
Page 1 of 15

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2022;11(2):13 | https://dx.doi.org/10.21037/cco-21-121

Introduction

Brain metastases (BM) are the most common central nervous 
system malignancy, with up to 30% of cancer patients 
developing BM during the course of their disease (1). The 
prognosis of patients with BM used to be uniformly poor, 
with the median survival hovering around 6 months (2). As 
a result, the detection of BM had been the cue for many 
clinicians to assume a fatalistic approach, withholding 
aggressive treatment, as patients were believed to have a poor 
outcome despite treatment. Naturally, the potential of long-
term complications from whole-brain radiotherapy (WBRT), 

which was then the mainstay, was mostly disregarded.
In the modern era, advances in neurosurgical techniques, 

neuro-imaging, systemic therapeutics and radiotherapy 
technology have conferred an improved survival for patients 
with BM. This is particularly so for patients with good 
performance status and solitary BM (3). As an example, 
Nieder reported the 1-year survival if patients treated 
between 1983–1989 to be 15%, comparatively patients 
treated between 2005–2009 achieved a 1-year survival of 
34% (4). Due to the improved survival of patients, there is an 
increased concern (both by patients and oncologists) about 
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the longer-term toxicities, in particular neuro-cognition.
In terms of treatment, radiotherapy (in various forms) 

continues to remain a cornerstone in the management of 
BM—spanning from palliative to “locally radical”. WBRT 
is still commonly used as a palliative treatment for patients 
with multiple BM and/or diffuse leptomeningeal disease. 
At the other end of the spectrum, stereotactic radiosurgery 
(SRS) or hypofractionated stereotactic radiotherapy 
(HSRT) allows for an ablative dose of radiation to be 
delivered to well-defined lesion (or lesions), in one or a few 
fractions, respectively, whilst sparing the uninvolved brain 
parenchyma. Recent trends demonstrate an increased use 
of SRS or HSRT for managing BM, even in the setting of 
multiple BM, compared to WBRT—particularly because of 
the lesser impact on neuro-cognition with SRS (5).

In general, toxicities of cranial radiotherapy can be 
divided into 3 main categories based on their timeline: 
acute, subacute, and late/delayed effects. Acute toxicities 
occur during RT or within days after RT, with symptoms 
ranging from headache, nausea and vomiting, drowsiness 
or worsening of focal neurological symptoms. Subacute 
toxicities occurs within 6 weeks and up to 6 months after 
completion of RT (6). Late/delayed toxicities occur more 
than 6 months after cranial irradiation and are irreversible. 
More often, late/delayed toxicities can be functionally 
debilitating and negatively affect quality of life, making 
it difficult for both patients and their families to cope. 
Moreover, many patients with metastatic cancer may be 
treated with systemic therapy (e.g., cytotoxic chemotherapy, 
targeted therapy, or immunotherapy) before, during and 
after cranial irradiation. The interaction of systemic therapy 
and radiotherapy remains unclear, and in certain cases may 
lead to a potentiation of toxicities, although this has never 
been proven in clinical trials.

In this narrative review, we will elaborate on the common 
late complications with cranial irradiation (e.g., WBRT, 
SRS) for BM. As there is a lack of effective treatment, we 
will summarise mitigation strategies which can be used to 
reduce the risk of these late complications. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://cco.amegroups.com/
article/view/10.21037/cco-21-121/rc).

Search strategy and study selection

A search was conducted on MEDLINE, on 26th July 2021, 
using MeSH Major topics “radiotherapy” AND “brain 
neoplasms/secondary”. The search results were limited to 

prospective clinical trials reported in the English language, 
from 2010. Studies reporting toxicity outcomes including 
neurocognitive decline and/or radiation necrosis were 
selected and presented in Table 1.

