”, “stereotactic ablative 
radiotherapy”, “dose escalation”, “biological effective dose”, 
“radiobiology”, “early stage”, “lung cancer”, “peripheral”, 
“central”, “toxicities”, “complications” “pneumonitis”, 
“Intensity Modulated Radiotherapy”, “Volumetric 
Modulated Arc Therapy”, “Proton therapy”, “molecular”, 
“genomics”, “biomarkers”. Articles were selected based 
on relevance, with priority given to highly cited articles, 
randomised clinical trials and articles written in English. 
Abstracts of main medical conferences were also included if 
survival and toxicity end-points were reported. Articles that 
were published before or after the search time frame were 
also included if they were widely referenced and highly 
regarded seminal work. 

Radiobiology of Lung SBRT

SBRT is characterized by precision delivery of single 
large  doses  (genera l ly  ≥6 Gy)  e i ther  in  a  s ingle 
fraction or in a small number of fractions to a target 
volume (9). Delivery of radiation dose in this manner 
enables sharp escalation of BED as modelled by the 
classic linear quadratic (LQ) model resulting in better 
local tumour control probability (TCP) (2,10). The 
application of the LQ model to very large fraction 
sizes has been disputed due to in vitro and in vivo data 
suggesting an overestimation of cell killing at large single 
doses compared to more fractionated regimens (11).  
Furthermore, large radiation doses, similar to those 
used in SBRT, have been demonstrated to produce 
additional radiobiological effects including the induction 
of sphingomyelinase dependent ceramide-induced 
tumour endothelial cell apoptosis (12,13), vascular 
damage leading secondarily to tumour cell killing (14) 
as well as enhanced anti-tumour immune responses (15).  
However, correlation with actual outcome data for 
stage I NSCLC treated with typical lung SBRT dose-
fractionations demonstrates accurate radiobiological 
modelling with both classic LQ model as well as a 
modified (16), “more realistic” version of the LQ model 
accounting for intra- and inter-tumour heterogeneity, 
therefore suggesting that additional radiobiological 
processes do not contribute significantly to cell killing 
in lung SBRT (17,18). This does not however mean that 
these additional radiobiological processes do not exist 
and they could yet be exploited in combination treatment 

strategies involving SBRT (19,20).

Technical considerations of lung SBRT

Precision delivery of high radiation doses to a moving 
tumour target in the lung requires respiratory motion 
control, dose construction with strict adherence to normal 
tissue dose constraints and treatment dose delivery with 
setup and target verifications (21-23). 

Respiratory motion management

Management of respiratory motion is absolutely necessary 
both at simulation and subsequently during treatment 
delivery. During simulation, patients are often immobilised 
with a whole-body vacuum cushion with or without 
abdominal compression and respiration motion is mostly 
accounted for through the use of multiple CT scans 
taken at various points of the normal respiratory cycle, 
4-dimensional CT (4DCT) scans, slow CT scans, a CT 
scan acquired at deep inspiration breath-hold or other 
respiratory gating strategies. 4DCT scans are widely used 
but may be limited by irregular breathing. While slow 
CT is able to produce target volumes similar to 4DCT 
scans, they may not accurately capture lung tumours with 
small respiratory movements (24,25). Deep inspiration 
breath hold or respiratory gating techniques minimise 
respiratory motion and increase normal tissue sparing 
from increased lung volume (26). They can be performed 
either involuntarily through the use of a spirometer 
connected to a balloon valve (Active Breathing Control, 
Elekta, Stockholm, Sweden) or voluntarily with visual or 
audio-visual biofeedback systems such as SDX (Dyn’R, 
Toulouse, France) or Abches (APEX Medical, Tokyo, 
Japan) with high reproducibility (27,28). Internal fiducials, 
which facilitate target verification and tumour tracking, 
are occasionally used but are not necessary and insertion 
of fiducials carries significant risks of pneumothorax in a 
fragile patient population (23). Accounting for inter-patient 
variation in respiratory motion of gross tumour volume 
(GTV) using individually tailored respiratory management 
strategies ultimately creates a patient and treatment-
specific internal target volume (ITV). This represents an 
individualised solution, which is in sharp contrast to the 
early days of SBRT when patients were simulated on a 
single CT scan and crude population based margins were 
applied to account for respiratory motion. Another margin 
will be added to the ITV for set-up uncertainties and 
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slight patient movements during treatment, resulting in 
a planning target volume (PTV). Additional margins for 
microscopic disease are not added during SBRT based on 
the understanding that any microscopic disease extending 
from the tumour would be dealt with by the dose fall off or 
penumbra (22). 

