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Introduction

Clinical trials are prospective intervention studies with 
human participants to investigate experimental drugs 
under rigorously specified conditions. A well designed and 
conducted clinical trial is the most definitive method for 
assessing the treatment effect of new drugs and has become 
an integral part of drug development (1,2).

The cost of drug development has substantially increased 
in the past several decades. However, escalating costs have 

not translated to greater success rates in such clinical trials, 
nor to a proportional increase in the number of approved 
drugs. For example, as recorded by BioMedTracker, for 
4,275 clinical trials that released their results from 2003 to 
2010, the overall success rate for final approval of the trial 
drug or intervention was only 9% (3). Factors that influence 
this low success rate may include a diminished margin for 
health improvement; a current limit to the use of genomics 
and other new biological science and technology; a decreased 
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number of research companies because of mergers and 
other business arrangements; and the increasing complexity 
of bringing potential experimental therapies to trial (4). 
To address these issues, in 2006, the United States Food 
and Drug Administration (FDA) released a critical path 
opportunities list (5) that called for further development 
and use of innovative designs that apply the information 
accumulating in the trial to guide the trial as it moves 
forward. Specifically, the FDA began encouraging the use of 
adaptive design methods in clinical trials.

An adaptive design differs from a traditional design in that 
it uses accumulating data from the ongoing trial to modify 
certain aspects of the study (6). In general, an adaptive design 
may allow for adaptive dose escalation/de-escalation; early 
stopping of the trial for toxicity, efficacy or futility; dropping 
or adding new treatment arms; using a seamless phase 
transition; adjusting an adaptive randomization scheme based 
on patient response or covariates; sample size re-estimation; 
and biomarker-guided treatment allocation (7,8). The 
purpose of the adaptive design is to give the investigator the 
flexibility to identify the best clinical benefit of the treatment 
as the trial progresses and then use that information to 
provide the best treatment to patients newly enrolling in the 
trial without undermining the scientific validity and integrity 
of the intended trial.

As the trial progresses and data accrue, the adaptive 
deign continuously learns the toxicity and efficacy profiles 
of the experimental drugs and uses that accumulating 
information to guide and modify the ongoing trial. The 
motto for the adaptive design is “We learn as we go”. 
As a result, the adaptive design has potential advantages 
of improving the study power, reducing the sample size 
and total cost, treating more patients with more effective 
treatments, correctly identifying efficacious drugs for 
specific subgroups of patients based on their biomarker 
profiles, and shortening the time for drug development. 
Because of these potential advantages, the interest in 
adaptive designs has risen. Many, but not all adaptive 
designs are formulated under the Bayesian framework. 
Bayesian methods model the parameter of interest by (I) 
obtaining the prior distribution; (II) collecting data to 
calculate the data likelihood; and then (III) computing 
the posterior distribution using Bayes theorem. The 
Bayesian method is adaptive in nature and provides an 
ideal statistical framework for adaptive trial designs (9). 
Numerous publications on this topic are available in the 
literature, and adaptive clinical trial designs are being used 
increasingly in many areas of research (10-12). Indeed, 

academic journals have published special sections or issues 
on the topic of adaptive designs (e.g., Biometrics, Statistics 
in Medicine, the Journal of Biopharmaceutical Statistics, 
Statistics in Bioscience, and others) (6). The pharmaceutical 
industry and regulatory agencies have also found adaptive 
designs attractive because of their potential advantages 
and because they reflect medical practice in the real 
world. For example, several organizations have established 
adaptive design working groups, which have proposed 
strategies, methodologies, and implementation policies for 
consideration by regulatory agencies. These include the 
Pharmaceutical Research and Manufacturers of America 
(PhRMA), Biotechnology Industry Organization (BIO), 
the Biopharmaceutical section of the American Statistical 
Association, and the Drug Information Association (DIA). 
The Center for Biologics Evaluation and Research and 
the Center for Drug Evaluation and Research at the FDA 
have jointly issued a guidance document for planning and 
implementing adaptive designs in clinical trials (13).

The purpose of this article is to review the methodology, 
development, and implementation of adaptive designs in 
clinical research. This paper is organized as follows. We 
introduce adaptive design methods commonly employed in 
clinical trials, which include adaptive dose-finding methods, 
interim analysis, adaptive randomization, biomarker-guided 
randomization, and seamless designs. Then, we present 
two recently conducted clinical trials that utilized adaptive 
designs. Finally, we discuss practical issues encountered in 
the implementation of adaptive clinical trial designs.

Adaptive dose-finding design

A phase I clinical trial typically assesses the safety of a new 
drug, with the primary aim of determining the maximum 
tolerated does (MTD), which is defined as the dose that 
has a toxicity probability closest to the targeted toxicity 
rate specified by the investigators. Broadly speaking, phase 
I dose-finding designs can be classified into two categories: 
the algorithm-based up-and-down design, and the model-
based adaptive design. 