Whole-brain radiotherapy: neurocognitive decline 

WBRT is typically delivered using parallel opposed photon 
beams, targeting the entire skull, meningeal reflections, 
and brain parenchyma. As with most palliative treatments, 
WBRT is hypo-fractionated with typical dose-fractionation 
regimens including 20 Gy in 5 fractions (over 1 week) or 
30 Gy in 10 fractions (over 2 weeks). Indications of WBRT 
include multiple BM (such as patients with a poor prognosis 
who are deemed unsuitable for SRS), patients with diffuse 
classic leptomeningeal disease (e.g., sugar coating) or in 
prophylactic cranial irradiation. WBRT is generally well-
tolerated in the short term, with patients experiencing 
minor acute toxicities (such as radiation dermatitis, alopecia, 
or xerostomia) (24). The most concerning toxicity from 
WBRT is that of radiation-related neurocognitive decline. 
Whilst it is possible that uncontrolled BM may also lead 
to neurocognitive declines, data from prophylactic cranial 
irradiation studies suggest that radiation exposure to the 
uninvolved brain parenchyma is a key causative factor (25). 
Case in point being the RTOG 0214 randomized controlled 
trial, which compared PCI (30 Gy in 15 fractions) versus 
observation in patients with locally advanced NSCLC 
(26,27). Secondary endpoints of the trial included 
neurocognitive function and quality-of-life (measured using 
HVLT, MMSE and activities of daily living). Although, the 
1-year rates of BM were significantly better with PCI (7.7% 
vs. 18%, P=0.004), the PCI group reported a trend towards 
worse cognitive functioning and HVLT scores.

Radiation-induced neurocognitive decline occurs in a 
biphasic pattern (28,29). Following completion of WBRT, 
there is an initial subacute transient deterioration which 
peaks at 4 months post-treatment, in multiple domains of 
neurocognitive function, and after which there is a transient 
recovery over the first year (29). Neuroinflammation 
is suspected to contribute to the initial neurocognitive 
decline, in which there is an activation of astrocytes and 
microglia cells leading to an increase in pro-inflammatory 
cytokines. This may lead to ongoing tissue demyelination 
and remodeling and eventually resulting in altered neuronal 
function (30). In longer term, vascular changes in small and 
medium-sized vessels such as accelerated atherosclerosis 
and microangiopathy leads to vascular insufficiency and 
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infarction of brain parenchyma, which in turns sets off a 
milieu of neuroinflammation and accelerated brain atrophy 
(29,30). The transient improvement in neurocognitive 
function, is then followed by the second phase of irreversible 
and progressive decline in memory function (29), which 
happens months to years after completion of WBRT. This 
is linked to radiation-induced damage to proliferating 
neuronal progenitor cells in hippocampus subgranular zone, 
which have been reported to be relatively radio-sensitive (31). 
New neurons generated in the hippocampus subgranular 
zone form an important part of memory function, and the 
radiation-induced damage to the hippocampus leads to 
disruption of neurogenesis, hence leading to memory decline 
after RT. As a summary, the neurocognitive outcomes from 
prospective clinical trials conducted in patients with BM 
treated with WBRT and/or focal RT are reported in Table 1. 

Mitigation strategies

Maintaining neurocognitive function is prioritized by many 
patients and caregivers, and is intricately linked to quality of 
life. Mitigation strategies, and if possible, prevention, need 
to be instituted upfront. These may include use of focal RT 
(SRS/HSRT alone) in lieu of WBRT, or withholding RT 
entirely. In situations where WBRT is cleared indicated, 
then the use of pharmacological agents and/or hippocampal 
sparing techniques should be considered. 

Focal RT alone 

One of the main ways to avoid neurocognitive decline would 
be to consider the use of focal RT alone in patients with 
limited intracranial metastases. A phase III randomized 
trial comparing WBRT versus SRS with WBRT (32), 
demonstrated that cognitive deterioration was more likely in 
patients (91.7%) when combined with WBRT as compared 
to SRS alone (63.5%; 90% CI: −41.9% to – 14.4%; P<0.01). 
Furthermore, there was more reduction in verbal fluency, 
immediate and delayed recall in patients treated with both 
WBRT and SRS. The overall survival was not significantly 
better with the addition of WBRT to SRS (HR =1.02; 95% 
CI: 0.75–1.38; P=0.92). Hence in the absence of difference 
in overall survival and the increase in cognitive decline 
with WBRT, the preferred strategy for limited BM is SRS/
focal radiotherapy (32) which can be considered to avoid 
neurocognitive decline. This is similarly illustrated in 
the individual patient data meta-analysis by Sahgal et al., 
looking at randomized controlled trials for patient with 

limited BM—where the addition of WBRT to SRS did not 
improve survival, despite distant brain failure being reduced 
with WBRT (33). Most of the Phase III randomized trials 
investigating focal RT alone only included patients with up to 
3–4 BM. However, there has been a paradigm shift recently, 
and practice guidelines such as NCCN (34) have not placed 
a numerical upper limit when recommending focal RT 
alone. The evidence for this shift primarily stems from the 
large observational prospective study from Japan (35), where 
patients with up to 10 BM were treated with SRS alone. 
Based on their data, they did not find a survival difference 
between patients who had 2–4 and 5–10 BM. 

