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Introduction

Nasopharyngeal carcinoma (NPC) is both radio- and 
chemosensitive. The nasopharynx is an anatomically 
complex region in which surgical resection can be both 
technically challenging and result in substantial morbidity. 
As such, clinical practice guidelines list radiotherapy 
(RT) as the treatment of choice for early-stage NPC, and 
RT with chemotherapy as the treatment of choice for 
locally advanced NPC (1). Despite encouraging clinical 
outcomes, use of RT for NPC has several challenges. 
The nasopharynx is adjacent to several critical structures, 
including the salivary glands, auditory structures, pterygoid 
and pharyngeal constrictor muscles, optic pathways, brain 
and brainstem. Harm to these structures may result in 
significant impairments in the quality of life (QOL) for 
patients who undergo treatment and can include xerostomia, 

hearing impairment, trismus, dysphagia, optic neuropathy 
and temporal lobe necrosis (2). 

As techniques for delivery of photon-based RT have 
advanced from two-dimensional conventional to three-
dimensional conformal to intensity-modulated radiotherapy 
(IMRT), the corresponding improvements in dosimetric 
properties have allowed increased local control rates with 
decreased rates of toxicity (3-5). Because IMRT results in 
decreased dose delivery to the parotids and other major salivary 
glands, it became the current standard of care (1) after a phase 
III randomized-controlled trial showed decreased rates of 
xerostomia with IMRT (3). Even though IMRT allows 
increased conformality relative to 2D or 3D techniques, 
because inverse planning objectives are used to spare dose 
to the parotids, the entrance and exit dose must necessarily 
be distributed elsewhere. Therefore, the widespread 
adoption of IMRT for the treatment of NPC has been 
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accompanied by increased toxicity along the beam path (6), 
which can have substantial effects on QOL (7,8). This has 
sparked interest in the development and use of techniques 
that might improve the therapeutic ratio even further for 
patients with NPC.

Enthusiasm for the use of proton radiotherapy (PRT) 
was first stimulated by early successes in the treatment of 
chordomas and chondrosarcomas of the skull base (9) and 
intraocular melanoma (10). Currently, there is a great deal of 
interest in the use of PRT for treating of cancers of the head 
and neck, including NPC (11). Owing to the characteristic 
sharp dose fall-off of protons, PRT allows delivery of a 
high therapeutic radiation dose to the tumor with minimal 
exit dose which improves sparing of normal tissues (11,12). 
Recent improvements in the dose delivery of protons, 
including intensity-modulated proton therapy (IMPT) 
could further reduce toxicity without compromising efficacy 
(13,14). Dosimetric comparative analyses have explored 
dosimetric advantages of planning comparisons of IMPT 
and IMRT and have suggested that lower doses can be 
delivered to non-target tissues in patients with NPC (15-18). 
Early findings from Loma Linda University Medical Center 
and MD Anderson Cancer Center have also described good 
clinical outcomes of PRT for patients with NPC (18-21). 

Evidence of dosimetric advantages 

Comparisons of treatment plans have shown that use of 
IMPT can better spare normal tissues while maintaining 
effective delivery of the dose to the target (15-18). In one 
such study, Taheri-Kadkhoda and colleagues found that 
IMPT plans for NPC were associated with lower mean 
doses to the larynx/esophagus, oral cavity, and parotid 
glands relative to IMRT plans (15). Meanwhile, Widesott 
and others compared plans for helical tomotherapy with 
those from IMPT and also found that IMPT produced 
lower mean doses to the bilateral parotid glands, but not to 
the larynx or esophagus (16). 

At MD Anderson, we analyzed the treatment plans of 
the first nine patients treated with IMPT for NPC at our 
proton center and generated IMRT comparison plans 
for analysis (18). Coverage of the primary clinical target 
volume (CTV1) was similar and excellent for both IMPT 
and IMRT plans. Minimum and maximum doses to the 
CTV1 were also similar between IMRT and IMPT plans, 
although the mean dose to the CTV1 was significantly 
higher with IMPT. Although the D95 was similar between 
IMRT and IMPT plans, the D5 was higher with IMPT 

plans. No significant differences were found between plans 
in conformality or homogeneity indices. 