The up-and-down design typically uses an algorithm-
based approach that does not include assumption modeling, 
and follows strict, pre-specified rules in the dose-finding 
procedure. Examples of the up-and-down design include the 
“3+3” design (14) and the accelerated titration design (15). 
In contrast to the algorithm-based up-and-down design, 
the model-based adaptive design uses the accumulating 
data to estimate the dose-toxicity curve and guides the dose 
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escalation or de-escalation as the trial moves along; hence, 
it is more flexible and efficient. The commonly used model-
based design includes, but is not limit to the continual 
reassessment method (CRM) (16-18), the Bayesian model 
averaging continual reassessment method (BMA-CRM) (19), 
the escalation with overdose control (EWOC) design (20). 
In addition, several model-based dose-finding designs have 
been proposed for trial with late-onset toxicity (e.g., TITE-
CRM and EM-CRM) (21-23), phase I/II trial (24-28) and 
drug-drug combination trial (29-33). Recently, Braun (34) 
provided a comprehensive review for the adaptive phase I 
dose-finding design.

Interim analysis

After the phase I trial, a phase II trial is conducted to 
evaluate the drugs’ therapeutic effects at the recommended 
dose. The efficacy outcome in a phase II trial is often a 
short-term, binary endpoint. When a new treatment shows 
promising efficacy, a phase III trial usually follows, with 
a longer-term, time-to-event outcome as a confirmatory 
assessment. The one-stage design performs only one final 
analysis at the end of the trial. Although the one-stage 
design is easy to plan and implement, it lacks flexibility 
and efficiency. In contrast, the sequential design uses 
the accumulated data to perform an interim analysis in 
the middle of the trial and then can use those results to 
adaptively change the plan of the trial.

Gehan’s two-stage design (35) and Simon’s two-stage 
design (36) have been proposed as sequential designs for a 
single-arm phase II study. The purpose of the single-arm 
trial is to test whether the efficacy rate of a new treatment 
is better than that of the standard treatment based on 
historical data. The trial design reaches a pre-specified 
target rate by controlling the type I and type II error rates.

For a two-arm trial in which an experimental treatment is 
compared with a standard treatment to assess the therapeutic 
effect, the group sequential design can be used to minimize 
the total number of patients enrolled in the trial. This 
design stops the trial early if the interim data show either 
overwhelming evidence of a strong treatment difference or 
the clear absence of a treatment difference. Consequently, 
this design allows for more timely adjustments to be made 
in the drug developmental process. Specifically, Pocock (37) 
and O’Brien and Fleming (38) proposed two kinds of group 
sequential designs with different stopping boundaries. The 
former design uses equal probability stopping boundaries 
throughout the trial; the latter uses more stringent probability 

stopping boundaries at the beginning of the trial, with 
more lenient boundaries toward the end of the trial. Wang 
and Tsiatis (39) generalized the result and proposed group 
sequential designs that incorporate both Pocock’s design and 
O’Brien and Fleming’s design as special cases. DeMets and 
Lan (40) proposed the alpha-spending function approach as a 
more flexible version of the group sequential design. Instead 
of a fixed number of interim analyses, the alpha-spending 
function uses the accumulated type I error rate at the repeated 
interim analyses to determine the stopping boundaries during 
the trial. One main goal of all the group sequential trials is 
to control the overall type I error while performing multiple 
significance testing. Jennison and Turnbull provide further 
discussion of group sequential designs (41).

Although the group sequential design may terminate the 
trial earlier, the maximum sample size of this design is usually 
fixed. Traditionally, the fixed sample size is derived based 
on a pre-specified power to detect a clinically meaningful 
treatment difference expressed as the effect size. The effect 
size is typically elicited from external historical data when the 
trial is designed. However, due to different study conditions 
and sampling bias, historical data may not provide an accurate 
estimate of the effect size for the current trial. Consequently, 
the sample size for the ongoing trial may be overestimated 
and thus waste resources, or underestimated and thus result 
in an under-powered study. To overcome such an unforeseen 
deficiency, several adaptive designs have been proposed that 
re-estimate the sample size based on the data that accrue 
during the trial. For example, Proschan and Hunsberger (42) 
proposed a two-stage design with sample size re-estimation 
after stage 1. This design allows for the termination of the trial 
in stage 1 and determines each stopping boundary and critical 
value in the two stages according to Fisher’s combination 
criterion to preserve the overall type I error. The design 
uses stage 1 data to estimate the effect size, based on which 
it then re-estimates the sample size for stage 2. The sample 
size in stage 2 is selected to satisfy a pre-specified conditional 
power, which is defined as the probability of rejecting the 
null hypothesis based on the observed data in stage 1. The 
self-designing strategy is another adaptive sample size re-
estimation design (43). This design uses the accumulating 
data to automatically decide whether to stop the trial due 
to futility or expand the trial to achieve the desirable power. 
This design also does not require the pre-determination of 
the maximum sample size and can maintain the overall type I 
error rate. The adaptive design with sample size re-estimation 
appears attractive; however, as pointed out by Tsiatis and 
Mehta (44), the design is inefficient in the sense that it can 
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always be uniformly improved by a standard group sequential 
design based on the sequentially computed likelihood ratio 
test. Hence, additional caution and further study are needed 
before designing studies with sample size re-estimation.

