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Cancer drug development has traditionally focused on 
approaches that directly eliminate cancer cells—surgery, 
radiation therapy, chemotherapy, hormonal therapy, targeted 
therapy and more recently, immunotherapy (defined 
as an approach to harness the immune system to fight 
cancer). The latter has been based on the original immune 
surveillance hypothesis (1) that postulates that the immune 
system could recognize and reject cancer cells as being 
foreign, in the same way that it reacts against microbial 
agents and transplant organs. In order for immunotherapy 
to be successful, it needs to be able to activate and expand 
a pool of tumor-specific T cells either from the naïve 
repertoire or the existing tumor-specific T cells that may 
have been dormant or rendered anergic. To accomplish 
this goal many approaches and platforms have historically 

been explored: direct activation of antitumor immunity 
with cancer vaccines (comprising tumor antigens in various 
forms) or recombinant cytokines, or by infusing tumor-
specific immune cells (2,3). However, despite the success 
in increasing the frequency and activity of tumor-specific 
T cells and demonstration of promising clinical outcomes 
in some studies (4,5) many were met with disappointing 
results, owing to failure to ensure that tumor-specific T 
cells could home to tumors and/or exert their function 
within the tumor. Indeed, the major learning from these 
failed studies is that tumor-induced immunosuppressive 
mechanisms in the tumor microenvironment (TME) are 
one of the main reasons for the limited success of current 
immunotherapeutic approaches (2). Thus, whilst the 
extensive refinement in immunotherapeutic tools and 
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Figure 1 Selected drivers of immunosuppression in the tumor microenvironment (TME). Indoleamine 2,3-dioxygenase (IDO), expressed by 
tumor cells and immune cells, induces Treg differentiation and activation and proliferative arrest of effector T cells through local depletion 
of tryptophan (TRP) and accumulation of kynurenine (KYN) metabolites. Arginase (ARG) expression by myeloid cells in the TME results in 
arginine depletion and subsequent T and NK cell suppression through downregulation of the TCR chain. The binding of PD-L1 to PD-1 
on effector T cells results in inhibitory signaling leading to proliferative arrest. CCL22 is a chemokine that binds to its cognate receptor 
CCR4 on regulatory T cells thereby recruiting them to the TME.

methodologies has ensured enhancement of the frequency 
and activity of tumor-specific T cells, this alone has been 
insufficient to break immune tolerance to the cancer.

There are many regulatory mechanisms and negative 
feedback loops that ensure an appropriate termination of 
an immune response to maintain homeostasis and prevent 
chronic inflammation. These include the upregulation of 
inhibitory surface receptors and ligands, induction of distinct 
sets of metabolic enzymes or chemokines and cytokines that 
recruit regulatory immune cells or remodel immune cell 
subsets to a regulatory profile. These molecules are transiently 
induced in normal tissues in response to inflammation or 
stress but often hijacked by malignant cells and as a result 
constitutively expressed in various cancer tissues where they 
contribute to immunosuppressive TME and immune evasion 
of cancer. For example, the important role of metabolic 

enzymes such as indoleamine 2,3-dioxygenase (IDO: IDO1 
and IDO2) and tryptophan 2,3-dioxygenase (TDO) in 
cancer tolerance has been well established (6) (Figure 1). 
Both IDO and TDO catalyze the degradation of the essential 
amino acid tryptophan (TRP) to kynurenine (KYN). TRP 
depletion and the accumulation of KYN metabolites lead to 
proliferative arrest of effector T cells as well as induction of 
regulatory T cells (Treg) differentiation and activity (7) and 
recruitment of myeloid-derived suppressor cells (MDSCs) (8).  
IDO is expressed in a number of human solid tumors 
and hematological malignancies and its activity has been 
shown to correlate with a poor prognosis and reduced 
survival (9). Arginase (ARG1 and ARG2) catalyzes the 
conversion of arginine to ornithine and urea in the hepatic 
urea cycle but also plays a role in the immune system (10). 
ARG1 is inducible in M2 macrophages, MDSCs, DCs and 
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granulocytes and ARG-dependent arginine depletion leads to 
downregulation of the TCRζ chain and suppression of T cell 
and natural killer (NK) cell proliferation, which in a cancer 
setting supports cancer immune evasion and inhibition of 
immune effector functions. Both ARG1 and ARG2 have 
been found expressed in a variety of malignancies (11-14).  
The interaction of checkpoint proteins programmed death-1 
(PD-1/CD279) and its ligand PD-L1 (CD274) represents 
another good example of an immune regulatory mechanism 
hijacked by cancer cells. PD-L1 expression is upregulated 
by pro-inflammatory stimuli (e.g., IFNγ) (15) and functions 
through induction of signalling pathways downstream of 
PD-1 (expressed on activated T cells) that inhibit T cell 
proliferation to prevent chronic inflammation (16). PD-L1 
is aberrantly expressed on tumor cells as well as cells of the 
microenvironment in many different cancer types rendering 
effector T cells inoperative (17-19). Moreover, a renewed 
focus on the immunosuppressive adenosinergic pathway 
downstream of tumor hypoxia has led to development 
of novel antitumor strategies targeting ectonucleases 
and adenosine receptors (20). Finally, induction of Treg 
differentiation and the recruitment to the TME is another 
strategy employed by malignant cells to evade the host’s 
immune system. For example, CCL22, a macrophage-
derived chemokine known to be involved in Treg recruitment 
through binding to its cognate receptor CCR4 expressed 
on the surface of Tregs and highly expressed in different 
tumor tissues (21-23), has been shown to correlate with 
Treg infiltration and is associated with histological features 
correlating with a poor prognosis in breast cancer (24).