Dose distribution in SBRT

In an attempt to standardize dosimetry across institutions 
and clinical trials, radiation therapy oncology group 
(RTOG) provides a set of planning guidelines to produce 
compact dose distributions with heterogeneous doses within 
the target, and steep dose gradients outside. Planning 
constraints limiting “hot spots” (doses greater than 105% 
of prescription dose) to within the PTV and enforcing 
a conformity index of 1.2 make the use of multiple non-
opposing, non-coplanar beams with large angles between or 
multiple arcs with at least 180 cumulative degrees rotation 
imperative. At the same time, moderate dose spillage is kept 
to a minimum, as determined by the PTV size. Normal 
tissue dose-volume constraints specific to different dose-
fractionations are applied. Pencil beam algorithms, which do 
not correct for increased electron scattering in lower-density 
material tend to underestimate doses in lung tumours and 
are not recommended in SBRT planning (21,22). 

Dose-volume constraints

The determinants of dose-limiting toxicity in SBRT are 
organs within the thorax such as lung, central airway, 
bronchi, oesophagus, heart, great vessels, spinal cord 
and organs outside including the brachial plexus nerves, 
skin, stomach, small intestines, liver, chest wall and ribs. 
Dose-volume constraints of these normal structures are 
well established in conventional radiotherapy (dose per 
fraction of 1.8 to 2.0 Gy) and moderately hypo-fractionated 
schedules (dose per fraction of 3 to 5 Gy) with lower total 
BEDnormal tissue (29,30). While dose equivalence can be 
established using the LQ model, there is uncertainty when 
extreme hypo-fractionated (≥6 Gy) doses such as those used 
in SBRT are applied to small volumes, especially in serially 
organized tissue. Therefore, dose-volume constraints 
specific to different dose-fractionation schedules have been 
systematically defined during prospective clinical studies 
and correlated with observed rates of toxicities. Initially, 
delivering SBRT to central lung lesions was thought to be 

unsafe and reliable data on dose-volume constraints for 
mediastinal structures was not available. This has changed 
with a series of phase 1 dose-finding studies in central lung 
SBRT. The normal tissue dose-volume constraints across 
single-, 3-, 4-, 5- and 8-fraction lung SBRT schedules are 
summarised in Table 1 (21,31-37). 

Beam delivery 

While 3-dimensional conformal radiotherapy (3D-CRT) 
and dynamic conformal arc therapy (DCAT) offer good 
PTV dose distributions and adherence to normal tissue dose 
constraints, volumetric modulated arc therapy (VMAT) has 
been found to be consistently better in both regards (38,39).

The clinical significance of this dosimetric advantage 
is however controversial. Intriguing data from a recently 
published large scale retrospective analysis of 803 patients 
treated with SBRT across five European and North 
American institutions found an association between 
low doses to the upper regions of the heart (atria and 
vessels) and non-cancer deaths post SBRT. The study 
demonstrated that a maximum point dose to the left atrium 
(Dmax) of median 6.5 Gy [EQD23, α/βnormal tissue =3; hazard 
ratio (HR)=1.005, P=0.035] and dose to 90% of the vena 
cava (D90%) of median 0.59 Gy (EQD23, α/βnormal tissue =3; 
HR=1.025, P=0.008) were significantly associated with non-
cancer deaths (40). While the link between association and 
causation is unclear, it is perhaps an important reminder 
that most patients receiving SBRT are medically inoperable 
with underlying cardiac and pulmonary co-morbidities. 
Apparently insignificant dose spillage into surrounding 
normal tissue may be clinically relevant and attempts should 
therefore be made to keep them to a minimum. 

Nevertheless, beyond its dosimetric benefits, VMAT 
offers a shorter treatment duration and better patient 
comfort and compliance compared to 3D-CRT and 
DCAT, making it a more attractive option for SBRT (39). 
With VMAT or any other forms of intensity-modulated 
radiotherapy (IMRT) however, one has to consider the 
“interplay effect” and the uncertainty it brings to actual 
dose delivery (25). In this regard, it is perhaps reassuring 
that clinical outcomes from VMAT and IMRT SBRT have 
been excellent (39) and with measures in place such as 
placing constraints on multileaf collimator (MLC) motion, 
limiting delivery to two arcs and treatment to more than 2 
fractions, the risk of clinically significant “interplay effect” 
in VMAT can be safely mitigated (25,41,42).
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SBRT and clinical outcomes

