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Introduction

Cancer metastasis, the main cause of cancer mortality, 
involves the dissemination of malignant cells from the 
primary tumor, via local blood or lymphatic vessels (LVs) 
to gain access to systemic circulation, while evading 
the destruction by immune cells, followed by successful 
extravasation and initiation of malignant growth in the 
distant organ (Figure 1) (1). Numerous studies have shown 

that most epithelial cancers primarily develop metastatic 
growth by propagating via LVs to the draining lymph nodes 
(LNs) and then via the bloodstream to distant organs. This 
explains the correlation between the detection of metastases 
within the LNs and the prognosis, that is at the basis of 
many therapeutic decisions (2). Despite the obvious clinical 
relevance of LN metastasis and its impact on survival, the 
mechanism leading to tumor spread via LVs is the result of 
a very complex and controlled system, that has remained 
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mysterious for decades. Several factors lead to the limited 
comprehension of the importance of the lymphatic system 
in metastasis spread: (I) the paucity of molecular markers 
that reliably differentiate LVs from blood vasculature 
within and surrounding the primary lesion, (II) the shortage 
of suitable experimental models to study and quantify 
LN metastasis, (III) the limited scientific interest in LVs 
system as compared to blood vessels system. The structure, 
development, and function of the lymphatic vasculature 
has been the subject of extensive studies over the past two 
decades, fueled by detection of the primary lymphatic 
growth factors (3) and markers that help recognize LVs 
in tissue (4,5). These seminal findings have allowed the 
investigation of the lymphangiogenesis in the embryo (4), 
the growth, maturation, and function of the lymphatic 
system in the adult (6), the role of lymphatics in malignancy 
development (7,8) and this might ultimately lead to the 
identification of several molecules in the lymphangiogenic 
pathway as therapeutic targets (9). In this review, we 
aimed to explore the current understanding of the highly 
controlled and complex processes of the pathophysiology 
and the anatomical basis of the lymphatic system in normal 
and malignant processes.

The importance of the tumor microenvironment 
in metastasis

The genotypic and phenotypic make-up of a tumor is 
a major determinant of its metastatic potential, and a 
receptive microenvironment is necessary for successful 
tumor growth in the original cancer site and in the 
metastatic site (10,11). In 1889, Stephen Paget was the first 
to report that metastatic dissemination of malignancy to 
various organs is not a random process. Paget evaluated 
data from 735 postmortem patients with breast cancer, 
and recognized that metastasis is not due to chance events 
and he proclaim the “seed and soil” theory: tumor cells 
(the “seed”) grow preferentially in the microenvironment 
of selected organs (the “soil”) and that metastases resulted 
only when the appropriate seed was implanted in its 
suitable soil (12). In the subsequent years, numerous 
studies has supported Paget’s assertion that the tumor 
microenvironment has an essential impact on regulating 
the growth of metastases (13,14). It has been shown that 
tumor invasion and metastatic dissemination are dependent 
on the cooperation of multiple congruent adhesion signals 
and molecular networks in the tissue. Cellular behavior and 
activation or inactivation of genes are influenced heavily by 
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Figure 1 Current concepts of lymphatic and blood metastasis. Different pathways can result in cancer spread. Cancerous cells can invade 
the intra or peritumoral LVs and establish metastases in the nearby sentinel LN. Further metastatic dissemination occurs either from the 
sentinel LN to distant LN or through the thoracic duct to distant sites. Additionally, cancerous cells potentially spread through blood vessels 
with or without dropping by the sentinel LN to form metastases in distant organs.
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the local tumor microenvironment. This reinforces the idea 
that a complex interplay of molecules and signals is needed 
for metastasis development (11). 

The microenvironment of the tumor sites has a high 
metabolic demand requiring adequate blood supply for 
nutrients, removal of waste, influx of immune and stromal 
cells, and ultimately as a conduit for lymph-hematogenous 
spread (15-17). Tumors have developed mechanisms to 
sustain themselves such as angiogenesis (the formation of 
new blood vessels), and lymphangiogenesis (the emergence 
of new lymphatic vessels from pre-existing lymphatics) (17).

 Angio-regulatory factors are secreted by elements of 
the tumor microenvironment, leading to new vasculature 
that supports tumor survival and progression (16). Invasion, 
angiogenesis, lymphangiogenesis, and metastasis are thus 
controlled within the tumor microenvironment through 
a dynamic interaction between the tumor cells, the 
extracellular matrix (ECM), stromal and immune cells, and 
secreted chemokines and growth factors (16,17). 