In terms of planned dose to non-target tissues, we 
found that IMPT delivered significantly lower mean doses 
to the whole brain, spinal cord and brainstem as well as 
other neurologic structures such as the area postrema 
and subthalamic nucleus, which are thought to play a 
role in radiation-induced nausea and vomiting (22,23). 
Mean dose to the cochleae and vestibules of the ear were 
also significantly lower in IMPT plans, with an absolute 
reduction of approximately 10 Gray-relative biological 
effectiveness [Gy(RBE)], which could minimize the risk 
of long-term sensorineural hearing loss (24). IMPT plans 
delivered approximately 10 Gy(RBE) less absolute dose to 
the mandible than did IMRT, which could decrease the risk 
of osteoradionecrosis of the jaw (25). IMPT plans achieved 
an absolute mean laryngeal dose reduction of 12 Gy(RBE) 
relative to IMRT, which indicates IMPT may be useful in 
decreasing the risk of laryngeal edema (26). Finally, IMPT 
achieved an absolute mean dose reduction of approximately 
20 Gy(RBE) compared with IMRT to the oral cavity. This 
is likely the area of greatest potential impact on acute and 
chronic toxicities affecting patient QOL, such as acute 
mucositis, oral pain, odynophagia and dysphagia, which can 
be quite debilitating (27). 

Based on the available dosimetric evidence, proton 
therapy, particularly IMPT, seems to be a promising new 
treatment option for NPC. Because published clinical 
findings are currently limited, further study is needed to 
determine if the dosimetric advantages conferred by IMPT 
indeed translate to reduced toxicity and an improved 
therapeutic index. 

Evidence of clinical benefit

Few full manuscripts have been published reporting clinical 
outcomes of the use of PRT for patients with NPC. The 
first published report, from Loma Linda University Medical 
Center, described outcomes after using PRT to re-irradiate  
patients with recurrent NPC (19,20). All of the patients 
in that group had initially treated with photon-based 
RT as upfront therapy and then were then re-treated to  
59.4–70.2 Gy(RBE) by using a 3D conformal PRT 
technique after developing local recurrence. Rates of overall 
survival and local-regional progression-free survival were 
both 50% at 2 years, but these patients had not received 
concurrent chemotherapy, which is now considered 
the standard of care. Recurrence and survival rates also 
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varied widely according to the extent of target coverage. 
Dose-volume histograms were analyzed separately for 
those with “optimal coverage” (2-year OS 83%) versus 
“suboptimal coverage” (2-year OS 17%), where “optimal” 
was conservatively defined as 90% of the target volume 
receiving 90% of the prescribed dose (19,20).

Investigators from Massachusetts General Hospital 
(MGH) presented their early experience with using proton 
therapy for NPC in abstract form in 2004 (28). At 3 years, 
the local control rate was 92%, the progression-free survival 
rate 75%, and the overall survival rate 74% for 19 patients 
with T4 nasopharyngeal cancer, 10 of whom had received 
induction or concurrent chemotherapy. However, more 
than 10 years have elapsed since presentation of these 
findings, and it remains unclear when the full findings from 
that study will be available. MGH is currently conducting a 
phase II study evaluating combined proton-photon therapy 
to 70 Gy(RBE) in 35 daily fractions given with concurrent 
cisplatin and fluorouracil (NCT00592501). Preliminary 
results from 23 consecutive patients with stage III–IVB 
NPC in this trial were presented in abstract form in 2012. A 
3D conformal PRT technique was used, with two posterior 
oblique fields used to spare the parotids with no exit dose 
into the oral cavity. At 28 months of follow-up, the local 
control rate was 100%; the 2-year disease-free survival rate 
was 90%; and the overall survival rate was 100%. Toxic 
effects included hearing loss (29%), weight loss (38%), 
and gastrostomy tube placement (48%), but no patient 
experienced grade ≥3 xerostomia (29). 

