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Introduction

The breast cancer susceptibility genes BRCA1/2 are 
tumor suppressor genes, that when mutated, increases an 
individual’s risk of developing not just breast cancer, but 
also ovarian, pancreatic, and prostate cancer (1-4). This 
occurs as the BRCA1/2 genes encode for proteins that play 
crucial roles in the maintenance of genomic integrity by 
ensuring accurate and precise repair of damaged DNA, as 
well as controlling cell cycle checkpoints (5,6). Women who 
harbor pathogenic BRCA1/2 mutations are at a 45–65% risk 
of developing breast cancer and a 11–39% risk of ovarian 

cancer by the age of 70 (7), compared to the corresponding 
general population cumulative risk of 5.03 % and 0.72% 
respectively (8). The past 25 years have seen an increase 
in the number of genetic tests being offered, owing to 
advances in testing technology and increase in access to 
testing (9). With lowered test costs and high-throughput 
sequencing technologies, many more laboratories have 
been able to offer tests that cover more genes, beyond 
the conventional BRCA1/2 genes, to diagnose hereditary 
breast cancer syndrome. Indeed, the rates of testing for 
hereditary breast cancer including BRCA1/2 have been 
increasing over the years (10,11). This has led to a need to 
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address the implications of acquiring genetic information; 
be it intentionally sought or incidentally discovered. In this 
review article, we seek to provide a brief history of DNA 
sequencing, highlight the differences between sequencing 
DNA from blood and tumor samples, with particular 
emphasis on the BRCA1/2 genes, as well as understand the 
clinical implications of tumor BRCA1/2 testing. 

The process of DNA sequencing and its utility

DNA sequencing was first described in the late 1970s by 
Fred Sanger and his colleagues (12) and is better known 
as the Sanger sequencing method. Sanger sequencing 
involves mixing non-extendable, fluorescently labeled 
dideoxy nucleotides together with standard nucleotides 
that may be randomly incorporated by DNA polymerase 
to generate fragments of varying lengths of nucleotides 
which are copies of the original template of DNA. These 
fragments are then separated by high-resolution capillary 
electrophoresis, and the color tag linked to the last 
incorporated dideoxy nucleotide on each fragment is then 
used to interpret the original sequence of DNA (13). It 
was the Sanger sequencing method which was employed to 
elucidate the first complete sequence of the human genome 
(known as the Human Genome Project) (14). However, 
the traditional Sanger sequencing method is limited by its 
throughput as well as high cost. In fact, it was estimated 
that the first human genome sequencing cost an estimated 
0.5–1 billion US dollars (15). Since then, much effort has 
been poured into initiatives to improve DNA sequencing, 
in a bid to increase throughput whilst reducing cost. The 
National Human Genome Research Institute created a 
70-million-dollar DNA sequencing technology initiative 
with the aim of achieving a 1,000-dollar human genome 
within 10 years (16). One such technology that was created 
is known as next-generation sequencing (NGS). While the 
concept behind Sanger sequencing and NGS is similar, 
the critical difference lies in the sequencing volume. The 
traditional Sanger sequencing method sequences a single 
DNA fragment at any one time, while NGS, also known as 
massive parallel sequencing, sequences millions of fragments 
simultaneously per run. This capability has expanded 
the breadth of genotyping available in the clinic. We can 
now utilize different technologies to sequence genetic 
information of varying lengths (17). Low throughput 
methods such as Sanger sequencing are suitably used to 
sequence single variants such as the BRAF V600E mutation, 
part of a gene such as epidermal growth factor receptor 

(EGFR) mutations in exons 18–21 (18), or an entire gene 
for example full BRCA1/2 sequencing. At the other end of 
the spectrum, high-throughput genotyping such as NGS 
method has the capability of sequencing tens to hundreds of 
genes simultaneously, the whole exome, or even the whole 
genome (Figure 1). 
After a genomic sequence is determined, the reads are 
aligned to a published reference genome and compared. Any 
site with a differing DNA from the reference is considered a 
sequence variant (19). Variants are classified as “pathogenic”, 
“likely pathogenic”, “of uncertain significance”, “likely 
benign” or “benign” based on the American College 
of Medical Genetics and Genomics (ACMG) and the 
Association for Molecular Pathology guidelines (20). By 
increasing the length of genome that is sequenced, the 
chance of detecting informative and/or actionable mutations 
is increased; however, the disadvantages of testing a large 
panel of genes include higher rates of variants of uncertain 
significance (VUS) (21) which are uninformative and not 
actionable, as well as a higher likelihood of incidental and/
or unexpected findings in less familiar genes that may have 
limited or no management guidelines. 