Multiplicity may arise when several repeated hypotheses 
are tested during a trial. As a result, Frequentist adaptive 
designs make great efforts to maintain the type I error rate 
under the nominal level. In contrast, the Bayesian approach 
is more flexible, as early stopping does not affect Bayesian 
inference. Under the Bayesian framework, the posterior 
distribution continues to be updated by synthesizing the 
prior information and the updated data. We learn as we go. 
Hence, it is natural and appealing to consider an interim 
analysis under the Bayesian framework. Considering 
the response outcome as binary, Thall and Simon (45) 
proposed a practical guideline for implementing a phase II 
Bayesian adaptive design based on the posterior probability. 
Specifically, they first assign a non-informative beta prior 
distribution for the experimental arm and an informative 
prior for the standard treatment effect. Then, after treating 
each new cohort of patients, the posterior distribution of the 
treatment effect can be easily calculated from a conjugate 
beta distribution. After that, the posterior probability that 
the experimental treatment effect exceeds the standard 
treatment effect by at least a clinically meaningful margin 
is computed and used to define the early stopping rule. If 
this probability is larger than an upper boundary, the trial is 
stopped early for efficacy and the experimental treatment is 
claimed as promising. Alternatively, if this probability is less 
than a lower boundary, the trial is terminated for futility and 
the experimental treatment is claimed as non-promising. 
Otherwise, the trial continues to treat more patients. If the 
trial reaches the maximum sample size, a final hypothesis 
testing is carried out to assess the therapeutic effect of 
the experimental treatment. The stopping boundaries are 
calibrated according to simulations to maintain desirable 
operating characteristics, including the control of type I 
and type II errors. Thall et al. (46) further extended this 
idea by jointly modeling the bivariate outcomes of both 
efficacy and toxicity with a conjugate Dirichlet distribution. 
The stopping rule can be determined similarly. Because 
the toxicity outcome is also monitored, the trial can be 
terminated for toxicity if the posterior probability of 
toxicity is large during the interim analysis. In addition 
to the binary trial, a similar Bayesian adaptive design has 
been investigated for a survival trial in which the response 
outcome is time-to-event (47).

A related trial design that uses the Bayesian framework 

is the predictive probability design. For this design, we 
consider the posterior distribution, which characterizes the 
distribution of the model parameter based on the observed 
data, and the posterior predictive distribution, which 
characterizes the distribution of the future data conditioned 
on the observed data but projected into the future. Under the 
Bayesian framework, the posterior predictive distribution can 
be derived by averaging the distribution of the unobserved 
data over the model parameter space given the observed 
data. Applying this posterior predictive distribution, Lee and 
Liu (48) developed a predictive probability that represents 
the future trial conclusion based on the strength of the 
currently observed data. They use this predictive probability 
for decision making at each interim analysis during the trial. 
Stopping boundaries for futility are constructed accordingly. 
The predictive probability design allows for continuous 
monitoring of the trial. It is more flexible and efficient than 
the fixed, multi-stage design.

Adaptive randomization

When multiple treatment arms are investigated in a 
clinical trial, randomization is needed to ensure there 
is an objective comparison of the different treatment 
groups. The primary goal of randomization is to balance 
different treatment groups with respect to all the known 
and unknown prognostic factors, thereby obtaining a 
credible and unbiased result. To achieve this goal, equal 
randomization (1:1) or randomization with a fixed ratio 
(e.g., 2:1) among the different treatments are the most 
commonly used randomization schemes. In addition, several 
adaptive randomization schemes that allow the allocation 
ratio for each arm to change as the trial continues have 
been proposed. Based on different objectives, adaptive 
randomization designs can be classified as baseline covariate-
adaptive randomization or response-adaptive randomization. 
The former design intends to balance the prognostic factors 
among the treatment arms, while the latter aims to allocate 
more patients to the better treatment arm.

