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Introduction

The search for the cell of origin in solid organ cancers 
has remained elusive despite concerted attempts over 
many decades. There is always more than one cell type 
implicated in the causation of solid organ cancers (1-4) and 
while carcinogenesis may be eloquently described in some 
cancers (5-7), there remains much to be elucidated. The 

availability of large amounts of genomic data from tumour 
sequencing is currently exceeding the analytical capabilities 
of bioinformatic platforms (8). And while it is only a matter 
of time before this hurdle is overcome, inherent tumour 
heterogeneity has made the deciphering of driver events a 
difficult task at the present time (8-10). 

Finding out how a cancer is born must remain a top 
priority as this will allow us the opportunity to understand 

Review Article on Unresolved Issues in Pancreatic Cancer

Birth of a solid organ cancer—the cell fusion hypothesis presented 
with pancreatic cancer as a model: a narrative review

Savio G. Barreto1,2, Nilesh Gardi3,4, Shilpee Dutt4,5

1Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, Australia; 2College of Medicine 

and Public Health, Flinders University, Bedford Park, Adelaide, South Australia, Australia; 3Department of Medical Oncology, Tata Memorial 

Hospital, Tata Memorial Centre, Mumbai, India; 4Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India; 
5Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi 

Mumbai, India

Contributions: (I) Conception and design: SG Barreto; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) 

Collection and assembly of data: N Gardi, S Dutt; (V) Data analysis and interpretation: SG Barreto, S Dutt; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Savio G. Barreto. Department of Surgery, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia. Email: 

georgebarreto@yahoo.com; savio.barreto@sa.gov.au; Shilpee Dutt. Principal Investigator, Advanced Centre for Training, Research and Education in 

Cancer (ACTREC), Sector 21, Kharghar, Navi Mumbai 410210, India. Email: sdutt@actrec.gov.in; drshilpeedutt@gmail.com.

Objective: This hypothesis-driven narrative review aims to explore the evidence for the fundamental 
process of cell fusion between normal, but different, cell types in the genesis of a cancer cell.
Background: Finding out how a cancer is born must remain a top priority as this will allow us the 
opportunity to understand the disease before it acquires its largely ‘untameable’ heterogeneous form. The 
search for the cell of origin in solid organ cancers has remained elusive despite concerted attempts over many 
decades. There is always more than one cell type implicated in the causation of solid organ cancers.
Methods: Based on preliminary data from our laboratory and a review of the evidence in literature, we 
present a novel hypothesis to explain the origin of solid organ cancers using pancreatic cancer as an example.
Conclusions: We hypothesize that, “Cancer is born from fusion and hybridization of normal cells from two 
different lineages located within the vicinity of each other that perceive a signal reminiscent of a threat to their 
extinction that leads to epigenetically-mediated transformations permitting them to achieve cell fusion.” Addressing 
this hypothesis to prove, or disprove it, presents an opportunity to unravel the basis of carcinogenesis and 
potential re-think our strategies for treatment in terms of choice of chemotherapeutic agents, dosage of 
chemo- and radiation-therapy, and timing of interventions (surgery, chemotherapy and radiation therapy).

Keywords: Cells; outcomes; theory; neoplasm; cell fusion

Submitted Jun 06, 2021. Accepted for publication Sep 17, 2021.

doi: 10.21037/cco-21-69

View this article at: https://dx.doi.org/10.21037/cco-21-69

8



Barreto et al. Cancer origin

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2021;10(5):45 | https://dx.doi.org/10.21037/cco-21-69

Page 2 of 8

the disease before it acquires its largely “untameable” 
heterogeneous form. More importantly, this information 
will help us to decipher what caused it to develop in the 
first place—providing us a real opportunity to prevent the 
disease that is ranked 6th amongst the leading killers of 
humanity (11).