Germline vs. somatic testing (Table 1)

Germline mutations are heritable and present in every 
cell of a person’s body. These mutations are inherited 
from a person’s parent(s), and can be passed on to his 
or her offspring. Typical starting materials used to 
diagnose a germline mutation are blood (peripheral blood 
mononuclear cells), buccal swab, or saliva. Heritable 
germline mutations exist from birth to death and do not 
change with time, thus testing only needs to be done once. 
Heritable germline information can potentially lead to 
ethical, social, and familial implications, and hence pre-test 
genetic counseling is required. In oncology, the traditional 
indications for germline testing are to diagnose hereditary 
cancer syndrome, such as BRCA1/2 hereditary breast-
ovarian cancer syndrome, to identify individuals who will 
benefit from early screening and prevention strategies 
(22,23). More recently, germline BRCA1/2 testing may lead 
to therapeutic indications, as germline BRCA1/2 mutation 
carriers with metastatic HER2 negative breast, advanced 
epithelial ovarian, or metastatic pancreatic cancer may 
benefit from treatment with poly-ADP-ribose polymerase 
(PARP) inhibitors (3,24-26). In contrast to germline 
mutations, somatic mutations are acquired genetic changes 
that occur in a diseased organ, for example, in tumor 
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cells in a patient with cancer. Somatic testing in cancer is 
typically done on tumor biopsy or surgical specimens, or 
any other biological materials that contain malignant cells, 
e.g., malignant pleural effusion or ascitic fluid. As somatic 
mutations are not heritable, pre-test genetic counselling 

is generally not required. The traditional indication to 
test for somatic mutations in oncology is for therapeutics, 
e.g., identification of EGFR mutations in non-small cell 
lung cancer (NSCLC) to select patients for treatment with 
EGFR tyrosine kinase inhibitors (TKIs) (18,27,28). Somatic 

Low throughput Genotyping Methods
(e.g., Sanger Sequencing)

High throughput Genotyping Methods 
[e.g., Massively Parallel Sequencing with 
Next Generation Sequencing (NGS)]

Breadth of Genotyping

Low High

Example: BRAF 
V600E for 

vemurafenib in 
melanoma

A single variant

Example: 
BRCA1/2 
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cancer

An entire gene
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EGFR exons 

18–21 mutation 
analysis for 
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inhibitors

Part of a gene
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Tumor 

molecular 
profiling
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panel of multiple 

genes
(10 to 100 s)

Whole exome
sequencing

Whole 
genome 
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Figure 1 Clinical examples of the various types of genotyping methods.

Table 1 Comparisons between germline and somatic testing

Differences Germline Somatic 

Features Heritable Non-heritable

Results do not change with time Results may change with time

Usually tested only once May require serial sampling

Indications Diagnostic: for early screening/prevention in suspected 
hereditary cancer syndrome, e.g., BRCA, Lynch syndrome

Therapeutic: EGFR, KRAS, BRAF mutations, ALK 
translocation

Therapeutic: poly-ADP-ribose polymerase (PARP) 
inhibitors in BRCA mutation carriers with advanced 
ovarian or breast cancer 

Pre-test genetic 
counselling

Recommended due to potential ethical and social 
implications with identification of heritable mutation

Not typically required as identified mutation is 
usually not heritable

Starting materials Blood (peripheral blood mononuclear cells), buccal swab, 
saliva 

Tumor (biopsy, surgical specimen), pleural fluid, 
ascites

Tumor (not typically used, but does contain germline DNA) Blood (processed to yield circulating tumor cells 
or cell-free DNA)
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mutations may evolve with time and treatment exposure, 
thus repeated testing may be required, for example, testing 
for the emergence of EGFR T790M mutation in EGFR-
mutant NSCLC patients who have developed resistance 
to first- or second-generation EGFR-TKIs (29). While 
genetic testing of blood is usually associated with germline 
information and testing of tumor with somatic information, 
this relationship does not always hold true. For example, 
although tumor is not commonly used as a source of 
germline DNA, it originates from normal tissue and thus 
contains germline DNA. Therefore, tumor genetic testing 
can potentially yield incidental germline findings. Similarly, 
if blood is processed to yield circulating tumor cells or cell-
free DNA, then testing such materials will provide somatic 
rather than germline information. 