Hippocampal avoidance

As mentioned earlier, the hippocampus is crucial for 
memory formation and learning. Radiation-induced 
injury to the hippocampal dentate gyrus has been proven 
to lead to loss in neurogenic capacity associated with 
memory formation and impaired recall (10). Advances 
in technology allowed for selective dose reduction to the 
hippocampi in patients with BM at least 5 mm away from 
them, through intensity modulated radiotherapy (IMRT), 
whilst still treating the remaining brain parenchyma and 
meninges to the required dose (29). This strategy was 
first evaluated in RTOG0933 (single arm Phase II), which 
utilized hippocampal-avoidance WBRT (HA-WBRT) 
30 Gy in 10 fractions (10). The results were promising as 
there was a significantly lower neurocognitive decline at  
4 months—mean decline in delayed recall of 7% as 
compared to 30% noted in the historical control group 
(P<0.001). Hippocampal avoidance was also evaluated, in 
the setting of prophylactic cranial irradiation for limited 
stage small cell lung cancer, in the PREMER Phase III 
trial, where patients received HA-PCI 25 Gy in 10 fractions 
versus standard PCI. Neurocognitive decline was less in the 
HA-PCI arm measured by delayed-free recall at 3 months 
(5.8% vs. 23.5%, OR 5, P<0.003) (36). 

Pharmacological agents: memantine, donepezil

Memantine is an N-methyl-D-aspartate (NMDA) receptor 
antagonist, which competes with glutamate to bring 
to NMDA receptor, hence reducing excessive NMDA 
activating and preventing excitotoxicity of the neuron (30). 
It is largely used in vascular and Alzheimer’s dementia and 
has been proven to improve cognitive performance. This led 
to a phase III randomized, double-blind, placebo-controlled 
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trial (RTOG0614) of memantine in patients undergoing 
WBRT to 37.5 Gy in 15 fractions (37). Patients were 
assigned to receive either placebo or memantine (which was 
given in increasing dosage regimen to 20 mg/day) within  
3 days of initiating radiotherapy for 24 weeks (37). Patients 
who received memantine showed significantly longer time 
to cognitive decline (HR =0.78; 95% CI: 0.62–0.99; P=0.01). 
Furthermore, the probability of cognitive function failure 
at 24 weeks was 53.8% in the memantine arm as compared 
to 64.9% in the placebo arm. Other results from this study 
which supports the use of memantine included better 
executive function at 8 and 16 weeks, processing speed and 
delayed recognition at 24 weeks. Although the RTOG0614 
study primary endpoint did not reach statistical significance 
due to patient dropout, memantine should be considered 
in patients undergoing WBRT who have a prognosis of  
>6 months. In general, memantine is well tolerated. Based 
on a meta-analysis of RCTs (conducted in dementia patients) 
the likelihood of discontinuation due to intolerability was 
11.5% with placebo and 10.1% with memantine (i.e., no 
significant difference). Common adverse reactions include 
dizziness (7% memantine, 5% placebo), headache (6% 
memantine, 3% placebo) and constipation (5% memantine, 
3% placebo) (38).

Another pharmacological strategy available is the use of 
Donepezil, which is a reversible non-competitive inhibitor 
of acetylcholinesterase that enhances cholinergic-dependent 
neural communication (39). This has been studied in a 
phase III randomized, placebo-controlled clinical trial in 
which patients who were receiving partial- or whole-brain 
irradiation were randomly assigned to receive either placebo 
or daily donepezil. After 24 weeks of treatment, overall 
composite scores did not improve significantly, however 
there were improvements in several cognitive functions, 
especially among patients with greater pre-treatment 
impairment (40).