Cell fusion between tumour-normal and tumour-
tumour cells have been reported in some of the cancers as 
key events that mediate cancer progression, therapeutic 
resistance and metastasis (12,13). While studying the 
evolution of resistance in cancer using glioblastoma, we 
have also reported that glioma cells that survive the initial 
onslaught of a lethal dose of radiation undergo homotypic 
cell fusion that gives the hybrid cells [multinucleated and 
giant cells (MNGCs)] survival advantage (14). This is the 
first report that identified radiation-induced homotypic 
cell fusions of resistant residual glioma cells as a novel 
non-genetic mechanism to sustain survival and relapse. 
Further, we have also shown that the progeny of the hybrid 
cells acquires epigenetic modifications that help them 
survive radiation induced DNA damage and acquire novel 
aggressive phenotype (invasion and migration) (15,16). 
Presence of the hybrid cells is also associated with poor 
survival of glioblastoma patients (17). To understand 
the mechanism of survival of hybrid cells, we performed 
total proteome and transcriptome analysis of these cells. 
Interestingly we found many developmental pathways to be 
upregulated in the fused multinucleated cells (18). These 
data provide evidence that homotypic fusion of cancer cell is 
a mechanism that helps the hybrid cell to evolve and survive 
under stressful conditions. While our, and other, studies 
in literature report the possibility of fusion events between 
cancer cells, or cancer and normal cells during cancer 
progression, we postulate that the fundamental process of 
cell fusion between normal cells is involved in the genesis of 
a cancer cell. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://dx.doi.org/10.21037/cco-21-69).

Hypothesis 

“Cancer is born from a fusion of cells from two different 
lineages located within the vicinity of each other that perceive 
a signal reminiscent of a threat to their extinction that leads to 
epigenetically-mediated nuclear reprograming within each of 
them to induce heterotypic cell fusion.” The aim of this cell 
fusion is for the parent cells to transfer to their progeny 
what they are programmed to believe would be the “ideal” 

genetic and epigenetic make-up required for the progeny 
to survive the conditions of stress. The progeny, so formed, 
bear new traits acquired by parasexual recombination 
of parent cells. These cells then continue the process of 
homotypic or heterotypic cell fusion when faced with severe 
stress, lead ultimately to the generation of a heterogeneous 
cell population in which none of the clones resemble the 
“parent” cell. 

Here we propose to test our hypothesis using pancreatic 
cancer as a model system.

Rationale for the hypothesis and choice of 
pancreatic cancer as a model system

Pancreatic cancer is one of the most lethal cancers in 
the world currently ranked as the 4th leading cause for 
cancer mortality in the developed world (19). In India, the 
incidence ranges from 0.5–2.4/100,000 (20,21). These levels 
may be the result of under reporting of the cancer (22).  
Besides, there has been a significant increase in mean 
percentage change in disease-adjusted life years for 
pancreatic cancer in India from 1990 to 2016 (22). In 
Australia, it is estimated that by the age of 85, 1 in 54 
for Australian men and 1 in 70 Australian women will be 
diagnosed with the disease (23). There has been a significant 
increase in incidence and mortality from the disease 
over the last 3 decades (24). The 5-year survival rates for 
pancreatic cancer are amongst the lowest of all cancers in 
Australia [9.1% for men and 9.2% for women (25)]. It is 
thus a cancer of significant importance that warrants further 
research.

Our hypothesis was born from a combination of our 
experimental data from glioblastoma in which the stress 
(radiation)-induced homotypic cell fusion (14), as well as 
the detailed understanding of the confusion in the origins of 
pancreatic cancer. The stressors (hyperglycaemia, hypoxia, 
metabolites of cigarette smoke, etc.) that we anticipate as 
being causative in the process of heterotypic cell fusion are 
postulated to be risk factors for pancreatic cancer. Hence, 
we present the hypothesis using the pancreas as a model.

In pancreatic cancer, different cell types 
have been experimentally proposed to be the 
progenitor cell for carcinogenesis

While pancreatic cancer is referred pathologically as 
pancreatic ductal adenocarcinoma (PDAC) because of its 
morphology, other cell types have been proposed to be the 
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cell of origin (3,26). Broadly, the two proposed sources of 
the progenitor cell of pancreatic cancer are of:

Endocrine origin: in the experimental BOP [N-nitroso-
bis (2-hydroxypropyl) amine (DIPN)] model of pancreatic 
carcinogenesis (27) there is compelling evidence that the 
islets are required for carcinogenesis (4,28). A cell derived 
from the islets of Langerhans (4,28)—possibly a β-cell (2) 
seems the most likely. 