Differences in metastatic dissemination of gynecologic 
cancers are listed in Table 1.

The lymphatic system

The lymphatic system is a network of LVs, lymphoid organs, 
and lymphoid tissues that assist the organism to get rid of 
toxins and undesired materials (24). The primary function 
of the lymphatic system is to transport lymph, a fluid 
containing immune cells, proteins and excess interstitial 
fluid, throughout the body (25). Although the lymphatic and 
blood vascular systems are structurally two different systems, 

they are functionally interconnected and act in harmony to 
maintain tissue homeostasis. The blood vasculature contains a 
basal membrane, pericytes surrounding the endothelial cells, 
and smooth muscle cells in larger vessels (26). On the other 
hand, the lymphatic system consists of the lymphoid organs 
such as spleen, thymus, LNs, bone marrow, and Peyer’s 
patches that are connected by LVs (24). Unlike blood vessels, 
LVs are consisting of a single layer of lymphatic endothelial 
cells (LECs), which is not surrounded by a basement 
membrane, pericytes, or smooth muscle cells. Instead, 
these blinded ending vessels are lined with a single layer of 
overlapping endothelial cells that form loose intercellular 
junction. These lymphatic capillaries are highly permeable to 
migrating cell, macromolecules, and different pathogens (27). 

The lymphatic system in numerous ways complements 
functions of the blood vascular system by enhancing 
interstitial protein transport, regulating tissue fluid balance, 
and implementing immunological functions. Generally, 
fluid and plasma proteins that leak out of the venules to the 
tissue, and can not be reabsorbed directly, are returned back 
into the circulation as an act of the large lymphatics. Lymph 
returns to the venous circulation through the thoracic duct 
draining into the subclavian vein. Lymphatic flow is driven 
mainly by arterial pulsations, contraction of smooth muscle 
cells lining the large collecting LVs, and the action of 
neighboring skeletal muscles (28) (Figure 2).

Ontogeny of the lymph vessels

Historically, two hypotheses have been proposed on the 
embryonic origins of lymphatic development: the first 

Table 1 Differences in metastatic dissemination of gynecologic cancers

Type of cancer Subtypes Loco-regional spread pattern

Vulvar, endometrial and cervical 
cancers

Arise typically from pre-malignant 
lesions (18)

Loco-regional dissemination occurs principally by local invasion 
into the lymphatic system

Process is faster for some high risk subtypes (19)

“Ovarian” cancer* High-grade serous subtype (15) Originates in the fallopian tube

Shed in the peritoneal cavity causing carcinomatosis (20)

Clear cell and low-grade  
endometrioid

Common precursor in the endometrium

Up to 40% have somatic ARIDla mutations (21)

Low-grade serous ovarian cancers Appear to initiate in the normal surface epithelium of the ovary (22)

*, the ovary and the fallopian tube are “inside-out” organs, where the epithelium faces the peritoneal cavity. Shed malignant tubal cells find 
a welcoming “soil” on the vascular and dynamic ovarian surface (20,23). The microenvironments of the abdominopelvic serosa, peritoneal 
mesothelium, and omentum are similarly favorable (16). 
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based on lymphangioblasts, the second on embryonic veins. 
In the first model the primary lymphatics develop from 
specific precursor cells—lymphangioblasts, independently 
from veins, and only later linkage with the venous system is 
established (29). The alternative and most widely agreeable 
hypothesis is that the lymphatics develop from embryonic 
veins. This theory was proposed in 1902, by Florence  
Sabin (30) who speculated that the peripheral lymphatic 
system develops from the primary lymph sacs, originating 
from vascular endothelial cells, and then spreads by 
endothelial sprouting to form capillaries.

Minimal progress had been achieved since then, 
due to the paucity of molecular markers that reliably 
differentiate lymphatics from blood vasculature. A major 
breakthrough was the discovery of a lymphatic-specific 
marker in 1999, named the lymphatic vessel endothelial 
hyaluronan receptor 1 (LYVE1) (4). It provided a precise 
tool to specifically recognize LVs in a variety of tissues, 
leading to investigations of tumor-associated lymphatics 
(31,32). Another step forward was the detection of the 
lymphangiogenic vascular endothelial growth factors 
VEGF-C and VEGF-D and later the discovery of their 
receptor VEGFR-3 (32,33). Additionally, the identification 
of the membrane glycoprotein “podoplanin” (34) and 
the transcription factor prospero-related homeobox 1  
(PROX1) (5) which are highly expressed by LVs but 
not blood vessels, and the discovery of an antibody that 
specifically detects human podoplanin (35), expedited robust 