Hippocampal avoidance and memantine 

Building upon the use of both memantine and HA-WBRT, 
a phase III trial (NRG CC001) evaluated the potential 
combined neuroprotective effects of hippocampal avoidance 
WBRT 30 Gy in 10 fractions with memantine (for 24 weeks), 
as compared to conventional WBRT with memantine. 
Results showed significantly lower risk of cognitive failure 
with HA-WBRT plus memantine as compared to WBRT 
plus memantine (adjusted HR =0.74; 95% CI: 0.58–0.95; 
P=0.02). The HA-WBRT plus memantine group showed 

less deterioration in executive function at 4 months, and 
learning and memory at 6 months. Overall at 6 months, 
HA-WBRT plus memantine group reported less fatigue, 
less difficulty with speech and memory, and less interference 
of neurological symptoms in daily activities (15). With 
these positive findings, HA-WBRT with memantine should 
be considered as standard of care for patient for patients 
requiring WBRT, especially if the expected prognosis is 
>6 months. Moving forward, there is a currently ongoing 
phase III randomized trial comparing SRS to HA-WBRT 
plus memantine for 5–15 BM (NCT03550391) (41). One 
area of investigation, which is currently unclear, is whether 
memantine should be continued as a maintenance strategy, 
for long term survivors. 

Avoidance of RT by the use of upfront targeted therapy 

There has been a recent trend to use targeted therapy 
alone for patients with known driver mutations. The 
advent of new small molecules with intracranial activity 
has made this possible, particularly in primary cancers 
such as EGFR-mutation positive lung cancer, Her2+ 
breast cancer, BRAF V600E mutation positive melanoma. 
However, this approach is not uniformly adopted by all, 
as it remains unclear how targeted therapy compares to 
RT. The retrospective multi-institutional cohort study 
by Magnusson et al suggested that the survival outcomes, 
in patients with BM from EGFR-mutation positive lung 
cancers, were inferior for patients treated with upfront 
tyrosine kinase inhibitors (TKI) (42). It has to be noted that 
this study was conducted prior to widespread availability of 
third generation TKI (e.g., osimiternib), which are known 
to have better intracranial activity. This topic has been 
comprehensively reviewed elsewhere (43,44).

Stereotactic radiosurgery (SRS)/hypofractionated 
stereotactic radiotherapy (HSRT)

Focal radiotherapy (e.g., SRS/HSRT) is increasingly the 
preferred management for BM, as it is highly effective 
and convenient. There is minimal disruption of systemic 
therapy, thereby allowing optimal control of extra-cranial 
disease. Although rare, late complications can be seen in up 
to 5% of patients, and may increase particularly in patients 
who survive more than 1 year. These include radiation 
necrosis, cranial nerve injury (particularly optic nerve) 
and brain stem injury. These will be elaborated on below, 
together with suggested mitigation strategies. 
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Radiation necrosis (RN)

RN is an inflammatory reaction, due to radiation-
induced cell death, that occurs between 6–24 months after 
completion of SRS (45). Radiologically, RN is difficult to 
distinguish from intra-cranial disease progression/recurrence 
on conventional MRI (46) as it commonly occurs in close 
proximity to original tumour location or in-field. On 
conventional MRI, RN can appear as a contrast-enhancing 
lesion on T1 sequence, with peri-lesional vasogenic oedema. 
Due to the overlapping similarities between RN and 
tumour recurrences, more advanced imaging techniques 
are increasingly used to aid in the recognition and diagnosis 
of RN. Diffusion-weighted MRI imaging such as MR 
perfusion and MR spectroscopy, has increased sensitivity and 
specificity for radiation necrosis, hence allowing for accurate 
diagnosis of RN (47). As normal brain tissue has lower 
amino acid uptake as compared to tumour cells, specific 
amino acid tracers such as carbon-11 methionine (MET), 
fluoro-l-thymidine (FLT) and fluoroethyl tyrosine, are 
increasingly used in positron emission tomography (PET). 
These tracers have been reported to have a high sensitivity 
and specificity (47). However, these novel amino-acid tracers 
may not be widely available in clinical practice.