Exocrine origin: the “acinar to ductal” carcinogenesis 
model based on a malignant transformation of the acinar/
centro-acinar cells (29). 

The problem with both these theories (with respect to 
pancreatic cancer) is that the “progeny”—PDAC (most 
common form of the cancer)—a cell with phenotypic 
similarities to the ductal tissue is, in itself, refractory to 
induction of pancreatic neoplasia (26). Interestingly, though, 
although it does not phenotypically resemble the proposed 
parent cells, it possesses genetic signatures of the parents (3),  
namely, SOX-9 of the acinar cell (26) and LGR5 and Nanog 
of islet origin (2). 

Is such a “union” even possible?

Reproduction can be sexual, asexual or parasexual with sexual 
being the dominant form in humans and animals (30). Sexual 
reproduction facilitates adaptation (31) by enabling the cell 
to overcome negative linkages that tend to accumulate over 
time within finite populations subjected to the process of 
selection (32) and help impart genetic mixing (33,34) to 
enable the species to overcome complex environments (as 
noted above). The ubiquitous human pathogen, Candida 
albicans, has been known to undergo recombination in a 
parasexual (recombination of genes from different individuals 
but does not involve meiosis and formation of a zygote by 
fertilization as in sexual reproduction) manner (35,36). Five 
decades ago, it was demonstrated that human cells have the 
ability (with the appropriate stimuli) to undergo parasexual  
recombination (37). We refer to the process as reproduction, 
in order to clarify its difference from recombination, a 
phenomenon that occurs in somatic cells of eukaryotes 
and is well known in cancer mutagenesis (38). The word, 
“reproduction”, used by us, is meant to suggest a union for 
the sake of recombination between cells of different lineages.

What events could drive such a transformation?

As early as the 1930s, Fisher (39) and Muller (40) proposed 
a theory that within finite populations exposed to “new” 

environments, sexual recombination would afford the best 
chance at adaptation by permitting beneficial mutations that 
arise on different chromosomes to be brought together on the 
same chromosome (41). These rates increase in complex (31)  
or spatially heterogenous environments (42)—as was 
demonstrated in the species Brachionus calyciflorus exposed to 
high- and low-quality foods. 

Zhou et al. (43) from the laboratory of Jeffrey Platt in 
Michigan demonstrated that by injecting cells from a pool 
of fused, but not cloned, IEC-6 cells when injected into 
the flanks of immunodeficient mice, 11 of the 18 injections 
generates tumours. However, none in the unmodified IEC-
6 cells, nor from the non-fused clones, generated tumours. 
The authors concluded that cell fusion is associated 
with oncogenesis. However, these experiments did not 
demonstrate the role for cell fusion as the initiating event in 
carcinogenesis. As pointed out by Platt and Cascalho (44),  
it has been a challenge to demonstrate cell fusion, or the 
formation of hybrids, in normal tissues in the absence 
of markers, other than the presence of multiple nuclei. 
We postulate the effect of stressors on cell fusion for two 
reasons, namely, our own experience with radiation leading 
to the generation of hybrids (mentioned above) (14) as well 
as evidence in literature, including the effect of mechanical 
stress driving cell fusion (45) and nutrient depletion (and 
hypoxia) leading to the formation of immature, stem cell 
phenotype in neuroblastomas (46).

In pancreatic cancer, the relationship of cancer and 
diabetes mellitus is well appreciated. It is uncertain if 
diabetes mellitus is the cause, or the effect, of pancreatic 
cancer mediated through the destruction of the β-cells 
of the islets (47). Schneider and colleagues (48) studied 
the effects of metformin, an oral diabetic medication, 
in an experimental model of pancreatic carcinogenesis. 
They divided high-fat fed hamsters into two groups. The 
treatment group received metformin in drinking water for 
42 weeks while the control group did not. Once the plasma 
insulin levels normalised (after 2 weeks of metformin), both 
groups were treated with BOP for 2 weeks. While 50% 
of the control group developed PDAC, no cancers were 
found in the control group (P<0.05). This study provides 
evidence that the excess nutrient load (which would be 
regarded as generally unhealthy in humans and animals 
alike) that served to increase pancreatic carcinogenesis in 
this experimental model would lead the cells to perceive 
their new environment as heterogenous—a potential trigger 
for reproduction. Clinically, type II diabetes mellitus (49) 
and obesity (50), two diseases characterised by nutrient 
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excess, have been very closely linked to the development of 
pancreatic cancer.