Available studies describing IMPT for patients with 
NPC are even more limited. At MD Anderson, we 
published control and survival outcomes as well as acute 
and chronic toxicities experienced by the first nine patients 
treated with IMPT for NPC (18). With a median follow-
up of just over 2 years, no patients in our cohort developed 
local or regional recurrence; however, one patient 
developed distant metastatic disease and subsequently 
died. No patients developed any acute or chronic grade 
4 or 5 toxicity. Four patients developed acute grade 3 
radiation dermatitis and one patient developed acute grade 
3 mucositis. Eight patients experienced grade 2 mucositis; 
however, mucositis was seen only with in the treatment field 
and no patients developed mucositis in the anterior oral 
cavity. Xerostomia was the most common chronic toxicity, 
with six patients experiencing grade 1 xerostomia and two 
patients with grade 2 xerostomia. Patients lost a median 
of 6.0% (range, 4.2–14.0%) of their body weight during 
the course of IMPT. Five patients experienced grade 1  

weight loss, and three patients had grade 2 weight loss. 
Two patients required feeding tube placement during or 
immediately after IMPT (18). Indeed, few patients required 
feeding tubes in our patients with NPC treated with IMPT 
compared with prior series of patients treated with IMRT 
(30,31). We later undertook a case-matched control study 
in which ten patients with NPC treated with IMPT were 
matched in a 2:1 fashion with 20 patients treated with 
IMRT at our institution during the same treatment era (21). 
Patients were matched by T-category, N-category, radiation 
dose, chemotherapy type, WHO classification, sex, and 
age. By the end of treatment, 20% of patients treated with 
IMPT required feeding tube insertion compared with 65% 
of patients treated with IMRT (P=0.020). In agreement with 
our previously published dosimetric analysis (18), patients 
receiving IMPT had significantly lower mean doses to the 
oral cavity, brainstem, whole brain and mandible. We also 
found higher mean doses to the oral cavity to be associated 
with higher rates of feeding tube placement (P<0.001). 
Partitioning analysis showed that no patient required a 
feeding tube if the mean oral cavity dose was <26 Gy,  
but all patients with a mean oral cavity dose >41.8 Gy ended 
up requiring a feeding tube. Treatment type (IMPT vs. 
IMRT), induction chemotherapy (yes vs. no), mean oral 
cavity dose, mean brainstem dose, and mean mandible dose 
were entered into a multivariable model, but only higher 
mean oral cavity dose remained significantly associated with 
higher feeding tube rates on multivariable analysis [odds 
ratio (OR) 1.31; 95% confidence interval (CI), 1.09–1.69 
per 1 Gy or Gy(RBE) excess to the oral cavity; P=0.003] (21).

Treatment planning and delivery

Use of IMPT

The technology available for PRT treatment planning, 
delivery and evaluation varies by institution but in general 
includes passive scatter or active scanning proton delivery 
techniques. Active scanning is often called IMPT because 
the intensity of the proton beam can be varied from spot to 
spot to deliver the desired dose in the target volume after 
summing the contributions of all treatment fields. IMPT 
is different than IMRT in that the energy as well as the 
intensity can be varied. Planning techniques for IMPT 
include single-field optimization (SFO) and multiple-
field optimization (MFO). SFO involves optimizing the 
spot-intensities for each beam individually, whereas MFO 
optimizes the intensities of all beams simultaneously to 
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balance the doses to targets and organs-at-risk (OARs) 
based on stated objectives. At MD Anderson, the IMPT 
technique with MFO is used for all patients receiving PRT 
for NPC. 