research of LVs in the cancer field (Table 2).
Embryologically, lymphangiogenesis starts with the 

expression of Lyve-1 by lymphatic capillaries in venous 
endothelial cells of the cardinal vein (43), leading endothelial 
cells to become responsive to lymphatic signals such as  
Prox-1 (39), podoplanin (34) and VEGF-C (44,45) (secreted 
mostly by immune cells such as macrophages, dendritic cells, 
and neutrophils), giving rise to the lymphatic vasculature. 
Remodeling and maturation of the initial LV network into 
lymphatic capillaries and collecting LVs, are mediated by 
multiple factors, such as the transcription factor forkhead 
box protein C2 (Foxc2) (46) , the non-kinase receptor 
neuropilin-2 (47), the growth factor angiopoietin-2 (48), 
and the Eph receptor ligand ephrinB2 (49). This process 
requires the growth of new lymphatic capillaries from pre-
existing ones, the acquisition of mural cell coverage, and the 
development of valves within collecting LVs walls. 

Lymphatic metastasis

LVs represent the routes for trafficking through the body of 
reabsorbed immune cells, but malignant cells are exploiting 
these routes to travel via to the nearby sentinel LN, regional 
distal LN, and then to distant organs (1). The extent of LN 
involvement is a key prognostic factor for the outcome of 
the disease and often guides therapeutic decisions (50).

Lymphatic metastasis, historically thought to be a passive 
process, is now known to be a highly regulated process at 
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Figure 2 Anatomy of the lymphatic network. The lymphatic network is composed by initial LVs where the interstitial fluid is collected to 
create lymph, collecting afferent LVs which carry fluid to LN and efferent LVs which carry fluid out of the LN either to the next node in the 
chain or to the blood system. The collecting LVs are surrounded by a single layer of smooth endothelial muscle cells that contract to drive 
flow. Lymph backflow is prevented by intraluminal valves in the LVs. 
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different levels, including the movement of cancerous cells 
towards LVs and the efficient penetration to the lymph 
system (51).

Most malignant epithelial tumors are surrounded by 
peritumoral lymphatics (52). The hydrostatic pressure 
differences following the cancer cells invasion to the ECM, 
result in fluid flow that transport cells to the peritumoral 
lymphatic capillaries. Cancer cells invasion, motility 
surrounded by ECM, and movement toward the lymphatic 
capillaries are driven by several factors including proteolytic 
enzymes’ secretion, expression of adhesion receptors, 
and chemokinesis (17). Upon tumor cells arrival to the 
adjacent lymphatic capillaries, fine cytoplasmic processes 
mobilize the cancer cells along the external surface of 
the endothelium. Cells’ migration toward the lymphatics 
and invasion into the lumen are carried out either by 
inducing the opening of closed gaps or through open inter-
endothelial gaps (19,53). 

Intra-tumoral interstitial fluid pressure increases as 
tumors grow in size (19,50,54), leading to lymph flow to 
be in the direction of the peritumoral lymphatics, resulting 
in an increase in the volume of the interstitial fluid. Once 
access to the lymphatic lumen is gained, smooth muscles in 
the walls of the lymphatic vessels pump lymph rhythmically, 
with the assistance of the placed valves that prevent 
backflow (19,55), leading the cancer cells to embolize alone 
or in clusters to the sentinel LNs (Figure 2). Through 
afferent lymphatics, tumor cells pass the subcapsular sinus 
of the LN and then either cells pervade into the cortex of 

the node, bypass it via lymphatic-venous connections (56), 
or bypass the node completely and progress directly into 
the efferent lymphatics to the next LNs (57,58). 

Patterns of lymphatic metastasis

Apparently, the “seed” and the “soil” process is likely 
determined by several factors including molecular 
alterations within the tumor microenvironment, acquired 
mutations promoting invasion, molecular interplay between 
tumor cells and blood and lymphatic vasculature and 
ultimately the anatomical and molecular characteristics of 
the target tissue (19,59,60). While direct hematogenous 
spread can possibly happen, the robust association between 
tumor lymphangiogenesis and distant metastasis formation 
favors a sequential model of metastasis evolution where 
tumor cells spread first to the lymphatic system and from 
there into blood system either directly or ultimately 
through the thoracic duct (19,61) (Figure 2).