What is the evidence in cancers that further “union” occurs 
between these progeny cells?

Progression in cancer is noted histologically as grades of 
differentiation—resemblance of the cancer cell to the parent 
cell from which it is believed to be derived. Traditional 
pathological teaching subclassifies these as well, moderately-
well, and poorly differentiated denoting a progressive 
dissimilarity to the parent cell (51). Stress responses such as 
hypoxia encountered when the proliferation of cells exceeds 
the nutrient load available has been shown to promote an 
immature, stem-cell phenotype in some cancers such as 
neuroblastomas (46). In pancreatic cancer, hypoxia leads 
to increased tumour invasion and metastases (52). Hypoxia 
has been shown to induce cell fusion in solid organ cancers 
(53,54). And it is, thus, not unreasonable to assume that the 
progeny cells starved of oxygen may revert to cell fusion 
to survive with the steady accumulation of deleterious 
mutations. 

How does this hypothesis align with existing 
theories of carcinogenesis?

The proposed hypothesis presents a unification of previously 
proposed theories of carcinogenesis, namely, the cell-based 
[somatic mutation theory (55)] and the tissue-based (56) 
theories. The tissue organisation field theory revolves around 
chronic abnormal interactions between the mesenchyme/
stroma and the parenchyma of a given morphogenic field 
resulting in a tumour (57). It posits that carcinogenesis 
represents a problem of tissue organization, comparable to 
organogenesis, and that proliferation is the default state of 
all cells (57). The “reproduction or cell fusion” hypothesis 
proposed here acknowledges the relevance of interactions 
of different components of a tissue (56) as a precursor to the 
fusion of cells from two different lineages. It also aligns with 
Potter’s hypothesis that an organ consists of a population of 
cells that are participating in an organized and orchestrated 
programme which takes them through a sequence of changes 
that are constantly tailored to make the organ as adaptive as 
possible to the range of environmental variation in which it 
evolved (58). We posit that the ensuing progeny cell derived 
from this union can express somatic mutations, the “hallmark” 
of the cell-based theory (55). Martins-Chaves et al. (59) 
have shown that even non-malignant multinucleated cells 

present within a granuloma forming in response to a dental 
implant can express KRAS mutations and be associated with 
the activation of the MAPK-ERK signalling pathways. In 
fact, this process has a shared histogenesis with PDAC (60). 
These progeny or initiated cells in a promoted mass accrue 
additional stable genetic or epigenetic changes acquiring the 
ability to block gap junctional intercellular communications 
(GJIC) (61) thereby entering the stage of progression of 
carcinogenesis (62).

Clinical relevance of the proposed hypothesis

The hypothesis presented in this manuscript enables a 
clearer understanding of the process of immune editing 
eloquently conceptualised by Dunn et al. (63) to explain 
how cancer cells can progress beyond immune surveillance. 
Alterations in expression of major histocompatibility 
complex (MHC) molecules play a crucial step in tumour 
development due to the role of MHC antigens in antigen 
presentation to T-lymphocytes and the regulation of 
natural killer cell (NK) cell function (64). Cell fusion alters 
the characteristics of cell surface receptors, including 
MHC proteins (65) with the potential to interfere with 
their immune regulatory function. Extensive genomic 
diversification is another potential postulated strategy for 
tumour cells formed from cell fusion to escape immune 
control (66). Further, Gupta et al. (67) have also noted 
that cancer stem-like cells can arise de novo from non-
stem-like cells at a low, but significant rate. The proposed 
hypothesis also aligns with the concept of intrinsic factors, 
such as (perceived) genomic instability, resulting in tumour 
heterogeneity (68), an important cause for resistance 
to chemotherapy. The impact of radiation therapy on 
the cellular and tumour microenvironment with the 
resultant alterations in tissue composition and the physical 
interactions and signalling between cells is known (69). As 
noted by us (14), and others (70), radiation exposure to cells 
results in multinucleated giant cancer cells. Subtherapeutic 
levels of radiation are thus not only capable of inducing 
carcinogenesis, but have even been shown to facilitate 
tumour cell migration and metastases (71). 