Some of the earliest work in lung SBRT was accomplished 
by investigators in Japan and at the Indiana University. 
In a landmark study by Uematsu et al., outcomes from 
50 patients treated with SBRT to dose fractionation 
schedules ranging from 50 to 60 Gy in 5 to 10 fractions 
were published in 2001. Of note, they included 18 patients 
who had already received prior high dose conventional 
radiotherapy (40–60 Gy in 20–33 fractions) and had 
recurred with presumably radio-resistant disease. Despite 
this, 47 of 50 patients achieved long-term local control 
(LC). Three-year overall survival (OS) was 66% and cause-
specific survival was 88% (8).

Further dose escalation to improve outcomes

Meanwhile, 47 patients at Indiana University with T1-T2 
N0M0 NSCLC were recruited to a dose escalation study 
in which they received doses starting at 8 Gy per fraction 
for a total of 3 fractions delivered over 2 weeks. Doses were 
increased in increments of 2 Gy per fraction and despite 
pre-existing co-morbidities, the investigators demonstrated 
that the maximum tolerated dose (MTD) was not reached 
for T1 tumours while the MTD for T2 tumours larger than 
5 cm was realised at 24 Gy per fraction. Seventy-two Gy in 
3 fractions was equivalent to a BED10 of 244.8 Gy, which 
was significantly higher than anything previously achieved 
through conventional fractionation without significant 
toxicity. Furthermore, LC was excellent with only 1 failure 
seen when dose per fraction was higher than 16 Gy vs.  
9 failures at doses less than 16 Gy, alluding to a dose-
response relationship (43,44). 

This dose-response relationship became clear when 
a Japanese multi-institutional study led by Onishi et al. 
demonstrated that a minimum threshold BED10 of 100 Gy,  
prescribed to the isocentre, was required to achieve 
significantly better LC leading to improved OS (5). 
More recently, a large scale retrospective review of SBRT 
outcomes for 747 patients across 65 centres in the United 
States suggested this dose-response survival function 
continues to rise beyond the threshold BED10 of 100 Gy, 
extending past 105 Gy and potentially 110 Gy (45) while 
Koshy et al. demonstrated that for larger T2 tumours, this 
dose response may even continue up to a BED10 as high 
as 150 Gy (46). However, uncertainty remains on whether 
these doses were defined as PTV-encompassing doses 
or isocentric doses. Previous studies have suggested that 

isocentric doses correlate better with local TCP (17) and 
without knowledge of the prescription doses or dose profile, 
it would be difficult to draw conclusions. 

To achieve further dose escalation safely, studies such as 
JCOG 0702 have helped guide clinical practice. In this study, 
the subset of peripheral T2N0M0 NSCLC (>3 cm) was 
specifically studied based on earlier reports demonstrating 
improved LC in these T2 tumours when dose was 
escalated from 40 to 48 Gy in 4 fractions (P=0.0015) (47).  
The authors concluded that for peripheral PTVs smaller 
than 100 cc, the MTD at the D95 of the PTV could be 
safely increased from 40 Gy in 4 fractions over 4–8 days  
(BED10 =80 Gy) to 55 Gy in 4 fractions (BED10 =130.6 Gy) (34). 
Larger tumours with PTV greater than 100 cc can be safely 
escalated to 50 Gy in 4 fractions (BED10 =112.5 Gy) (48).

Central lung SBRT

However, MTDs for peripherally located lesions cannot 
be applied to central lung tumours. Different definitions 
exists but in general, central lesions are distinguished as 
any tumour within or touching the zone of the proximal 
bronchial tree, defined as a volume of 2 cm in all directions 
around the proximal bronchial tree (carina, right and 
left main bronchi, right and left upper lobe bronchi, 
intermedius bronchus, right middle lobe bronchus, lingular 
bronchus, right and left lower lobe bronchi) as well as 
lesions which are immediately adjacent to the mediastinal 
or pericardial pleura, with a PTV expected to touch or 
include the pleura (6,31,49). When Timmerman et al. at the 
University of Indiana carried out a single-arm phase 2 study  
from 2002 and 2004, it quickly became obvious that SBRT 
to these central lung lesions resulted in higher rates of 
severe toxicities with 2-year freedom from severe toxicity 
rates of 54% (central) vs. 83% (peripheral) (P=0.004) (6) 
and they were subsequently excluded from the RTOG 
0236 study. Other reports of severe and fatal toxicities after 
central lung SBRT followed (50,51). The clinical need 
to determine the MTDs for central lesions and establish 
reliable dose-volume constraints for each of the mediastinal 
structures resulted in investigators embarking on a series of 
dose-finding studies. 