Patient set-up and immobilization

Treatment planning begins with positioning the patient 
supine on the simulation table with a head and neck extender 
board and fabrication of a custom thermoplastic mask 
and bite block for reproducible immobilization (Figure 1).  
Next, a non-contrast computed tomography (CT) scan 
is obtained for treatment planning purposes. An eclipse 
proton therapy treatment planning system (version 8.9, 
Varian Medical Systems, Palo Alto, CA, USA) is used 
for the generation of IMPT plans by expert dosimetrists 

specially trained in proton treatment planning (Figure 2). 

Target volume delineation

Target volumes and OARs are delineated on the treatment-
planning CT scans by the treating radiation oncologist. At 
MD Anderson, CTV1 is defined as gross disease plus a 1-cm 
margin, CTV2 is defined as the high-risk nodal volume 
adjacent to gross disease in the neck, and CTV3 is defined 
as the uninvolved nodes in the neck considered to be at risk 
for harboring subclinical disease. A volumetric expansion of 
3–5 mm is added to each CTV to generate the respective 
planning target volumes (PTVs). Prescribed doses to PTV1, 
PTV2 and PTV3 are 70, 63 and 57 Gy(RBE) (RBE =1.0 
for photons and 1.1 for protons), respectively, to be given in 
33–35 fractions. OARs with specified dose constraints are 

Figure 1 Set up immobilization devices for patients treated with intensity-modulated proton therapy for nasopharyngeal cancer. (A) Shows 
the custom bite block and tongue depressing stent used for reproducibility of jaw positioning during treatment as well as sparing the oral 
tongue from unnecessary dose; (B) shows the custom Klarity mold made of a uniform density material to conform to patients' anatomy 
and minimize air gaps between the patient and the mold; (C) shows a thermoplastic mask affixed to the Klarity mold for head and neck 
immobilization during treatment; (D) shows the digitally reconstructed lateral radiograph showing a patient successfully immobilized for 
intensity modulated proton therapy treatment.

A

C

B

D
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contoured for treatment planning, including the brainstem, 
spinal cord, cochleae, salivary glands, oral cavity, and larynx. 
All contours in all cases are reviewed for quality assurance 
purposes by a team of head and neck radiation oncology 
experts before treatment. 

Robust planning

Typically, three fields from three different beam directions 
(combining gantry/couch angles) are used for full-field 
IMPT plans treating the nasopharynx and bilateral neck. 
These beam angles are selected using the process of “robust 
planning”, which consists of the thoughtful selection of 
beam angles such that the overall robustness of the plan 
can be maximized. When possible, we avoid passing beams 
through areas in which the tissues are heterogeneous. We 
also avoid directing beams in the direction of critical OARs. 
The three beam angles used for full-field IMPT plans 
typically include a posterior beam, a left anterior oblique 
beam and a right anterior oblique beam shifted slightly in 
the superior-inferior direction (couch kick 15° to 20°). 

Robust optimization 

MFO is then done by the treatment planning system that 

simultaneously optimizes the spot intensities from all fields 
by using an algorithm having the set objective of covering 
95% of the PTV with the prescribed dose while minimizing 
dose to the adjacent OARs. As described above, the PTV 
is generated by adding a uniform margin around each 
CTV. This method of optimization is called “PTV-based” 
optimization and is similar to the way IMRT is currently 
planned. Our group and others have also developed 
methods for robust optimization that take into account the 
“worst-case” dose distributions based on perturbations in 
the isocenter position and stopping ratio (32,33). In our 
robust optimization algorithm, the isocenter of the plan is 
rigidly shifted in the anterior-posterior, superior-inferior, 
and lateral directions, yielding six influence matrices. This 
process models the potential effects of set-up uncertainties. 
Next, the stopping power ratios are modified by −3.5% 
and 3.5% to generate two additional influence matrices 
corresponding to maximum and minimum proton ranges, 
respectively, to model the potential effects of stopping-
power uncertainties. The “worst-case” dose distribution 
is identified as the minimum of the nine doses in each 
voxel in the CTV and the maximum of the nine doses 
in each voxel in the OARs (33), and then the objective 
function is computed for a given iteration by using this 
“worst-case” dose distribution (32,34,35). We do not 
yet use this robust optimization process routinely for all 
patients with NPC being treated with IMPT; however, 
because treatment planning studies have shown robust 
optimization to lead to superior OAR-sparing (33),  
we expect to use this technique increasingly more in the 
future. 