Pocock and Simon (49) proposed the minimization 
method for covariate-adaptive randomization. This method 
determines the treatment allocation for the next enrolling 
patient based on the overall covariate distribution among 
the treatment groups in order to achieve a desirable 
balance of the corresponding properties. Efron (50) 
developed the biased coin design for a two-arm randomized 
trial to balance the number of patients allocated to the 
different arms. This design tosses a coin that is biased 
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with a probability of landing on its head to determine the 
allocation ratio. The design imposes the ability to achieve 
balance among the different arms. For response-adaptive 
randomization, Zelen (51) proposed the play-the-winner 
rule for the randomization of patients in a two-arm trial. In 
that design, the next enrolling patient's allocation depends 
solely on the previous patient's response to treatment. If the 
previous patient had a successful response, the next patient 
will be assigned to the same treatment. Otherwise, the next 
patient will be assigned to the alternative treatment. This 
deterministic scheme was further modified by a randomized 
play-the-winner scheme (52).

In response-adaptive randomization schemes, the 
randomization ratio can be specified to optimize certain 
criteria. For example, the Neyman allocation assigns 
patients on a basis that is proportional to the squared root 
of the variance of the parameter in order to maximize the 
statistical power of the test. Rosenberger et al. (53) proposed 
an optimal design that minimizes the expected number of 
non-responders while fixing the variance of the test statistic. 
However, these optimal randomization ratios often depend 
on the design parameters, which are generally unknown 
at the beginning of a trial. Hence, response-adaptive 
randomization needs to use interim data to estimate these 
parameters and then adjust the randomization ratios 
accordingly by incorporating the bias and variability of 
the randomization procedure to achieve certain optimal 
properties. One such design is the doubly adaptive biased 
coin design (54,55). This design allows the randomization 
ratio to be changed adaptively depending on both the 

observed allocation proportion and the estimated target 
allocation ratio. Consequently, this design simultaneously 
balances the target allocation ratio and the current 
estimation according to a pre-specified allocation function. 
As the trial continues, the randomization ratio converges to 
the target ratio to ensure the optimality of the design.

Bayesian adaptive randomization designs use the 
posterior distribution of the treatment effect to construct 
the randomization ratio (56). Before conducting the 
adaptive randomization, the investigators can choose to use 
an equal randomization phase at the beginning of the trial 
to gather information on treatment efficacy. Subsequently, 
they can calculate the posterior probability that each 
treatment has the highest therapeutic effect. Then, the 
next new patient can be randomized to a treatment with 
a randomization probability that is proportional to the 
associated posterior probability. The power transformation 
can be incorporated to control the degree of imbalance of 
the randomization scheme. For example, if this parameter 
equals 0, then the adaptive randomization reduces to equal 
randomization; if this value equals infinity, the adaptive 
randomization becomes the deterministic play-the-
winner rule. Notice that using the posterior probability of 
the treatment effect is not the only way to construct the 
randomization ratio. For example, Lee et al. (57) proposed 
to construct the randomization ratio based on the posterior 
mean of the treatment effect. In addition, as illustrated 
in Figure 1, a Bayesian adaptive clinical trial design often 
incorporates both the adaptive randomization scheme and 
early stopping rule to conduct the trial. For example, Yin 
et al. (58) developed a Bayesian phase II clinical trial design 
with adaptive randomization and predictive probability. That 
design uses adaptive randomization to assign more patients 
to the more efficacious treatment arm. Meanwhile, the trial 
is continuously monitored using the predictive probability 
and can be terminated early due to efficacy or futility.

In general, equal randomization can improve the 
efficiency of a trial by maximizing the statistical power. It 
also enhances the group ethics of a trial, which benefit the 
overall relevant population. On the other hand, adaptive 
randomization offers a higher probability of assigning more 
patients to the more efficacious treatment, and therefore 
enhances the individual ethics of the trial, which benefit the 
patients enrolled in the trial. There are different opinions 
regarding which randomization scheme is the best choice 
for guiding a clinical trial. Korn and Freidlin (59) conducted 
a simulation study to compare equal randomization with 
adaptive randomization for a two-arm trial with a binary 

Figure 1 Diagram of a phase II trial design with equal 
randomization first followed by Bayesian adaptive randomization. 
Early stopping rules for toxicity, futility, and/or efficacy can 
be applied to terminate the trial early when the pre-specified 
conditions are met.
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endpoint. They concluded that equal randomization should 
be used because the improvement in individual ethics 
that is achieved with adaptive randomization is limited, 
especially when one considers the additional complexity of 
implementing the adaptive randomization scheme in a trial. 
Lee et al. (60) conducted extensive simulation studies to 
investigate this issue and concluded that when the difference 
between the treatments under investigation is large, 
adaptive randomization outperforms equal randomization 
in both statistical power and the overall response rate, but 
the difference diminishes quickly when the early stopping 
rule is added. Adaptive randomization also outperforms 
equal randomization when the proportion of patients 
outside the trial is small, e.g., when applied to rare diseases. 
Hence, they recommended using adaptive randomization 
when the treatment difference is large or the relevant 
disease is rare. Berry et al. (61) claimed that although the 
benefit of implementing adaptive randomization is limited 
for two-arm trials, the improvement should be significant 
for multi-arm trials. Similar results were also reported by 
Wason and Trippa (62). They compared Bayesian adaptive 
randomization with the multi-arm, multi-stage (MAMS) 
designs. They suggested that when at least one treatment 
arm is much more effective than the others, the adaptive 
randomization design is more efficient than the equal 
randomization designs.