Checkpoint inhibition and beyond

A breakthrough in cancer immunotherapy arrived in 2010 
when Dr. Stephen Hodi’s group in Boston demonstrated in a 
randomized controlled trial that treatment with ipilimumab, 
an antibody that targets the T cell checkpoint protein  
CTLA-4, significantly improved overall survival, and 
provided long-term survival benefit among patients with 
metastatic melanoma (25). The results led to the first 
approval from the US Food and Drug Administration 
(FDA) for an immune checkpoint blockade approach in 
2011. This study clearly demonstrated that an anti-tumor 
immune response can be efficiently boosted in human, not by 
targeting tumor cells directly but by targeting the immune 
system in order to break the cancer tolerance [the “paradigm 
shift in oncology” (26)]. This initial demonstration was 
subsequently and quickly followed by clinical testing of 

similar approaches but most notably drugs blocking the 
distinct checkpoints PD-1 and its major ligand PD-L1, which 
have so far shown great promise in treating many diverse 
cancer types, including advanced melanoma, non-small cell 
lung carcinoma, Hodgkin’s lymphoma, Merkel cell carcinoma 
and tumors with a genetic marker of high mutational burden 
termed microsatellite instability (MSI) (27-29).

Whilst the clinical studies with checkpoint blockade 
approaches have undoubtedly made a major step forward 
in immuno-oncology, our understanding of the underlying 
mechanisms is still at an early phase, with many unanswered 
questions. Crucially, only a minority of patients with 
solid tumors exhibit maximal benefit from the checkpoint 
blockade, where significant clinical responses are restricted 
primarily to melanoma, non-small cell lung cancer 
(NSCLC), renal and bladder cancers but less successful 
in other cancers such as pancreatic, colorectal and ovarian 
cancer (28,30-32). 

Among multiple factors that impact the outcome of 
checkpoint blockade treatment, accumulating evidence 
suggests that the maximal therapeutic effect of this approach 
is largely dependent on the presence of pre-existing tumor-
specific CD8+ T cells (33), which in turn closely correlates 
with the presence of neoantigens as a result of cancer 
mutations (34-36). Cancers that exhibit active tumor-
specific T cell immunity with infiltrating lymphocytes into 
tumor sites are often termed “hot” tumors, whereas those 
without such pre-existing responses are termed “cold” 
tumors (37). For example, only about half of patients with 
colorectal cancer show evidence of local tumor-specific T 
cell immunity (38,39).

As the clinical responses to checkpoint blockade are 
linked to the presence of T cell immunity to cancer-specific 
mutations, multiple approaches have been considered 
and tested to expand anti-tumor T cells in conjunction 
with checkpoint inhibition (3,40,41). Indeed, the success 
of combination therapies utilizing immune checkpoint 
inhibition in poorly immunogenic tumors in mouse models 
have been acknowledged for many years (42-44), and such 
have been successfully translated into clinical studies (45). 
In particular, there is a renewed focus on personalized 
therapies to target neoantigens derived from tumor 
mutations based on accumulating evidence that the number 
of mutations in individual tumors correlates directly 
with the effectiveness of checkpoint blockade (46-49).  
The necessity of combination therapeutic approaches in 
established cancer is highlighted also in other strategies 
that target immunosuppressive mechanisms, such as 
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small molecule inhibitors (SMIs) that target IDO (9). In 
fact, accumulating evidence supports that combination of 
immunotherapeutic strategies as a key strategy to penetrate 
the complex relationship between established tumor and the 
immune system (3,41,50). 