Robust analysis

For NPC patients whose IMPT plans are optimized by 
using a PTV-based approach, robustness is evaluated with 
a process called “robust analysis”. Once the optimized 
IMPT treatment plan has been generated, plans are tested 
by incorporating the effects of isocenter shifting as well as 
stopping power variation on target coverage and dose to 
OARs. Isocenter shifts ±2 mm in the anterior-posterior, 
superior-inferior and lateral positions are tested to represent 
setup uncertainties, and stopping power ratios of ±3.5% 
are tested to represent range uncertainties. Dose-volume 
histograms are generated for the optimized plan as well 
as for each perturbation tested during the robust analysis 
process, thus generating a range of possible doses to each 

Figure 2 Representative sagittal image from the intensity-
modulated proton therapy plan for a patient with T2N1 
nasopharyngeal carcinoma showing the dose distribution. 
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target or OAR. The treating physician can then evaluate 
whether the target coverage and dose to OARs are within 
the acceptable range for all scenarios tested. 

 

Plan verification and adaptive planning

Orthogonal 2D kV X-ray images obtained daily are 
compared with digitally reconstructed radiographs 
generated by the treatment planning system from simulation 
CT images with the goal of aligning the patient for image 
guidance. Patients are seen in clinic weekly by their treating 
radiation oncologist so that any type of acute toxicity can be 
documented as well as appropriately monitored and treated. 

Anatomic variations due to weight loss and tumor 
response to radiation can also lead to differences between 
the actual dose delivered compared with what was originally 
planned (36). Thus, our patients receive regular counseling 
with a dietician as well as close monitoring of their weight 
during treatment. If patients lose more than 10 pounds or 
10% of their body weight, we often obtain a verification 
CT simulation scan and then use deformable registration 
to overlay the dose from the initial IMPT plan onto the 
verification CT scan. If CTV coverage degrades to <95%, 
if the plan maximum point dose exceeds 80 Gy(RBE), or 
if OAR constraints are exceeded, then off-line adaptive re-
planning is done during the fourth week of treatment. 

Future directions

The above-mentioned dosimetric and clinical studies 
have sparked further interest in prospective studies of 
PRT for NPC. MGH is currently enrolling patients 
in a non-randomized phase II trial of PRT given with 
chemotherapy for ≥ T2b or node-positive, non-metastatic 
NPC (NCT00592501). Treatment consists of 7 weeks of 
RT, given with cisplatin and fluorouracil once every 3 weeks 
during RT and then once every 4 weeks after radiation for 
a total of three cycles. The primary outcome is QOL, and 
the secondary outcome measures are rate and pattern of 
locoregional tumor recurrence. This trial began accruing 
patients in 2006 and is planned to be completed in 2015. 
The University of Florida is also currently accruing patients 
to another non-randomized phase II trial evaluating 
combined photon/proton radiation for non-metastatic NPC 
(NCT00797290). 

Current evidence on the use of PRT for NPC suggests 
that this type of therapy is not only feasible and safe but may 
be superior in terms of reducing toxicity while maintaining 

or improving local tumor control. Continuing advances 
in the delivery of protons such as IMPT may reduce 
toxicity and enhance the conformality of target coverage 
even further. As the number of proton therapy centers 
opened, under construction or in development increases, 
we encourage clinicians to consider opening prospective 
clinical trials so that high-quality evidence can be collected 
to better use this form of treatment for patients with NPC 
in the future. 
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