Seamless design

Cancer clinical trials are traditionally conducted in different 
phases. A phase I trial identifies the MTD of the new drug 
based on the toxicity outcomes. Subsequently, a separate 
phase II trial is carried out to examine the efficacy of the 
drug at the identified MTD. Then, a randomized phase III 
trial is conducted to compare the experimental therapy with 
the standard therapy. To streamline the drug development 
process and reduce the associated time and cost, there is 
a growing trend to integrate different response outcomes 
and phases into one clinical trial (63-66). To incorporate 
both toxicity and efficacy outcomes, Thall and Cook (24) 
proposed a dose-finding design based on the efficacy-
toxicity trade-off. Considering both efficacy and toxicity 
outcomes as time-to-event data, Yuan and Yin (25) proposed 
another Bayesian adaptive design that linked the toxicity and 
efficacy distributions by the Clayton copula. Zang et al. (26) 
recently proposed three adaptive dose-finding designs for 
trials that evaluate molecularly targeted agents, for which 
the dose-response curves are unimodal or plateaued. The 

first proposed design is parametric and assumes a logistic 
dose-efficacy curve for dose finding; the second design is 
nonparametric and uses the isotonic regression to identify the 
optimal biological dose; and the third design has the spirit of 
a “semi-parametric” approach by assuming a logistic model 
only locally around the current dose. Based on the simulation 
results, the authors recommend the nonparametric and semi-
parametric designs. Other related adaptive designs include 
the trinomial CRM design (27) and the two-stage design (28). 

To integrate phase I and phase II stages, Huang et al. (67)  
proposed a seamless phase I/II design that evaluates both 
the toxicity and efficacy of drug combinations in one trial. 
The first stage (phase I) uses the “3+3” approach to conduct 
the dose-finding procedure based on toxicity, with the 
objective of finding the admissible dose set. This dose set 
is then forwarded to the second stage (phase II) to assess 
efficacy, which involves adaptive randomization of patients 
to the admissible dose combinations based on Bayesian 
posterior probabilities. A Bayesian early stopping rule is 
added to the second stage for possible early termination 
of the trial due to safety concerns, efficacy or futility. At 
the end of the trial, the most efficacious drug combination 
in the admissible set is selected. This design is seamless 
in the sense that both the toxicity and efficacy outcomes 
are collected throughout the trial and are used for the 
ongoing adaptive dose finding and randomization, with the 
possibility of early stopping. Yuan and Yin (68) developed 
another seamless phase I/II design for identifying the most 
efficacious dose combination that satisfies certain safety 
requirements for drug combination trials. They employ a 
copula model to identify the admissible dose set based on 
toxicity in the first stage of the trial. The second stage uses 
a novel adaptive randomization procedure that is based on 
a moving reference to compare the relative efficacy among 
the treatments under investigation. Hoering et al. (69) 
proposed a seamless phase I/II trial design for assessing the 
toxicity and efficacy of targeted agents. The first stage uses 
a traditional dose-finding approach that assesses toxicity 
to find the MTD. For the second stage of the trial, they 
propose using a modified phase II selection design for 2 or 
3 dose levels at and below the MTD, and evaluating the 
efficacy and toxicity at each dose level.

Phase II cancer trials generally investigate the tumor 
response. If a phase II trial shows a favorable tumor 
shrinkage response, then a confirmatory phase III trial 
follows to determine the efficacy of the new treatment 
based on a longer-term endpoint such as the patients’ 
length of survival. Both phase II and phase III trials can be 
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time-consuming. Generally speaking, a phase II trial has 
a duration of more than 18 months, while a phase III trial 
is ongoing for at least another 2 years after that (10). This 
does not include the “white space”, i.e., the time between 
these two trial phases that is required for analyzing the 
phase II data and determining the design of the phase III 
study. To hasten drug development and improve the success 
rate at the same time, a seamless phase II/III trial design 
has been proposed. This design combines the learning and 
confirmatory stages into one trial. A seamless phase II/III 
trial is typically conducted using multiple drugs and multiple 
dose levels of the experimental drug. For the learning stage 
(phase II), the most efficacious dose among the multiple 
doses of the experimental drug is selected and seamlessly 
forwarded to the confirmatory stage (phase III). Under this 
design, a smaller confirmatory study can be conducted to 
compare the improvement in survival time between patients 
who are administered the most efficacious dose of the 
experimental drug and those who are given the control drug.