Histologically, radiation necrosis is found mainly 
in white matter with associated endothelial damage, 
perilesional oedema and gliosis (46). Histopathological 
findings include coagulation and liquefaction necrosis, 
with surrounding vessel thickening, hyalinization and 
thrombosis of blood vessels resulting in hypoxic injury 
to surrounding parenchyma (47,48). There are 2 main 
theories explaining the pathophysiology of radiation 
necrosis. The first theory postulates that necrosis arises 
due to damage to oligodendrocytes and glial cells, hence 
leading to demyelination in white matter. The second 
theory is that radiation leads to vascular injury around the 
irradiated tumor issues which leads to tissue ischemia. This 
is associated with increased release of pro-inflammatory 
factors such as TNF -alpha, VGEF, IL-1 and IL-6. These 
pro-inflammatory factors leads to increase in blood-
brain barrier, increase in leukocyte adhesion and induce 
endothelial apoptosis (48). 

The incidence of radiation necrosis post-SRS ranges 
between 5–25%. The large variation exists due to varying 
definitions of RN, and only some studies requiring 
histological confirmation and/or prolonged follow-up. In 
a large institutional series, consisting of 2,200 BM treated 
with SRS, investigators from UCSF reported the incidence 

of RN to be 5% at 1 year, with approximately half being 
symptomatic (49). Table 1 summaries the incidence of RN 
in prospective clinical trials which have utilized SRS for the 
management of BM.

Briefly, the usual management of symptomatic radiation 
necrosis includes a prolonged course of dexamethasone, which 
serves to reduce inflammation and oedema of necrotic tissue. 
Bevacizumab, an anti-VEGF antibody, can be used in the 
treatment of radiation necrosis, with reported 64% reduction 
in RN volume on radiographical imaging. Furthermore, 
there is a reduction in steroid requirement, with stability or 
improvement in RN-associated symptoms (50). MRI-guided 
laser-induced thermal therapy (LITT) is a minimally 
invasive ablative technique that generates high temperature 
with accurate delivery to target cells, resulting in tissue 
coagulation necrosis, angiogenesis eradication and cellular 
apoptosis (51). Other possible therapies include anti-
coagulants and hyperbaric oxygen therapy, in which the 
benefits are limited and conservative. Alternatively, surgical 
resection of RN has to be considered for symptomatic 
patients who are refractory to medical treatment.

Clearly, there can be multiple contributory causes to 
RN, and ultimately the clinical manifestation may be due 
to a combination of these factors. Dose received by the 
uninvolved brain parenchyma plays a major role. The 
HyTEC group of investigators have recommended, tissue 
volumes (including target volume) receiving 12 Gy (single 
fraction) to be kept below 5 cm3 for the symptomatic RN 
risk to be kept below 10% (52). Similarly, for multi-fraction 
treatments, they have recommended 20 Gy (3 fractions) or  
24 Gy (5 fractions) to be kept below 20 cm3 for the 
symptomatic RN risk to be below 10%. Prescription 
practices vary between SRS delivery platforms (e.g., Gamma 
Knife versus LINAC-based), however the risk of RN has 
not been shown to be different. For example, the 50% 
isodose line is typically selected for the Gamma Knife 
platform, whereas the 60–80% isodose line is selected for 
LINAC-based platforms. This typically results in higher 
maximum doses and steeper dose gradients for the Gamma 
Knife platform. Frameless radiosurgery platforms typically 
utilize a planning target volume (PTV) margin of 1 to  
3 mm. Kirkpatrick et al. conducted a randomized controlled 
trial, and reported that the use of a 3 mm (vs. 1 mm) results 
in higher rates of RN (18). Dose heterogeneity has been 
suggested to contribute to RN, in particular if they occur 
within GTV-PTV margin where normal brain parenchyma is 
located (53). Table 2 outlines other contributory factors, and 
the suggested mitigation strategies (54).
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Table 2 Contributory factors and mitigation strategies for radiation necrosis [adapted from (54)]

Contributing factor Mitigation strategy Reference

Dose-volume interplay SRS dose should be lowered for larger volume lesions (55)

However, tumour control is compromised as a result (56)

Large volume targets should be considered for the following

(I) Surgical resection, in addition to SRS. Both pre-operative and post-operative SRS 
approaches are valid options

(57,58)

(II) HSRT in preference to SRS (56,59)

Volume of uninvolved brain 
parenchyma exposed to 
intermediate-high dose

Attention should be given to the intermediate dose spillage  
(e.g., 80% and 50% isodose volumes)