The new kid on the block in cancer 
immunotherapy: immunoregulatory antigens as 
cancer vaccine targets 

As described above, conventional cancer therapies 
specifically targeted cancer cells themselves, and vaccination 
strategies are aimed at eliciting an antigen-specific T cell 
response against various tumor antigens [e.g., preferentially 
elevated and amplified compared to normal tissue (e.g., 
Her2/neu), lineage-specific (e.g., MART-1, gp100), oncoviral 
antigen (e.g., EBV, HPV), or a mutated antigen (e.g., Mum-
1, CDK4) that is unique to the cancer or even the patient]. 
However, efficacy of these treatments has been limited in part 
due to an immunosuppressive TME providing the malignant 
cells a means to escape elimination by specific immune 
effector cells. The recent success of immunotherapeutic 
approaches targeting immunosuppression in the TME, 
i.e., checkpoint inhibitors (anti-PD-1, anti-PD-L1, 
anti-CTLA4) or SMIs (i .e.,  IDO inhibitor 1-MT) 
strongly support the role of immunosuppression in 
cancer progression and underline the need to remove 
the “immunological break” to enable immune effector 
cells to attack the cancer. Taking this into account, an 
intriguing novel approach to cancer immunotherapy has 
been postulated—namely, a cancer vaccination to direct 
immune responses against immunoregulatory cells that 
impede effective anti-tumor T cell responses. This is 
based on the recent demonstration of the existence of 
naturally occurring, pro-inflammatory T cells against 
immunoregulatory proteins, such as IDO, PD-L1 and 
TDO present in the periphery and among TILs of cancer 
patients and, to a lesser degree, in healthy individuals (51,52).  
Thus, contrary to the central dogma in immunology that 
T cells expressing a TCR with a high affinity towards a 
self-peptide/HLA complex undergo clonal deletion in the 
thymus, “self-reactive” repertoires of T cells were found, 
and not restricted to autoimmune pathologies (53). Thus, 
high frequency of peripheral CD4+ and CD8+ T cells that 
recognize various immunoregulatory proteins [IDO (54-56),  
TDO (57), PD-L1 (58), FOXP3 (59), CCL22 (60) and 
Arginase (Martinenaite, submitted)] are readily detectable 
ex vivo in blood from both cancer patients and healthy 

individuals. Surprisingly, these T cells exhibit cytotoxic 
activity against both target-expressing cancer cells or target 
peptide-loaded cells in vitro (54,58,60), as well as CD25hi 
FOXP3+ CD127− Tregs (59). The T cells also indirectly 
augment effector function of other T cells, as simultaneous 
stimulation of anti-IDO T cells boosted anti-viral immunity 
against CMV or influenza antigens as well as the response 
to melanoma-associated antigen MART-1 in vitro (54). In 
addition, co-stimulation of anti-PD-L1 T cells augments T 
cell response to a dendritic cell (DC) vaccine (61).

Thus, current hypotheses based on the available data 
support the notion that these self-reactive T cells against 
immunoregulatory targets may represent yet another level 
of immune regulation by “regulating the regulators” i.e., 
counteracting the immune-suppressive feedback provided 
by Tregs, MDSCs, regulatory B cells or specific DC 
subtypes. The expansion of these T cells by vaccination 
could lead to effective anti-tumor responses by direct 
killing of immunoregulatory cells contributing to immune 
suppression (Figure 2). Indeed, preclinical data in various 
mouse tumor models indicate that vaccination with 
synthetic peptides encoding immunoregulatory antigens 
is sufficient to (I) activate and expand immunoregulatory 
antigen-specific T cells and (II) confer protection from 
cancer in vivo (unpublished data, personal communication). 
Given that this approach targets boosting of a pre-existing 
T cell pool, a simple vaccination approach is unlikely to be 
met by immunological tolerance. 