Depending on whether the patients in the learning 
stage (phase II) are counted, a seamless phase II/III design 
can be classified as an inferentially seamless design or an 
operationally seamless design (11). In the inferentially 
seamless design, the data from patients in the learning stage 
who share the same treatments and have the same primary 
endpoint as their counterparts in the confirmatory stage are 
included in the final analysis of the trial. Consequently, the 
inferentially seamless design can result in a higher overall 
success rate because the early positive results are included in 
the final analysis. Thus, a potential bias may arise because 
the information from the learning stage is used for both 
conducting and analyzing the confirmatory stage of the trial. 
Calibration simulations are needed in the final analysis to 
adjust for the potential inflation of the overall type I error 
rate. In the operationally seamless design, the results of the 
two stages are analyzed separately. Hence, this design has 
no impact on the type I error rate of the confirmatory stage 
of the trial. Because there is no “white space” between the 
learning and confirmatory stages (phases II and III), the 
operationally seamless design streamlines the overall trial. For 
example, Inoue et al. (70) compared the seamless design with 
separate designs that have the same operating characteristics 
and found that the adoption of the seamless design can result 
in an average 30% to 50% sample size reduction as well as a 
significantly shortened total duration of the trial.

Several seamless phase II/III designs have been proposed 
in the literature. Huang et al. (71) proposed a seamless phase 
II/III design when short-term tumor response information is 

available in the learning stage. They use a Bayesian model to 
connect the short-term response with the long-term survival 
time such that the adaptive randomization procedure based 
on the survival endpoint can be sped up by incorporating 
the response information. Interim monitoring is conducted 
during the trial and the final inference is made based on 
the primary survival response. Stallard (72) investigated a 
seamless phase II/III trial that selected the most promising 
experimental treatments at the interim analysis. If the short-
term data are available for some patients for whom the 
primary endpoints are not available, this design uses the 
short-term endpoints at the interim analysis to adjust group-
sequential boundaries to control the type I error rates. 
Kimani et al. (73) proposed an adaptive two-stage design for 
trials in which the experimental treatments are different dose 
levels of the same drug. The dose selection at the end of the 
first stage is made by comparing the predictive power of the 
admissible sets of doses. Bischoff and Miller (74) provided the 
sample size formula of an adaptive two-stage design for the 
seamless phase II/III trial.

When several new treatments are compared with a 
control treatment within a multi-arm trial, the MAMS 
design (62,75) has been proposed to collect the data of the 
different treatments. The purpose of the MAMS design is 
to identify the most promising treatment and assign more 
patients to that treatment. The MAMS design also uses 
the interim data to conduct the trial. But, unlike adaptive 
randomization, the MAMS design does not change the 
allocation probability for each treatment. The experimental 
treatments that cross the pre-specified stopping boundaries 
are dropped from the MAMS trial. The MAMS design has 
been applied in several real trials, including STAMPEDE 
and TALLOR (76). 

Biomarker-guided adaptive design

Thanks to an improved understanding of cancer biology 
and rapid advancements in biomedicine, we have entered 
the era of targeted therapies in clinical oncology (77). 
Targeted cancer therapies are often expected to be more 
effective and less harmful than other types of therapies, 
such as chemotherapy and radiotherapy (78). The clinical 
application of a targeted therapy requires the identification 
of biomarkers that can be used to identify patients who are 
likely to be sensitive to the targeted therapy (79-82). 

Recently, several biomarker-guided adaptive designs have 
been proposed to identify, validate and utilize biomarkers in 
clinical trials. These trial designs include the marker-stratified 
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design, marker-strategy design (83-85), enrichment design 
(86-89), basket design (90), N-of-1 design (91) and master 
protocol design (92). The marker-stratified design typically 
uses equal randomization to allocate patients to different 
treatment arms. Alternatively, Lee et al. (57) proposed a 
Bayesian adaptive marker-stratified design. This design 
uses Bayesian response-adaptive randomization to provide 
more patients with more effective treatments according 
to the patients’ biomarker profiles. In addition, an interim 
analysis with early stopping rules is implemented to increase 
the efficiency of the designs. Figure 2 provides flowcharts 
of the equal randomized marker-stratified design and the 
Bayesian adaptive randomized mark-stratified design. For a 
comprehensive review of the biomarker-guided design, one 
can refer to the review article written by Simon (93).

Trial examples

We introduce two recently conducted high-profile, large-
scale randomized phase II clinical trials that utilize adaptive 
designs: the “Biomarker-integrated approaches of targeted 

therapy of lung cancer elimination” (BATTLE) trial and the 
“Investigation of serial studies to predict your therapeutic 
response with imaging and molecular analysis” (ISPY-2) 
trial. Both trials have implemented adaptive randomization 
schemes to assign patients to the more efficacious 
treatments based on their biomarker-guided profiles, and 
use interim analyses to monitor the efficacy outcomes 
during the trial.