Dose finding studies in central lung SBRT

The EORTC sponsored LungTech trial (EORTC 22113-
08113) led by Nestle et al. opened in late 2014. In this 
study, central tumours were treated with 60 Gy in 8 
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fractions and results are awaited (31). JROSG10-1 treated 
only T1 NSCLC patients and found the MTD to be 60 Gy  
in 8 fractions. At this dose, no grade 3 or worse adverse 
effect within 12 months of treatment was seen and all dose 
constraints could be met (32). RTOG 0813 led by Bezjak et al. 
reported their MTD to be 60 Gy in 5 fractions (1 fraction 
every 2 days). Thirty-three patients were treated with 60 Gy 
in 5 fractions with a median follow-up of 29.8 months and 
38 patients were treated with 57.5 Gy in 5 fractions with a 
median follow-up of 33 months. Two-year LC and OS rate 
was upwards of 87% and 70.2% respectively. While overall 
rate of grade 3 or greater toxicities for all 71 patients was 
acceptable, the authors did report 2 (5.3%) grade 5 toxicities 
in the 11.5-Gy cohort and 1 (3%) grade 4 oesophageal 
perforation and 1 (3%) grade 5 pulmonary haemorrhage 
in the 12-Gy cohort (33). While these risks are low, they 
are severe and have to be discussed with patients. Longer 
fractionations appear to have a better safety profile and 
if efficacious, could represent a risk-adapted alternative 
for high-risk patients for whom severe toxicities may be 
catastrophic.

Single-fraction lung SBRT

The ideal dose fractionation has also been a subject of study 
in peripheral lung SBRT. A series of studies have looked 
at dose escalation in a single fraction and while many of 
them involve heterogeneous populations including both 
early stage NSCLC as well as pulmonary metastases from a 
variety of histologies, much can be learnt about tolerability 
as well as dose-response. 

One of the earliest studies involving single-fraction 
SBRT led by Wulf et al. used 26 Gy in a single fraction to 
treat 1 early stage NSCLC and 25 small lung metastases 
including NSCLC metastases. Despite the heterogeneous 
disease treated, no local failures were seen with single-
fraction 26 Gy at 11 months. More importantly, no severe 
acute or late normal tissue toxicity was observed (52). 

Hof et al. treated patients with doses ranging from single-
fraction 19 to 30 Gy at isocentre and found improved LC 
with doses equivalent to or higher than 26 Gy (P=0.032) (53). 
Again, no clinically significant treatment related toxicity was 
observed. 

Meanwhile, Hara et al. treated 59 patients (11 early stage 
NSCLC and 48 metastases) using doses ranging from 26 Gy  
to more than 30 Gy (range, 30–34 Gy) and observed 
minimal toxicity with only 1 patient (1.7%) suffering grade 
3 respiratory symptoms. Doses of 30 Gy and higher seemed 

to improve 2-year local progression free survival from 52% 
(<30 Gy) to 83% (P=0.07). However, the majority (88.1%) 
of tumours treated were smaller than 3 cm and maximum 
tumour size for all tumours was smaller than 4 cm (54). 
Studies have shown that larger treatment volumes greater 
than 50 cc (equivalent to a diameter greater than 4.5 cm) 
and patients who have received prior thoracic radiation are 
at significant risks of pulmonary toxicity even at single-
fraction 25 Gy and higher doses should be used with 
caution (55). 

RTOG 0915—fractionated vs. single-fraction SBRT

Comparing a single-fraction 34 Gy with the more 
commonly used 48 Gy in 4 consecutive daily fractions, 
RTOG 0915 aimed to ascertain the ideal lung SBRT dose 
fractionation. The primary end point of this study was 
rate of grade 3 or greater adverse events at 1 year and in 
this regard, single-fraction SBRT was found to be better 
tolerated {4 of 39 (34 Gy/1 fr) [10.3%, 95% confidence 
interval (CI), 2.9–24.2%] vs. 6 of 45 (48 Gy/4 fr) (13.3%, 
95% CI, 5.1–26.8%)} while offering similar primary tumour 
control [2-year cumulative primary tumour failure rate 2.6% 
(34 Gy/1 fr) vs. 2.2% (48 Gy/4 fr)]. However, toxicities 
occurring at a later time point such as brachial plexopathies 
and longer-term decline in pulmonary function were not 
reported and could be clinically relevant. It is also important 
to note that while tumours less than 5 cm were eligible for 
the study, the median tumour diameter in the recruited 
single-fraction cohort was 2 cm (range, 1.00–4.98 cm) and 
it is possible that a higher toxicity rate may be seen if larger 
tumours had been treated (35).