This is especially important when multiple isocentres are used to treat multiple targets (60,61)

Dedicated SRS platforms seem to perform better at reducing dose-gradient index, 
compared to single arc VMAT

(62)

A reduction in prescription dose (of 1–2 Gy) may be required when multiple targets are 
being treated simultaneously

(63)

Prior radiation exposure In the setting of recurrent tumour, alternatives should be explored (surgery resection, 
chemotherapy/targeted therapy)

If re-SRS is attempted, a fractionated approach or dose reduction is favoured 

Use of concurrent systemic  
therapy

Caution should be exercised with certain agents such as ipilumumab, VEGFR TKI and 
EGFR TKI

(64)

Admittedly, the data regarding increased neuro-toxicity is unclear and may be partially 
related to the target volume

(65)

If possible, a washout period of 5 half-lives should be allowed before SRS  
(approximately 5–7 days for common agents such as sorafenib, pazopanib and gefitinib)

There are no guidelines when these agents can be restarted. A period of 2–4 weeks may 
be sufficient to ascertain that there are no acute side effects from SRS

Large PTV margin End-to-end testing should be undertaken at each SRS centre to determine the minimum 
PTV margin

Technologies which allow a smaller PTV should be preferentially used (66)

Planning parameters A dedicated SRS team builds experience and is recommended (67-71)

A higher degree of variation is to be expected with LINAC-based platforms, especially 
with smaller targets

Parameters such as conformity index, dose gradient index and conformity/gradient 
index should be assessed during plan evaluation

Lack of quality assurance (QA) 
program

A protocolized and evergreen quality assurance program is needed at both the 
departmental level and a patient-specific level

(72)

For patient-specific QA, target volume delineation should ideally undergo peer review 
prior to treatment (especially for complex targets such as resection cavities), and  
pre-treatment verification using film dosimetry is highly recommended

(73-76)

Non-modifiable factors including:  
(I) intrinsic radiosensitivity;  
(II) location of lesion

It is challenging to determine intrinsic radiosensitivity prior to treatment. Alternatives to 
SRS can be considered such as surgical resection or systemic therapeutics

(77)

A gentler approach with HSRT may be warranted in these cases

SRS, stereotactic radiosurgery; HSRT, hypofractionated stereotactic radiotherapy; VMAT, volumetric modulated arc therapy; EGFR, 
epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor; PTV, planning target 
volume; LINAC, linear accelerator.
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Radiation-induced optic neuropathy

The optic nerve can be divided into 4 segments: intra-
ocular, intra-orbital, intra-canalicular (within optic canal) 
and cisternal (within supra-sellar cistern) segments. The 
optic nerve is a special sensory nerve which transmits 
visual information regarding brightness, color and 
contrast. Radiation-induced optic neuropathy (RION) is 
a late complication which can present with painless visual 
impairment progressing rapidly over a few weeks. RION 
usually occurs months or years after radiation therapy, with 
average onset of approximately 18 months after treatment 
(78,79). Visual impairment may be bilateral for injuries 
located near the optic chiasm. Symptoms of RION may 
include impairment of colour vision, visual field deficit or 
worsening visual acuity. Clinical signs may include a relative 
afferent pupillary defect, optic disc pallor and/or swelling. 
Typically, contrast-enhancement (within the optic nerve) 
can be seen on T1 sequence, with a high signal on T2 (79).

Common management of RION includes the use of 
steroids, anti-coagulation, hyperbaric oxygen (78) and 
pentoxifylline. Hyperbaric oxygen therapy is believed 
to increase fibroblastic activity, collagen synthesis and 
neovascularization of irradiated tissues, and may help 
in RION if initiated within 72 h. However, it requires 
multiple sessions (over 6 weeks) which may be inconvenient 
for patients. Till date, the benefits and effectiveness 
of these management measures have shown limited 
results. Emerging evidence is suggestive that a course of 
bevacizumab can be helpful in RION, but more data is 
required (80). Clearly, as no effective treatment is available, 
more emphasis needs to be placed on prevention by proper 
patient selection and radiotherapy planning. 