The BATTLE trial (94,95) enrolled patients with stage 
IV recurrent non-small cell lung cancer. The primary 
endpoint was the eight-week disease control rate, which was 
recorded as a binary outcome. The four biomarker profiles 
used in the trial were EGFR mutation/amplification, KRAS 
and BRAF mutation, VEGF and VEGFR expressions, 
and Cyclin D1/RXR expressions. Four targeted therapies, 
erlotinib, vandetanib, erlotinib plus bexarotene, and 
sorafenib, were evaluated, with one therapy targeting each 
one of the four biomarker profiles. The goals of the trial 
were to test the treatment efficacy and biomarker effect, 
and to evaluate their predictive roles in providing better 
treatment to patients in the trial based on their biomarker 

Equal randomized marker-stratified design

Bayesian adaptive randomized marker-stratefied design
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Figure 2 Diagrams of the marker-stratified design. Equal randomized marker-stratified design has a fixed 1:1 randomization ratio 
throughout the trial to assign patients into the targeted therapy and the standard therapy, respectively. On the other hand, the randomization 
ratio for the Bayesian adaptive randomized marker-stratified design varies during the trial. As illustrated, the randomization ratio in the 
marker positive group could change from 1:1 to 2:1 and to 3:1 while, in the marker negative group, they could change from 1:1 to 1:2 to 
1:3 assuming that the targeted therapy is more effective for the marker positive patients and the standard therapy is more effective for the 
marker negative patients.
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profiles. The trial used Bayesian methods to model the 
treatment-response relationship and used a hierarchical 
probit model to borrow strength across the different 
biomarker subgroups. It used an adaptive randomization 
scheme to allocate patients to the different treatments; 
hence, patients had higher probabilities of being assigned to 
better treatments based on their biomarker profiles. Also, 
the early stopping rule for futility was equipped to drop the 
potentially inferior treatments from the options available for 
newly enrolling patients who had certain biomarker profiles. 
The BATTLE trial enrolled 341 patients and randomized 
255 of them under the proposed adaptive randomization 
scheme. The overall results included a 46% 8-week disease 
control rate, confirmed the pre-specified hypotheses, and 
showed a positive benefit from sorafenib among patients 
with mutant KRAS profiles (95).

Based on the findings of the BATTLE trial, a follow-
up BATTLE-2 trial was started, and is ongoing (96). 
The BATTLE-2 trial evaluates four treatment regimens, 
erlotinib, sorafenib, erlotinib + MK2206, and MK2206 
+ AZD6244,  in a  two-stage design with adaptive 
randomization. Each of the two stages will enroll 200 
patients. Biomarker selection is conducted in 3 steps: 
training, testing and validation. In the training step, 10-
15 potential prognostic and predictive markers are selected 
from the previous BATTLE experience, cell line data, 
and relevant information published in the literature. The 
selection of these markers is based on the pre-BATTLE-2 
information. In the testing step, the selected markers 
are tested using the data acquired from stage 1 of the 
BATTLE-2 trial. The expectation is to select no more than 
five significant markers using the statistical two-step LASSO 
method. In the validation step, the markers selected in the 
first stage of the BATTLE-2 trial are used for adaptive 
randomization in the second stage of BATTLE-2, and their 
prognostic and/or predictive values will be validated.

The ISPY-2 trial (97) is a multicenter phase II trial in 
the neoadjuvant setting for patients with breast cancer. The 
primary end point is pathologic complete response (PCR) 
at the time of surgery. The tumor burden assessed by MRI 
during treatment serves as an auxiliary marker to predict 
the treatment effect of PCR. The patient population is 
partitioned into ten subgroups depending on hormone-
receptor (HR) status, HER2 status and Mamma Print 
signature. All patients receive standard chemotherapy for 
breast cancer in the neoadjuvant setting: 12 weeks of taxane 
administration and four biweekly or triweekly cycles of 
an anthracycline (doxorubicin) plus cyclophosphamide. 

Experimental drugs are added to the taxane cycle of 
treatment. The overall goal of the trial is to prospectively 
learn as efficiently as possible which patients respond to each 
experimental treatment based on their biomarker profiles. 
Adaptive randomization with interim analysis is used within 
each biomarker subgroup, with the treatments that are 
performing better within a subgroup being assigned with 
greater probability to patients belonging to that subgroup. 
In addition, the trial may be terminated early for futility or 
efficacy. The phase II drug-screening stage is followed by a 
phase III confirmatory stage. The drug recommendation for 
the phase III stage is based on a predictive probability of each 
drug being successful in a 300-patient phase III trial. The 
trial will screen 12 different drugs. The FDA is allowing for 
adaptive flexibility in the trial: the investigators can graduate 
a successful drug from the trial, drop an unsuccessful drug 
from the trial, or add a new drug during the trial rather than 
initiating a new protocol, which will save a considerable 
amount of time (98). The ISPY-2 trial has recently shown 
that when added to standard, pre-surgery chemotherapy, 
the combination of carboplatin and the molecularly targeted 
experimental drug veliparib improve the rate of tumor 
response in women with triple-negative breast cancer. In 
addition, based on a high probability of success in the phase 
III stage for women with HER2-positive/HR-negative 
disease status, the ISPY-2 trial has graduated another 
experimental drug, neratinib, from the trial. These two drug 
graduations serve as important evidence of the potential of 
the ISPY-2 trial design to significantly reduce the cost of 
drug development and speed the process of screening drugs, 
with the goal of bringing safe and effective new drugs to 
market more efficiently (99).