Brown et al. (62) recently confirmed this sequential 
model in mice. He showed that metastatic tumor cells 
migrate to the sentinel LNs and then disseminate to distant 
sites by gaining access to blood vasculature. Using genomic 
analyses to reconstruct clonal evolution of primary tumor 
and metastasis, from a single prostate cancer patient, Hong  
et  a l .  (59)  showed complex pattern of  metastat ic 
dissemination that  include recolonizat ion of  the 
primary tumor and cross-colonization between different 
metastases. In melanoma, when the timing of metastatic 

Table 2 Essential discoveries in lymphatic vessel development and molecular markers that facilitate differentiating between blood and lymphatic 
vessels 

Marker/Factor Function Year Reference

VEGF-C- VEGF-D Stimulates both, VEGFR-2 and VEGFR-3, leading to angiogenesis and  
lymphangiogenesis

1996 Paavonen (36)

LYVE-1 Modulates the transport of hyaluronan by LECs 1999 Baneji (4)

LyP-1, Nrp2 Coreceptors for VEGF-C in lymphatic vessels 2002 Laakkonen (37)

Alitalo (38)

PROX-1 Essential for embryonic lymphatic development 2002 Wigle (39)

PODOPLANIN Co-expressed with VEGFR-3 in initial lymphatic vessels 1999 Breiteneder-Geleff (34)

COX-2 Enhances the expression of sema7a leading to the activation of β1-integrin 
receptors leading to increased lymphangiogenesis

2016 Black (40)

TNF-α Stimulates lymphangiogenesis depending on the VEGF-C/VEGFR-3 induced 
LEC tip formation which is required

2002 Ji (41)

CCL19 and CCL21 Modulates migration of dendritic cells to the regional LNs 1998 Baggiolini (42)
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seeding was examined in relation to tumor thickness and 
specific genomic alterations, it was shown that lymphatic 
involvement takes place shortly after the dermis is invaded 
by the primary tumor and that typical driver mutations 
can be acquired by tumor cells within the LN. Therefore, 
melanoma cells can leave primary tumors early and then 
grow in parallel at different sites such as the LN (63). 
Unlike early metastasis that may result in an independent 
simultaneously growth of the cancer in different locations, 
late metastasis may evolve in a more linear pattern and 
gradual acquisition of additional genetic mutations (59). 

The metastatic spread through the LVs to regional LNs 
in many cancers is considered the first distant development 
beyond local advancement, and therefore represents an 
important sign of the metastatic potential of the tumor (64,65). 
In some tumors such as colorectal cancers, LN dissection 
appears to have therapeutic value and provide overall survival 
benefit, and LN removal remains an important determinant 
for prognosis despite that most of these tumors spread 
directly to the liver via the venous system (66). The impact 
of lymphadenectomy on prognosis is still subject of debate in 
most cancers, including gynecologic cancers, failing to show 
any survival advantage of the removal of LNs (67).

Molecular regulation of LN metastasis

Numerous signaling molecules cooperate in the highly 
complex regulation of lymphangiogenesis (3,68) (Table 2). 

(I)	 The first major family of signaling pathways that 
dominate the lymphatic endothelial cell biology 
is ANG-TIE (angiopoietin-tyrosine kinase with 
immunoglobulin and epidermal growth factor 
homology domain). Angiopoietin molecules have 
an essential role in stimulating postnatal vessel 
growth, remodeling, and maturation (37,69). 

(II)	 The second is the VEGF-VEGFR (vascular endothelial 
growth factor-VEGF receptor) family. VEGF-C (36) 
was the first growth factor that was found to induce 
lymphangiogenesis, in addition to its important 
role in angiogenesis (70,71). The “mature” form of 
VEGF-C activates VEGFR-2 as well as VEGFR-3, 
leading to angiogenesis and lymphangiogenesis, 
whereas the “immature” form preferentially binds 
and activates VEGFR-3 only, and specifically induces 
lymphangiogenesis (72). Structurally, VEGF-C 
resembles vascular endothelial growth factor-D 
(VEGF-D), which also binds to and stimulates 
VEGFR-2 and VEGFR-3 in a similar manner and 

induces angiogenesis and lymphangiogenesis (33,73). 
VEGF- C expression has been reported in several 
studies to be correlated with metastatic spread to 
regional lymph nodes including in breast (74), colon (75), 
lung (76), and gynecologic malignancies (77-81). 