If successfully targeted, a therapeutic vaccination 
approach to activate these self-reactive T cells can, like 
the other approaches that target immune suppression (by 
checkpoint inhibition or SMIs targeting immunosuppressive 
molecules), contribute to anti-tumor immunity by 
overcoming the immune suppression and thereby 
potentiating effective anti-tumor T cell responses. However, 
unlike other approaches, because these T cells can directly 
kill the target cells, it could also lead to epitope spreading 
towards the potential target cells (62) and immunological 
memory. Importantly, numerous cancer cell types have 
elevated expression of immunoregulatory proteins and thus 
cancer cells themselves could also be directly targeted by 
immunoregulatory antigen-specific T cells. Furthermore, 
given that these T cells are naturally present in vivo, a 
mechanism that ensures immune homeostasis to keep these 
T cells in check must exist—therefore the risk of triggering 
autoimmune-related adverse events is potentially minimal. 
Indeed, mice vaccinated with immunoregulatory antigens 
have shown no signs of toxicity (unpublished data), and 
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Figure 2 Hypothesized mode of action for vaccination-induced activation of self-reactive T cells targeting immune suppression. Vaccination 
with peptide epitopes specific for immunoregulatory molecules [e.g., indoleamine 2,3-dioxygenase (IDO)] induces expansion of antigen-
specific CD4+ or CD8+ T cells and their migration to the tumor microenvironment (TME) where they contribute to the induction of 
a pro-inflammatory environment through elimination of target-expressing tumor and immune suppressor cells and/or upregulation of 
pro-inflammatory cytokines and chemokines that lead to recruitment and activity of immune effector cells. In contrast to conventional 
therapeutic vaccine approaches, this strategy targets tumor cells and immunosuppression simultaneously. Furthermore, the targets are 
genetically stable cells with high HLA I and II expression. While CD8+ effector mechanisms lead to elimination of target cells, the cytokines 
released by activated CD4+ T cells lead to upregulation of HLA expression on tumor cells; MDSC, myeloid-derived suppressor cell.

data from clinical studies conducted so far demonstrate the 
safety of this approach (see below). 

Tumor antigens to date have been categorized into 
distinct classes, depending on their expression profile, 
distribution and mutational status (3,4)—however the focus 
has always been on antigens expressed by the tumor itself. 
Given that immunoregulatory antigens can be new targets 
for cancer immunotherapy, we propose that they could be 
considered as a new class of cancer vaccine antigens. The 
obvious advantages of targeting these antigens over other 
types of antigens are that (I) it negates the requirement for 
identification of relevant antigens that are specific for the 
cancer type; (II) the targets are genetically stable, unlike the 
approach that relies exclusively on antigen expression by 
tumor cells, and (III) by targeting immune suppression it 
can potentiate anti-tumor effector T cell responses—thus 
this approach has a potential to work as a monotherapy in 

certain cancer settings.
This novel approach to target immune suppression in 

cancer has already been tested in two clinical trials thus 
far, where a peptide vaccine targeting IDO-specific T 
cells was administered as monotherapy in stage III/IV 
NSCLC patients (63) and in combination with ipilimumab 
in metastatic melanoma (64) respectively. Additional trials 
have recently started to evaluate the safety of a vaccine 
targeting PD-L1-specific T cells in multiple myeloma 
(NCT03042793) and a combination vaccine that targets 
both IDO- and PD-L1-specific T cells with nivolumab 
in metastatic melanoma (NCT03047928). In all of these 
trials the vaccinations were well tolerated by all patients 
with no severe toxicity, for administration of up to  
5 years in the NSCLC study (ESMO 2017, manuscript 
in preparation). Given that therapeutic peptide-based 
vaccinations historically demonstrated minimal toxicity, the 
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safety profile of the immunoregulatory peptide vaccines is 
unsurprising. It is reassuring to confirm that there are no 
signs of autoimmunity in the treated patients (manuscript in 
preparation). In addition, the first clinical trial demonstrated 
promising clinical results: with a median OS of 25.9 months 
and long-lasting PR + SD observed in 47% of treated 
patients. In fact, a follow-up study reveals that two of  
15 treated patients remain alive and are maintaining PR and 
SD status 5 years after receiving the first vaccination, with 
detectable IDO-specific T cells in the blood (ESMO 2017, 
manuscript in preparation).

Concluding remarks & future perspectives

Today there is ample evidence to support the existence 
of self-reactive, immunoregulatory antigen-specific T 
cells and a rationale to target these T cells as a cancer 
immunotherapy strategy. An obvious risk for such an 
approach—potential long-term toxicity due to vaccine-
induced autoimmune mechanisms—appears to be minimal, 
illustrated both in mouse in vivo studies and in human 
safety clinical trials. Important questions remain as to how 
and when these T cells are induced or become activated, 
and to what extent they contribute to immune regulation 
in physiological conditions. Investigations to address 
some of the most clinically relevant questions are ongoing 
in preclinical studies, including (I) what is the relative 
contribution of direct tumor killing by immunoregulatory 
antigen-specific T cells (which will inform us the necessity 
of target expression by tumor cells), (II) would direct and/
or indirect modes of target killing lead to antigen epitope 
spreading and long-term memory, and (III) elucidating 
the potential benefits of combination strategies with other 
therapeutic modalities. In future clinical studies, immune 
monitoring processes encompassing multiple bioassays to 
detect changes in immune phenotype both at the TME and 
in the blood, coupled with the clinical efficacy parameters, 
will provide further guidance to identify patient groups that 
maximally benefit from this approach.
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