Discussion

Adaptive clinical trial designs hold great promise for 
improving the flexibility and efficiency of clinical trial 
conduct. They can efficiently identify effective drugs and 
eliminate ineffective drugs from further consideration, test 
and validate biomarkers, match effective treatments with 
specific subgroups of patients based on their biomarker 
profiles, reduce the overall sample size, and shorten the 
time required for drug development. However, adaptive 
trial designs are more complicated than traditional designs 
and demand more attention throughout the study design 
process and the trial conduct. The operating characteristics 
of the adaptive trial design need to be explicitly examined 
under a spectrum of plausible conditions. Frequently 
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conducting interim analyses brings the added pressure of 
requiring timely data collection and computation. The 
collaborating statisticians should be more closely involved in 
monitoring the trial conduct to make appropriate decisions 
based on the interim data. Also, the application of adaptive 
designs requires new software and tools for monitoring 
the statistical design of the trial, analyzing the data, and 
reporting the results (100). A list of statistical software that 
can be used to design and conduct various phases of adaptive 
clinical trials (and access to that software) is available at 
https://biostatistics.mdanderson.org/SoftwareDownload/.

The characteristics of patients who enroll in a given trial 
may change substantially over the course of the randomized 
trial because randomization tends to favor a more effective 
experimental drug, especially in an unblinded trial (59). 
Such a trend within the trial population can lead to a 
biased comparison of the treatments under investigation. 
Because adaptive designs use the accumulating response 
data to guide the trial conduct, they are more sensitive to 
such a population drift. If the patient population changes 
dramatically during the time period of the trial, then an 
adaptive design may not be appropriate and regression 
analysis can be used to adjust the potential impact of the 
population drift.

Another practical concern for adaptive trial designs is the 
security of the information collected during the trial (101). 
Adaptations that occur during the trial and which become 
known to anyone other than the members of the Data and 
Safety Monitoring Board (DSMB), who strictly maintain the 
confidentiality of trial data, may seriously affect the ethics 
and integrity of the trial. For example, an increase in the 
sample size following an interim analysis may be interpreted 
as a sign that the expected treatment effect is not present. 
This may then impact the actions of any investigator involved 
in the trial. The possibility of information leakage may not 
be an issue in a short-term phase II trial, but can limit the 
credibility of an unblinded phase III trial.

Last, but not least, the logistics of the adaptive design 
is more complicated than those of the conventional trial 
design (102). Adaptive trial designs require a central 
database in which to store all the outcome data. This 
database must be connected to the software that determines 
treatment assignments or other adaptive aspects of the 
trial such as interim monitoring and the evaluation of the 
stopping rules. An integrated database with a web-based 
interface is particularly useful for conducting multi-center 
adaptive trials. Timely and accurate data collection is 
critically important to the success of adaptive trials.

To summarize, well planned and carefully conducted 
clinical trials that use adaptive designs have the potential 
to improve drug development, provide greater benefit 
to the enrolled patients, and effectively address many 
research questions of interest. However, an adaptive trial 
design is not a panacea, nor is it a remedy for bad planning. 
Designing and implementing an adaptive trial design 
requires specialized learning and specialized software. 
We need time to translate theoretical developments in 
statistical trial design to practice. Guidance from regulatory 
agencies (e.g., the FDA) and industry support are also 
important. The risk associated with adaptive trial designs 
must be assessed within the context of the potential gains. 
The objective of the clinical trial must first be clearly 
established and evaluated before determining whether the 
adaptive design will have advantages over the alternative 
conventional designs. The operating characteristics of the 
potential adaptive design must be investigated through 
extensive simulations and calibrations. In addition, we must 
keep in mind that no adaptive design is without limitations, 
but it can offer a timely and informative "learn as we go" 
approach. Adaptive designs have the ability to improve 
their performance as the trial continues. We should not be 
discouraged by the complexity or practical requirements 
of adaptive designs as they are readily addressable, 
particularly, with the improved clinical trial infrastructure. 
Adaptive designs are promising and have much to offer. We 
encourage continued learning and improvement through 
the implementation of adaptive trial designs so that we can 
turn promise into progress.
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