Contributing factors and mitigation strategies 

The dose received by the optic nerve is the single most 
important factor for RION. Early reports have recommended 
the maximum point dose to the optic nerve is recommended 
to be kept to below 8 Gy (81). Data from Mayo Clinic 
has suggested that this may be overly conservative, and 
that the risk of RON is ~1% for patients receiving up to  
12 Gy (82). Doses exceeding 12 Gy lead to a 10% risk (83). 
The recently published HyTEC data (52) offers guidance 
in terms of dose selection, to keep the risk of RION below 
1%. The maximum dose should be kept to below 12 Gy 
(ideally 10 Gy) in a single fraction, 20 Gy in 3 fractions and 
25 Gy in 5 fractions. It is not clear if a volume-effect exists 

for the optic nerve, but the general principles of ALARA 
should be adhered to. Data from Stanford has shown that the 
optic chiasm is subject to physiological motion, and thereby 
receiving up to 14% more dose that predicted. They have 
recommended to add a 0.5–0.75 mm planning at risk volume 
(PRV) margin to this structure during plan optimization (84).  
Whether underlying vasculopathic risk factors (such as 
diabetes mellitus, hypertension) contribute to RON remains 
controversial (79,85). 

Appropriate contouring using high-resolution MR (e.g., 
ensuring no gaps between the optic nerve and chiasm), dose 
selection and rigorous radiotherapy planning should be 
used to reduce the risk of RION (86-88). In cases where the 
lesion is abutting the optic apparatus, single fraction SRS 
may not be considered appropriate if the maximum point 
dose to optic apparatus cannot be limited to 12 Gy or lower. 
In such situations, a 3 to 5 fractions approach should be 
considered to maximise the therapeutic window. In lesions 
where the optic nerve is compressed, decompressive surgery 
can be attempted prior to SRS, or a more conservative dose 
limit should be used.

Brain stem injury and mitigation strategies

Brainstem metastases only accounts for 5% of all BM. 
However, the consequences of brainstem injury can be 
devastating. The clinical manifestation depends on the 
location of the necrosis, as there are many cranial nerve 
nuclei and long tracts that pass through the brainstem. 
The diagnosis is made clinically, with correlative imaging 
findings. Enhancing foci may be seen on contrast enhanced 
MRI, similar to parenchymal RN, together with an 
abnormal T2 signal corresponding to the area of high 
dose. The overall incidence is low, as most practitioners 
will compromise tumor coverage instead of overdosing the 
brainstem. Similar to RION, mitigating brainstem injury is 
predicated on accurate contouring of the brainstem (using 
MRI) and adhering to known dose constraints (86,87). 
Based on studies in patients with brainstem metastases, 
doses of 15–20 Gy SRS have been used with relatively low 
complication rates (89,90). Data on brainstem tolerance 
from hypofractionated RT are obtained from treatment of 
skull base tumors, where early studies using a regimen of 
42 Gy in 6 fractions reported a 5% complication rate (91). 
With modern planning and delivery, brainstem injuries have 
been very rare at doses of 20–21 Gy in 3 fractions, 22 Gy in 
4 fractions and 25 Gy in 5 fractions (92-95). QUANTEC 
data recommends maximum point doses are 12.5 Gy 
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in a single fraction, 21 Gy in 3 fractions or 25 Gy in  
5 fractions (96). Fractionated schedules should be considered 
if constraints cannot be achieved with a single fraction 
SRS. Although not supported by strong clinical data, the 
periphery of the brainstem (especially if a small volume is 
exposed) has been suggested to be more tolerant (97).

Conclusions

Survival of patients with BM continues to improve. 
Although the focus is usually on intra-cranial control, 
serious treatment-related complications can occur impairing 
patient’s quality of life. Consequently, the use of WBRT is 
declining, and being substituted with focal RT, even in the 
setting of multiple BM. However, WBRT can still be used 
selectively, and may still have a role in patients with diffuse 
intracranial disease. Upfront mitigation strategies such as 
hippocampal avoidance and memantine should be instituted 
for these patients. With focal RT being performed for more 
patients, the risk of RN must be anticipated and counselled 
to patients. Fractionated focal RT (e.g., hypo fractionated 
stereotactic RT) is an attractive option which maximizes the 
therapeutic window. With an increase in awareness of these 
complications, more prospective trials are being conducted 
to investigate the effect of these mitigation strategies.
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