Another concern with RTOG 0915 was that OS data 
beyond 1 year suggested a trend favouring 48 Gy/4 fr. This 
is despite the BEDtumour for single-fraction 34 Gy (BED10 
=149.6 Gy) being 44 Gy higher than the BEDtumour for  
48 Gy/4 fr (BED10 =105.6 Gy) (35). Even though this study 
was not powered to address differences in OS between the 
2 treatment arms, advocates for fractionated SBRT have 
pointed to this to highlight concerns regarding tumour 
hypoxia-conferred radio-resistance, an effect thought to be 
more pronounced when treatment is delivered in a single 
fraction, therefore losing the protection that re-oxygenation 
offers fractionated treatments (20). Furthermore, single-
fraction 34 Gy results in a much higher BEDnormal tissue (α/
βnormal tissue =3) of 419.3 Gy compared to a BEDnormal tissue of  
240 Gy for 48 Gy/4 fr and previous meta-analysis had found 
a detrimental effect on OS when BED10 exceeds 146 Gy (56),  
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possibly due to higher dose to normal tissue resulting in 
increased risk of occult toxicities and non-cancer related 
deaths (40,57). 

For these reasons, at present, fractionated lung SBRT 
is more widely practised. Table 2 (35,36,52-55,58-64) 
summarizes a series of widely referenced lung SBRT studies 
involving both fractionated and single-fraction regimens. 

Surgery vs. SBRT 

The earliest reports from Japan included a significant 
proportion of patients who were medically operable but 
refused surgery. For example, of the 257 patients reported 
by Onishi et al., 99 (38.5%) were medically operable. 
Five-year OS for these medically operable patients who 
received a minimum threshold BED10 of 100 Gy was 72.3% 
(95% CI, 59.1–85.6%) for stage IA and 65.9% (95% CI, 
43.0–88.9%) for stage IB (5). This was consistent with 
other studies, summarised in Table 3 (5,7,8,37,65-71), which 
reported excellent LC and 3-year OS rates upwards of 66%. 
This raised the question of whether SBRT should be offered 
as a reasonable alternative to medically operable patients. 
In particular, elderly patients with small peripheral lesions 
and borderline lung function or medical comorbidities, 
for which surgery and general anaesthesia are not without 
risks, are thought to benefit most from non-invasive SBRT. 
A Dutch population-based matched-pair comparison study 
between SBRT and surgery for the elderly cohort found 30-
day mortality to be 8.3% after surgery vs. 1.7% after SBRT 
while 3-year survival rates between the two modalities were 
similar at 60% for surgery vs. 42% for SBRT (P=0.22) (72). 
Across all studies, SBRT for medically operable patients was 
expectedly well tolerated with incidence rates of Common 
Terminology Criteria for Adverse Events (CTCAE) grade 3 
or greater toxicity of up to 15% and a cumulative incidence 
of treatment related mortality of only 0.7% (68-71). On the 
other hand, overall complication rates from video-assisted 
and open thoracotomy lobectomy can be as high as 16.4% 
and 31.2% respectively (73) with 30-day post lobectomy 
mortality rates of about 2.4% (74).

Three separate randomised studies [ACOSOG Z4099 
(NCT01336894), STARS (NCT00840749) and ROSEL 
(NCT00687986)] attempted to compare surgery with 
mediastinal lymph node sampling vs. SBRT delivering 
a minimum BED10 of 100 Gy but all suffered from poor 
accrual and closed prematurely. A total of 58 individual 
patient data from STARS and ROSEL trials were 

subsequently pooled and analyzed by Chang et al. Estimated 
OS at 3 years was 95% in the SABR group compared with 
79% in the surgery group (log-rank P=0.037). The 3-year 
pooled estimated LC, regional control (RC) and distant 
control (DC) for the SBRT cohort vs. surgery cohort were 
similar at 96% vs. 100%, 90% vs. 96%, and 97% vs. 91%, 
respectively (75). SBRT appeared to be better tolerated 
than surgery with fewer grade 3 and greater toxicities (10% 
vs. 44%) and no treatment related deaths (0% vs. 4%). The 
authors concluded that for medically operable patients, 
SBRT showed at least clinical equipoise when compared 
to surgery. Furthermore, patient reported quality of life 
outcomes with SBRT have been found to be at least equal if 
not better than surgery (76,77). 