In 1976, Peter Nowell (72) first postulated that 
neoplasms arise from a single cell of origin, and the original 
clone, through sequential selection, follows an evolutionary 
trajectory resulting in cellular heterogeneity. Our present 
understanding of carcinogenesis leads us to infer that inter-, 
and intra-, tumour heterogeneity are the main obstacles 
to the successful eradication of cancer. The perceived so-
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called protective mechanisms/agents against neoplastic 
progression and evolution include limited availability 
of nutrients for rapidly proliferating cells, immune 
surveillance, hypoxia in the local tumour milieu, relative 
geographic isolation, and treatment modalities including 
chemo- and radiation therapy. Here we hypothesize that as 
part of a process of adaptation against selective pressures, 
somatic or parental cells fuse via parasexual reproduction 
with the resultant progeny cells possessing a survival 
advantage over the parent cells in terms of proliferative and 
invasive capabilities.  

Although the above discussion is convincing for a 
potential role of cell fusion in carcinogenesis, the reality lies 
in the fact that outside of the experimental arena, there is 
scarce morphological evidence of cell fusion in neoplastic 
tissues. The only available clinical evidence, at the present 
time, is based on the analysis of short tandem repeats (STRs) 
in micro-dissected tumour cells of male melanoma patients 
who received a bone marrow transplant (BMT) from their 
siblings. The researchers were able to demonstrate an overlay 
of various donor and pre-BMT recipient alleles (73,74). 

Experimental strategy

Mining the publicly available data

The first strategy we plan to employ is single cell 
transcriptomics for lineage tracing. Here we will analyse the 
single cell (PDAC) transcriptome database to determine if 
it contains genetic signatures of acinar cells and islets, or 
acinar and centro-acinar cells, or centro-acinar cells and 
islets.

Experimental proof (generation of the model)

We plan to co-culture various combinations of isolated 
acinar cells, centro-acinar cells and islets (acinar + islets; 
acinar + centro-acinar cells; centro-acinar cells + islets) 
and under different culture media conditions (stressors) 
like high concentrations of glucose, and/or metabolites 
of cigarette smoke, and/or inducing hypoxia. We will 
also plan to expose these cell cultures to graded doses 
of radiation from sublethal to lethal. The aim of this 
experiment would be to assess if cell fusion occurs in 
stressful conditions. Different cell types will be labelled 
with different colour fluorescent markers to analyse 
the fusion events. The hybrid cells will be sorted by 
flowcytometry and assessed by karyotyping, histology and 

whole genome sequencing.

Exploring the concept using models of step-wise 
carcinogenesis 

Central to the hypothesis in this manuscript is the ability to 
prove cell fusion as the initiating event in carcinogenesis. 
Thus, mere demonstration of evidence of cell fusion in 
malignant cells or metastases, is inadequate. The use of 
step-wise models of carcinogenesis hold the promise of 
providing the required evidence. While the authors are 
working on developing their own model of carcinogenesis, 
currently available evolutionary models such as those 
developed by Vincent and Gatenby (75,76) could offer an 
opportunity to test this hypothesis.

Conclusions

In conclusion, we present a testable hypothesis to explain 
not only the origins of solid organ cancers, but also their 
ability to escape immune surveillance, develop resistance 
to cell-directed therapies, and inexplicable deterioration 
in local control and distant metastases despite radiation 
therapy that has been observed. Addressing this hypothesis 
to prove, or disprove it, presents an opportunity to 
unravel the basis of carcinogenesis and potential re-
think our strategies for treatment in terms of choice of 
chemotherapeutic agents, dosage of chemo- and radiation-
therapy, and timing of interventions (surgery, chemotherapy 
and radiation therapy). 
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