(III)	 Another group of chemoattractant cytokines 
(CC) called “Chemokines” is involved in the 
lymphangiogenesis process. “Chemokines” is a family 
of more than 40 CC that bind to G-protein–coupled 
receptors on target cells to enhance cytoskeletal 
rearrangement, firm adhesion to endothelial cells, and 
directional migration (42,82). Chemokines have an 
important role in the regulation of both, physiologic 
and pathologic lymphocytic cell traffic (83). 
Chemokine ligand (CCL19) is secreted by dendritic 
cells. Majority of T-cells that present chemokine 
receptor 7 (CCR7) are responsive to CCL19 secretion 
and follow a gradient in its concentration. CCR7 
receptor and its ligands CCL19 and CCL21 are 
crucial in the travel of dendritic cells to the regional 
LNs and when their interaction is blocked, dendritic 
cells fail to migrate (84).

(IV)	 Tumor necrosis factor-alpha (TNFα) is a cell 
signaling protein involved in systemic inflammation 
and is one of the cytokines that make up the 
immunologic acute phase reaction. It is produced 
mainly by activated macrophages (85). VEGF-C 
secretion by tumor-associated macrophages is 
triggered by the interaction between TNFα 
and its TNF receptor 1 (TNFR-1), leading 
to amplification of lymphatics expansion and 
metastasis (41). Furthermore, TNFα induced 
lymphangiogenesis significantly relies on the 
VEGF-C/VEGFR3-induced LEC tip formation 
which is mandatory to activate fibroblast growth 
factor (FGF2) that stimulates lymphangiogenesis 
and promotes tumor metastasis (86). On the 
other hand, proangiogenic factors such as  
angiopoietins (87) and platelet derived growth 
factor B (88) serve as direct lymphaniogenic factors 
by binding to their specific receptors expressed by 
LECs.

(V)	 Cyclooxygenase-2 (COX-2) is an enzyme that is 
encoded by the prostaglandin-endoperoxide synthase 
2 gene (89). It is involved in the conversion of 
arachidonic acid to prostaglandin H2, an important 
precursor of prostacyclin, which is expressed 
in inflammation. Black et al. has demonstrated 
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recently the pro-lymphangiogenic effect of COX-
2 that stimulates semaphorin 7a expression in 
breast cancerous cells resulting in activation of β1-
integrin receptors on adjacent cancerous cells and 
LECs, to eventually increase lymphangiogenesis 
and metastasis spread (40). Additionally, semaphorin 
7a gene is highly expressed in breast cancer cells 
and correlates with poor prognosis and metastatic 
disease (40). Moreover, Elder et al. has shown that 
semaphorin 7a stimulates gp38 upregulation in 
breast cancer by tumor-infiltrating macrophages, 
and this leads to promote their adhesion to LVs 
and this leads to lymphangiogenesis induction and 
metastasis spread (90). 

Immune interactions in lymphatics

LECs, the main components of lymphatics, undergo 
active modifications that promote metastatic spread during 
tumor development, and enhance immunoregulation. It 
has been shown that LECs which are found in the cancer 
microenvironment can serve as an immunoregulator of the 
T cell response against tumoral cells (91). To overcome 
the immune system defenses and enhance the metastatic 
potential, tumors express immunosuppressive ligands and 
recruit a variety of immunosuppressive leucocyte subtypes 
to the primary tumor site, sentinel LN and metastatic sites 
as well (1,92). Recently, evading this immunosuppression 
is the principal rationale of several new immunotherapy 
approaches and holds promise for controlling established 
metastatic cancer (92,93).

Lymphatics display either positive or negative effects 
on tumor immunity; on one hand lymphatics have been 
implicated in tumor immunosuppression, but there is also 
evidence that lymphatics have a role in the induction of 
anti-tumor immune responses.

Generally, LECs are critical for the transport of immune 
mediators from peripheral organs to LNs leading to 
the immune response initiation (94,95). In addition to 
their role in tissue drainage and immune cell migration, 
LECs mediate T cell responses via various mechanisms  
(Table 3) (96):

(I)	 LECs can cross-present exogenous antigens on 
major histocompatibility complex class I (MHC I) 
in the presence of PD-L1, which signals through 
PD-1 to suppress the proliferation and function of 
the T cells leading to apoptosis of antigen-specific 
CD8+ T cells (97,98).