On the other hand, with surgery and mediastinal lymph 
node sampling, up to 35% of patients can be upstaged, 
with half of these upstagings bringing about the addition 
of adjuvant chemotherapy (78). However, multiple 
studies have shown similar rates of regional and distant 
recurrences (62,72,75,79) for SBRT compared to surgery, 
perhaps due to sterilization of micrometastases through 
incidental mediastinal, hilar dose or the triggering of a 
systemic immune response against micrometastases (80). 
Furthermore, endobronchial lymph node sampling might 
be able to reduce some of the false negatives with PET-CT,  
which can be as high as 33.3% in higher risk central T2 
lesions with a solid appearance on imaging (81,82). Isolated 
recurrences if they do occur can also be salvaged with 
definitive radiotherapy or in a few occasions salvage surgery 
(83-87). All in all, an argument could be made that for 
patients at a higher risk from surgery, SBRT should at least 
be discussed as an alternative. 

Optimizing SBRT therapeutic ratio

Complications are rare in SBRT but relatively large hypo-
fractionated doses mean that they can be potentially life 
threatening (33,58,88). These include central airway toxicities 
such as bronchial stenosis resulting in atelectasis (89), 
bronchial necrosis or hemoptysis (51), esophageal toxicities 
such as strictures, perforation or trachea-oesophageal 
fistulas (90), aortic toxicities such as hemoptysis secondary 
to aortic damage or aortic rupture, aortic aneurysm or 
aortic dissection (91), severe skin toxicities (92), chest wall 
pain including rib fractures (93-95), symptomatic radiation 
pneumonitis (RP) (96,97), and brachial plexopathies (98). 
Rarer complications include vagal nerve injury (99) and 
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spontaneous pneumothorax (100). A post-treatment decline 
in pulmonary function can also be observed but it is usually 
not clinically significant (101). 

Dosimetric parameters associated with these toxicities 
have been demonstrated (88-92,94,95,98,102) and have 
led to the establishment of dose volume constraints as 
previously shown in Table 1 (21,31-37). These constraints 
can be achieved through more precise delivery of 
radiotherapy with motion management strategies, intensity 
modulation and non-coplanar beam deliveries (38,39) 
backed by meticulous quality assurance. More fractionated 
regimens can also be used if there is a need for gentler doses 
to the normal tissue. This way, one can effectively kill two 
birds with one stone, achieving the minimum BEDtumour of 
100 Gy for optimal local control and cure while reducing 
the toxicities of treatment by utilizing the benefits of 
fractionation. 

However, dosimetric parameters alone do not adequately 
account for inter-patient variation in baseline normal tissue 
characteristics and intrinsic radiosensitivity. To account 
for these individual differences, considerations based on 
pre-treatment clinical, normal tissue and radiological 
characteristics need to be made. Pulmonary function tests are 
often performed prior to SBRT but appear to correlate poorly 
with grade ≥ 2 RP and patients with poor pulmonary function 
achieve cause specific survival and toxicity outcomes similar 
to patients with better function (103). Some institutions 
have sought to use baseline radiological characteristics as a 
means to identify patients at greater risk of RP. Subclinical 
interstitial lung disease manifesting as honeycombing 
on pre-treatment CT had been found to be associated 
with fatal interstitial pneumonitis post-surgery (104)  
and similar correlations with poor outcomes have been 
established in high-dose radiotherapy (66,105). Combining 
dosimetric parameters, age and extent of pulmonary fibrosis 
as determined according to the modified criteria of Kazerooni 
et al. (106) in a retrospective review of 122 patients, Tsujino 
et al. from Hyogo Cancer Centre proposed a predictive score 
which was able to predict the incidence of grade ≥ 3 RP with 
an area under the curve (AUC) of 0.888 (107). However, this 
cohort of patients received high dose conventional radiation 
concurrent with chemotherapy. The use of concurrent 
radiation sensitizers and likely larger treatment volumes mean 
that their findings may have limited applicability to SBRT 
treatments. Furthermore, while age is a predictive factor in 
this study, other studies have consistently shown that elderly 
patients tolerate SBRT treatments just as well as younger 
patients (62,72). For instance, Winship Cancer Institute of T
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Emory University demonstrated an incidence of grade ≥3 RP 
of only 3.5% in their cohort of patients with a median age 
of 85. Interestingly, patients who were not on angiotensin 
converting enzyme inhibitors (ACE-I) were at a higher risk 
of RP [odds ratio (OR) 5.83, 95% CI, 1.29–26.32] suggesting 
that there are complex biological mechanisms underpinning 
RP (62). 