Testing for mutations in the BRCA1/2 gene in 
the tumor

Germline testing for the BRCA1/2 gene is usually done 
on a blood sample. However, there are instances whereby 
BRCA1/2 gene sequencing is performed on a tumor sample. 
One scenario that is occurring increasingly commonly 
is when the tumor of a patient with refractory cancer is 
profiled using NGS in search of an actionable mutation to 
guide treatment. A panel of tens to several hundred genes 
is typically tested and often includes the BRCA1/2 genes. 
Pathogenic BRCA1/2 gene mutation may be identified 
in the tumor, and although some of these mutations 
are somatic mutations, others may represent incidental 
germline findings. Another example is when there is a 
deliberate search for a tumor BRCA1/2 mutation to guide 
treatment, for example in the setting of epithelial ovarian 
cancer, where there is data to support the use of PARP 
inhibitors in patients whose tumors harbor BRCA1/2 
mutation (3,24), regardless of whether they are germline or 
somatic in nature (30). Lastly and rarely, tumor may be used 
as a surrogate for germline testing in the context of a high-
risk family with no living affected index patient for direct 
germline testing. 

Are BRCA1/2 gene mutations identified on tumor 
sequencing somatic or germline in origin? 

One challenge when a pathogenic BRCA1/2 mutation is 
identified in tumor is to ascertain its origin, i.e., germline 
versus somatic. The most conclusive way to determine if 
a mutation identified in a tumor is germline or somatic 

in nature is to test an accompanying germline sample 
(e.g., blood or buccal swab). However, in practice, most 
laboratories offering tumor NGS testing do not routinely 
request for a germline sample from the patient, for 
several reasons. These include ethical concerns, as testing 
germline samples yields direct information on heritable 
mutations and will require prior genetic counselling, 
and practical considerations, such as the need for more 
bioinformatics analysis with a germline sample, thus 
increasing testing cost and possibly turnaround time (31).  
Most tumor NGS reports are silent on whether an 
identified pathogenic mutation is germline or somatic in 
origin. However, certain features may help to ascertain 
if a tumor variant could actually be germline in nature, 
including a concordant clinical and family history and 
mutant allele frequency (MAF). When a pathogenic 
BRCA1/2 mutation is identified in tumor, the clinician 
should review the patient’s clinical presentation to 
determine if it is consistent with a heritable mutation. 
Information such as the cancer type, family history and 
young age at diagnosis are important clues that could 
point towards the fact that the identified mutation may 
be germline in nature. Another clue is the MAF of the 
pathogenic variant of interest. Since most hereditary 
cancers are inherited in an autosomal dominant fashion 
(50% wild type and 50% mutant), the MAF of pathogenic 
germline variants is usually close to 50%, whereas MAF 
of pathogenic somatic variants tends to be much more 
variable. The gene in which the tumor pathogenic 
mutation is identified may provide further insights on its 
origin. For example, Meric-Bernstam et al. showed that the 
majority (77.8%) of tumor pathogenic BRCA1/2 variant 
was germline in nature, compared to only 2.88% of tumor 
pathogenic TP53 variants (32). Other clues that could 
suggest a tumor pathogenic mutation to be germline in 
nature include detection of the same mutation in different 
primary tumor specimens from the same patient, and the 
mutation having been previously reported as a heritable 
founder mutation (31).

What is the likelihood of finding an incidental 
germline pathogenic mutation on tumor NGS 
testing? 

In a study from MD Anderson, 1,000 cancer patients 
underwent tumor NGS testing with a panel of 202 genes; 
all patients provided a corresponding germline sample 
(blood or buccal swab), allowing investigators to ascertain 
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if an identified tumor pathogenic mutation is germline 
or somatic in nature. A focused analysis on 19 cancer 
predisposing genes found that ~5% of pathogenic mutations 
identified in the tumor in these 19 genes were actually 
germline in nature (31). Schrader et al. further reported 
that the likelihood of picking up incidental germline 
pathogenic mutations in tumor increases with the number 
of genes tested, from 6.4% in a 26-gene panel to 12.6% 
using a 93-gene panel and further to 15.7% when a 187-
gene panel is tested (33). These mutations may be linked 
to increased risk of preventable diseases for which clear 
management guidelines are available (32), while others 
may cause non-preventable diseases or have less certain 
clinical implications. These findings have potential medico-
legal implications, and there has been significant debate on 
whether all or some of these incidental germline findings 
should be disclosed to the patient. Importantly, disclosing 
and managing all such results demand significant medical 
expertise and health resources, which are not available at 
most institutions. Furthermore, disclosure of a finding that 
can lead to a non-preventable disease can also be a source of 
distress and may not be welcome by the patient. Physicians 
ordering these tests should thus be mindful of these issues. 

How should we handle incidental BRCA1/2 
pathogenic germline variants identified in 
tumor?