(II)	 LECs play a role in peripheral T cell tolerance by 
exposing endogenously expressed tissue-restricted 
antigens (94) via MHC I molecules and discarding 
autoreactive CD8+ T cells (98,99).

(III)	 T cell activation and proliferation in a negative 
regulatory feedback process can be prevented 
by LECs. This can be achieved by producing 
nitric oxide in response to inflammatory signals 
(Interferon γ (IFNγ) and TNFα) secreted by T 
cells, resulting in T cell inhibition (100). 

(IV)	 LECs, stimulated by IFNγ and TNFα, suppress 
dendritic cell  maturation through ICAM-1 
upregulation (101); suppress T cell proliferation via 
enzymatic depletion of tryptophan by indoleamine 

Table 3 Immunomodulation by lymphatic epithelial cells (LEC)

Action Mechanism Outcome

Present exogenous antigens on MHC I without  
costimulatory molecules

Inhibit T cell proliferation & function Apoptosis of CD8+ T cells

Present endogenous tissue-restricted antigens on 
MHC-I

Inhibit T cell proliferation & function Eliminates autoreactive CD8+ T cells

Produce nitric oxide Inhibits T cells

ICAM-1 upregulation Inhibits dendritic cell maturation

IDO production Depletion of tryptophan Inhibits T cell proliferation

Release of S1P Egress of activated T cells from LN

Promotes survival of naïve T cells

LEC cells play an important role in many immunomodulatory functions (detailed description in text). MHC-I, major histocompatibility complex 
class I; ICAM-1, intercellular adhesion molecule 1; IDO, indoleamine 2,3-dioxygenase; S1P, sphingosine 1-phosphate.
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2,3-dioxygenase (IDO) (102); and also upregulate 
MHC II (103).

(V)	 The impact of LECs on peripheral CD4+ T cell 
responses in various immunological settings still 
debatable. LECs were shown in Rouhani et al. 
study to be unable to load MHCII molecules with 
antigenic peptides owing to their H2-M deficiency 
at steady-state (103). On the other hand, Dubrot  
et al.  showed that surface MHCII could be 
expressed on LN stromal cells as a result of the 
combination of both acquired and endogenous 
molecules (104). 

(VI)	 LECs, by releasing the sphingosine 1-phosphate 
(S1P), are essential in releasing of activated T cells 
from LNs (105) and maintaining naïve T cells (106). 

Lymphatics can also enable anti-tumor immune 
responses (107,108), as indicated by transgenic mice 
with defects in dermal lymphatic drainage, that displayed 
a defective immune responses to implanted cancerous  
cells (109). 

High serum VEGF-C has been correlated with response 
to immunotherapy in melanoma patients and could be used 
as a biomarker for immunotherapy, despite its association 
with lymphatic metastasis (93), and VEGF-C resulted 
in an enhanced immune response against glioblastoma  
tumors (110). VEGF-C/VEGFR-3 signaling increased 
the number of activated T cells within primary melanoma 
lesions. In colorectal cancer decreased LV presence at the 
invasive margin of the specimen was associated with reduced 
infiltration of cytotoxic T cells and both were correlated 
with higher rate of distant metastasis (111). Furthermore, 
serum VEGF-C levels in cancer patients was found to be 
positively correlated with immunotherapy responses and 
even with survival outcome (93). One will need to balance 
the value of anti-lymphangiogenesis therapy with the risk 
that it might affect the effectiveness of immunotherapy.

Conclusions and future directions

The role of the lymphatic system in cancer development 
is currently receiving extensive scientific and clinical 
interests; the identification of molecular lymphangiogenic 
factors and receptors and the implications of their activity 
in normal physiology and pathology have improved our 
comprehension of the underlying mechanisms of tumor 
metastasis. It is now clear that tumor lymphangiogenesis 
is crucial in tumor development and blocking this process 
might inhibit metastasis to LNs. Moreover, lymphatic 

vascular markers may be useful as a prognostic indicator 
of metastatic risk. Novel targets have been identified, 
supporting biologically based therapeutic opportunities, and 
one such lymphatic-targeted therapy is already being used 
to preclude corneal grafts rejection (7). Further knowledge 
in the area of lymphagiogenesis will enable researchers and 
clinicians to investigate and treat tumors in a targeted and 
efficient fashion, being careful not to interfere with anti-
tumor immunity. Additionally, a molecular understanding 
of factors that predict the likelihood of LN metastasis, i.e., 
a molecular signature, could replace the need for regional 
lymph node sampling. 
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