Invariably, normal tissue toxicity is the result of an 
acute inflammatory response within the microenvironment 
to radiation injury, through expression and maintenance of 
inflammatory cytokines, fibrotic cytokines, chemokines and 
recruitment of inflammatory cells, leading subsequently 
to scar formation or fibrosis (108,109). Identification and 
monitoring of blood-borne inflammatory biomarkers such 
as transforming growth factor β (TGFβ), IL-6, Krebs 
von den Lungen (KL-6) and surfactant protein (SP-D) 
can potentially account for inter-individual differences in 
responses to radiation injury beyond clinical, radiological 
and dosimetric parameters (109,110). Indeed, in an 
attempt to further stratify patients’ risk of RP, Yamashita 
et al. prospectively combined individual pre-treatment 
blood biomarkers KL-6 and SP-D with presence of 
interstitial pneumonitis on CT imaging. Despite all 
patients meeting dose constraints as per JCOG 0403 
protocol, they found an increased risk of severe RP in 
patients with elevated KL-6 [32% (high) vs. 3% (low), 
P=0.0002], elevated SP-D [29% (high) vs. 3% (low), 
P=0.0002] and interstitial pneumonitis on CT [57% 
(high) vs. 2% (low), P<0.0001]. To date, these biomarkers 
have not been validated in a larger independent cohort 
prospectively but they demonstrate the clinical benefits of 
identifying these susceptible, more radiosensitive patients 
a priori (110). Furthermore, up to 80% of inter-individual 
differences in normal tissue toxicity can be attributed 
to genetic differences underpinning inflammatory and 
DNA damage responses (108,111,112). Discussed in 
greater detail in the companion review by Tan et al. (113), 
high throughput sequencing techniques can identify 
common low penetrance allelic variations predictive of 
a more radiosensitive phenotype. Specific to definitive 
thoracic radiotherapy, several studies have demonstrated 
associations between radiation-induced pneumonitis 
and single nucleotide polymorphisms (SNPs) of heat-
shock protein beta-1 (HSPB1) (114), TGFβ1 (115),  
ataxia-telangiectasia mutated (ATM) and Nijmegen 
breakage syndrome 1 (NBS1) (116) genes but they have 
not been validated in large-scale prospective genome-
wide association studies (GWAS). Nevertheless, these T
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genotyping findings, when integrated with epigenetic 
factors, post-translational modifications, cell signalling 
networks and metabolism in an all-encompassing “omics” 
approach, allow identification of critical pathways and 
complex interactions crucial to the development of 
normal tissue toxicity (112). Combined with imaging 
features, blood-borne biomarkers and functional cellular 
assays, this integrated predictive model can add a paradigm 
of biological precision to risk stratification and dose 
prescription in high risk SBRT involving central tumours 
or larger (≥ T2) peripheral tumours with borderline normal 
tissue doses; patients predicted to be at risk of toxicities 
can either be offered a more conservative dose regimen 
or alternative means of dose escalation can be explored by 
exploiting the dosimetric advantages of particle therapy, a 
technology which will be discussed in greater detail shortly. 

On the other hand, patients at low risk of toxicities can have 
their dose escalated further to maximise TCP. This risk-
stratified approach is illustrated in Figure 1.

Future directions

Moving forward, exciting developments on the horizon 
offer new strategies and technologies, which can be 
complementary to and synergistic with lung SBRT. Particle 
beam therapy (PBT) enables irradiation of tumours at 
depth while allowing a very sharp dose gradient distal to 
the target. Initially limited to large teaching institutions, 
recent innovations have helped to drive down the size, 
cost and complexity of PBT facilities, making them far 
more accessible. Examples of these innovations include 
the vertically arranged proton therapy system in Aizawa 