The ACMG recommends a list of 59 genes including 
25 cancer predisposing genes in which results should 
be returned to patients if incidental germline mutations 
are identified; regardless of the original indication for 
the clinical sequencing (34). This includes the BRCA1/2 
genes (34). Several studies have reported the likelihood 
of detecting an incidental germline pathogenic BRCA1/2 
mutation on tumor NGS testing to range from 2.1% to 
3.3% (32,33,35). Interestingly, the clinical diagnosis was 
not suspected in 24% to 46% of the cases. Clinicians 
should be aware of this when ordering tumor NGS testing 
for their patients; it will be appropriate to provide brief 
pre-test counseling to inform patients of the possibility 
of detecting incidental heritable mutations. If a tumor 
BRCA1/2 pathogenic mutation is identified, full genetic 
counseling should be provided with a view to confirm 
the mutation with clinical testing using a direct germline 
sample such as blood or buccal swab. Full genetic 
counselling typically comprises pre-and post-test processes. 
Pre-test genetic counselling includes taking a thorough 

family history for risk assessment followed by counselling 
on the characteristics of the suspected hereditary cancer 
syndrome, including mode of inheritance, lifetime cancer 
risks, screening and preventive options for proven mutation 
carriers, as well as highlighting potential ethical, social, and 
legal implications of genetic information. During post-test 
counselling, the implications of the test results are explained 
and follow-up plans including screening and prevention 
as well as cascade testing of family members of proven 
mutation carriers are formulated (22). 

Is tumor BRCA1/2 gene testing reliable enough 
to diagnose germline mutations? 

Since tumor NGS testing may uncover incidental germline 
BRCA1/2 mutations, an important clinical question arises: 
how reliable is tumor BRCA1/2 testing in diagnosing or 
excluding germline mutations? We studied 60 patients who 
had undergone clinical BRCA1/2 germline testing using 
blood samples, including 22 patients who were diagnosed 
with pathogenic germline BRCA1/2 mutations and 38 
patients without (36). Paraffin-embedded tumors from 
these patients were retrieved for tumor BRCA1/2 testing 
via NGS. The laboratory was blinded to the germline test 
results and was asked to commit if an identified tumor 
pathogenic BRCA1/2 is germline in origin, using MAF and 
other variant classification algorithms. In the 38 patients 
with no germline pathogenic BRCA1/2 mutation, tumor 
tests were 100% concordant with no false positive results. 
However, in patients who carry germline pathogenic 
BRCA1/2 mutation (n=22), only 70% of these germline 
mutations were conclusively diagnosed on tumor testing, 
while 30% of germline mutations were missed. Among 
the false negative cases, 40% was due to technical error, 
i.e., the mutation was not detected in the tumor, while 
60% was due to interpretative error, i.e., mutation was 
detected in the tumor but the classification algorithm used 
by the laboratory erroneously classified the variant as non-
pathogenic or somatic. These results highlight that a tumor 
NGS test that is negative for BRCA1/2 mutation does 
not conclusively exclude germline pathogenic BRCA1/2 
mutation, thus germline testing should still be considered 
if the patient fulfills clinical criteria for germline BRCA1/2 
testing. On the other hand, tumor BRCA1/2 testing can 
detect some pathogenic germline mutations and false 
positive rates appear low, with high concordance rate 
of more than 90% between tumor BRCA1/2 mutations 
assessed to be likely germline in nature versus blood testing 
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Figure 2 A summary of the clinical scenarios in which tumor BRCA1/2 may be identified and their implications.

(37-39). Thus, in the context of a high risk family with 
no living affected who can be tested as the index patient, 
archival tumor specimen from a deceased cancer-affected 
family member can potentially be used as a surrogate for 
germline; the detection of a pathogenic germline mutation 
in this context could potentially facilitate cascade testing in 
family members, although this is best done in the context of 
a specialized cancer genetics clinic. 

Putting it all together (Figure 2)

When sequencing a tumor using NGS testing, the 
probability of finding an incidental pathogenic BRCA1/2 
mutation is ~2–4%, of which ~80% is germline in 
origin. Consequently, clinicians should consider pre-test 
counselling to warn patients of such a possibility (32). 
Subsequently, when a pathogenic BRCA1/2 gene mutation 
is indeed reported in the tumor, the patient should be 
counseled that this may represent an incidental germline 
finding. It is recommended that these patients be referred 
for formal genetic counselling followed by confirmatory 
germline testing with a blood sample or buccal swab. On 
the other hand, due to a relatively high false negative 
rate, failure to identify pathogenic BRCA1/2 mutation on 

tumor NGS testing does not definitively exclude germline 
BRCA1/2 mutations. Therefore, if an individual fulfills 
conventional genetic testing criteria, germline testing will 
still be indicated even if the tumor testing returns negative. 
Finally, using tumor as a surrogate to test for germline 
mutations in a deceased individual should only be used as 
a last resort, best done in the context of a cancer genetics 
clinic, and results interpreted with caution.
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