Figure 1 Proposed combinatorial risk-stratification models for predicting “radiosensitive” phenotypes for dose escalation strategies and 
patients at risk for nodal and distant failure for treatment intensification strategies post SBRT, thereby optimising the therapeutic ratio. 
SUV, standardised uptake value; KL-6, Krebs von den Lungen; SP-D, surfactant protein D; SNP, single nucleotide polymorphisms; HSPB1, 
heat-shock protein B1; TGFβ1, transforming growth factor β1; ATM, ataxia-telangiectasia mutated; Fr, fraction; SBRT, stereotactic body 
radiotherapy; PTV, planning target volume; OAR, organ at risk.
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Hospital, Matsumoto, Japan (Sumitomo Heavy Industries, 
Tokyo, Japan),  the S250 (Mevion, Massachusetts, 
US) with its gantry mounted proton accelerator and 
superconducting synchrocyclotron and the Radiance 
330 (ProTom International, Texas, US) with its modular 
design allowing customisation based on individual facility 
needs. On the back of these innovations, the number of 
PBT centres is expected to rise and it is projected that by 
2017, there would be 27 PBT centres in the United States 
(US) alone (117). While concerns surrounding organ 
motion and interplay effects in lung PBT remain (118),  
with further improvements in motion management 
technology, the superior dosimetry offered by PBT can 
be harnessed to enhance tumour dose escalation and 
critical tissue sparing, especially when treating central lung 
tumours. In addition, particle irradiation may stimulate 
changes within the tumour microenvironment, which 
could potentially suppress metastatic processes such as cell 
migration and invasion (119). So far, early comparisons 
suggest that hypo-fractionation through PBT may offer 
additional clinical benefits over SBRT with conventional 
X-rays. In a systematic review by Chi et al. which pooled 
72 SBRT studies and 9 single-arm hypo-fractionated PBT 
studies from 2000 to 2016, before adjusting for potential 
confounding variables, PBT was associated with improved 
OS (P=0.005) and PFS (P=0.01) while significantly reducing 
rates of ≥ grade 3 RP (P<0.001), ≥ grade 3 chest-wall 
toxicities (P=0.03) and rib fractures (P<0.001) (120). As 
PBT technology continues to evolve, direct comparison 
studies will be eagerly awaited. 

In recent times, immune modulating strategies have 
dominated the headlines in oncology. The fervent embrace 
of immunotherapy in NSCLC started with early successes 
using checkpoint inhibitors in metastatic disease (121-123). 
In the companion review by Tharmalingam and Hoskin, 
the authors concluded that SBRT is most systematically 
immunogenic as demonstrated in both in vivo murine 
models (15,124) and reported clinical cases (125) and would 
therefore be the ideal candidate for combination with 
immune modulating strategies (126). This approach will 
be the subject of investigation in the Dutch PEMBRO-
RT study (127) (NCT02492568) but only in the setting of 
metastatic disease. In early stage disease, nodal and distant 
failures can be as high as 30% (36,60). Histologic features 
such as micropapillary-predominant, solid with mucin-
predominant subtypes (128,129) and vascular invasion (130),  
pre-treatment SUV max on 18F-FDG PET (131) and 

gene-expression profiles (130,132) can predict for higher 
risk early stage disease (133) and stratify these patients for 
treatment intensification with further systemic treatment or 
combination with immunotherapy. To this end, large-scale 
genotyping efforts such as the Lung TRACERx Study (134)  
have provided new insights into tumour evolution and 
biology. Multi-region whole-exome sequencing of 100 
early stage NSCLC in the TRACERx cohort found that 
intra-tumour heterogeneity, mediated through chromosome 
instability, was associated with an increased risk of recurrence 
or death following surgery (HR=4.9, P=4.4×10−4) (135). 
Furthermore, owing to the sub-clonal nature of early 
stage lung cancer relapse and metastasis, tumour-specific 
phylogenetic profiling of circulating tumour DNA (ctDNA) 
in serially collected liquid biopsies, was able to quantify 
sustained presence of sub-clonal single nucleotide variants 
in ctDNA post-surgery, which preceded subsequent 
relapse and adjuvant chemotherapy resistance (136). Taken 
together, high throughput genomic profiling of tumours 
and ctDNA can be exploited to identify “high risk” early 
stage NSCLC for treatment intensification following SBRT. 
This strategy is illustrated in Figure 1.

Conclusions

In the past 2 decades, through a series of well-planned 
clinical trials and advancements in radiotherapy technology, 
lung SBRT has cemented its place in the management of 
early stage NSCLC. The era of precision medicine has not 
only divulged new insights into the biology of this disease 
but also into inter-individual differences in responses to 
radiation injury. Going forward, with new tools at our 
disposal, these insights will inspire new intelligent strategies 
to further improve our cure rates of early stage NSCLC.
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