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Introduction 

Nasopharyngeal cancer (NPC), an Epstein-Barr virus (EBV) 
associated disease, has a distinct etiology and geographic 
distribution. It is rare in the West with incidence of less 
than 1 for every 100,000 people each year, but endemic in 
Southern China, Hong Kong, Taiwan, and Southeast Asia, 
where annual incidence reaches as high as 25–50 cases per 
100,000 per year. Worldwide, there are 80,000 incident 
cases resulting in an estimated 50,000 deaths annually (1). 
NPC is a chemosensitive disease and 5-year survival rate in 
early Stage I and II disease exceeds 80%, but outcomes are 
very poor in stage IV disease where the 5-year survival rate 

is less than 10% (2). Although the disease is highly sensitive 
to chemotherapy, resistance invariably develops and better 
treatments are urgently needed (3,4). The Epstein-Barr 
virus (EBV) latently infects more than 90% of the world’s 
adult human population and its association with NPC is 
thought to be mediated by an interplay of environmental 
(dietary, smoking, co-infectious) factors and genetic pre-
disposition (high risk HLA allotypes). In NPC, the EBV 
virus expresses a type II latency program and is present in 
virtually all poorly differentiated and undifferentiated non-
keratinising (WHO type II and III) NPC. The expression of 
viral antigens in NPC makes this disease an attractive target 
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for immunotherapy strategies such as virus specific adoptive 
cell therapies. Here in this review, we summarize the range of 
EBV-related and unrelated antigenic targets, and discuss the 
crucial role of the immune-suppressive microenvironment 
in NPC. Significant clinical trial data for cancer vaccines 
and adoptive T cell therapy trials are outlined, and we 
explore the potential role of immune checkpoint inhibitors 
in NPC, and their potential combinations with conventional 
chemotherapy and radiation therapy. Given the disappointing 
clinical outcomes of all manner of targeted therapies in 
advanced NPC, rational immune oncology strategies become 
all the more crucial.

Targets for immunotherapy in nasopharyngeal 
cancer (NPC)

Epstein-Barr virus (EBV) targets

EBV is associated with a variety of malignancies including 
Hodgkin Disease, Burkitt’s Lymphoma, and NPC, with the 
expression of viral proteins on the tumor cell surface. The 
pathophysiological mechanisms involved in EBV integration 
with the host cell genome, latency, and transformation—is 
complex and incompletely understood. From a therapeutic 
standpoint, NPC expresses an array (albeit a limited 
repertoire) of EBV antigens (5,6). Hence, immunotherapeutic 
strategies in NPC have historically focused on EBV specific 
epitopes as a means of targeting this cancer.

EBV-associated NPC expresses a type II latency 
program, and tumor cells typically express the latent 
membrane proteins 1, 2A, and 2B (LMP1, LMP2A, and 
LMP2B), EBV nuclear antigen 1 (EBNA1), all of which 
have limited immunogenicity. In addition, several EBV non-
coding RNAs primarily EBER1 and EBER2, and BamHI-A 
rightward transcripts (BARTs) and BamHI-A rightward 
frame 1 (BARF1) of EBV are expressed abundantly and are 
detected consistently in NPC (7-12).

EBNA1 is expressed frequently in NPC and is a 
dominant target for CD4 T cells. LMP1 and LMP2 are 
expressed in approximately 50% of NPC tumors. LMP1 
may be poorly immunogenic, while the LMP2 proteins 
sufficiently more immunogenic and hence putative targets 
for EBV directed immunotherapy, such as cytotoxic T cells 
(8,13-15). NPC occurs in immunocompetent individuals, 
and it is likely that immunological pressure results in the 
expression of a limited array of EBV antigens. These 
proteins maintain cellular transformation in malignant 
cells and their poor immunogenicity likely plays a role in 

promoting immune escape by EBV-positive malignant 
cells (16,17). Immunotherapeutic approaches employed to 
target EBV are dependent upon the capacity to generate 
an immunological response against EBV latency response 
antigens, however in human hosts, these antigens have also 
co-evolved to evade immune recognition. LMP1 and LMP2 
are known to play a role in activating and transforming 
cells following infection, allowing proliferation and survival 
of latently infected cells (18,19). The LMP antigens are 
oncogenic. LMP1 is a major transforming protein and 
behaves as a classical oncogene (20,21). LMP2A and 
LMP2B are likely non-essential in B cell transformation 
in vitro (22). However, LMP2A can transform epithelial 
cells via activation of the PI3 kinase-Akt pathway (23). 
These LMP antigens, particularly LMP1, are poorly 
immunogenic, likely due to poor antigen processing in 
infected cells and the subsequent limited amount of antigen 
available for presentation by MHC class I molecules (17). 
As a consequence, the LMP antigens, particularly LMP1, 
generate a subdominant CTL response when compared 
to the responses generated against lytic cycle antigens and 
other latent antigens, such as EBNA3 (24).

EBNA1 can be detected in al l  EBV-associated 
malignancies (15). EBNA1 is highly stable and contains 
a glycine-alanine repeat sequence near its N-terminus 
that inhibit translation and subsequent self-replication 
(25-27) and as result, EBNA1 is processed poorly via the 
MHC class I pathway. Nevertheless, the demonstration 
of EBNA1-specific CD8+ CTL thought to be induced via 
cross-presentation by professional antigen presentation cells 
rather than via direct recognition of infected cells (28), has 
established that endogenously processed EBNA1 can be 
detected by CD8+ T cells (29-31).

NPC cells have preserved antigen-processing function 
and can be recognized by major histocompatibility complex 
class I–restricted virus-specific CTLs in vitro (32), However, 
downregulation of major histocompatibility complex class 
I peptide expression is seen in NPC tumors as an immune 
evasion strategy (33). NPC patients also appear to have a 
lower prevalence of T cells that can recognize HLA-restricted 
epitopes in LMP2 and EBNA (34). Epidemiological studies 
have suggested that certain HLA allotypes have higher 
associations with nasopharyngeal carcinoma. These include 
HLA-A*11:01 and HLA-A*02:27 (35,36). A molecular 
explanation that cysteine at codon 99 of the Alpha2-helix of 
HLA-A protein is deleterious suggests a possible locus of 
susceptibility to NPC (36). Hence while NPC occurs across 
a variety of HLA allotypes, a meaningful strategy would 
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be to focus initial HLA specific strategies in allotypes with 
demonstrated susceptibilities such as HLA-A*11:01.

Taken in entirety, NPC-related EBV antigens LMP1, 
LMP2A/B, EBNA1, EBER, and EBV-encoded RNA each 
have distinct effects on growth, differentiation, and the 
host immune response. Collectively, they likely contribute 
to the development of NPC through the promotion of 
transformation and angiogenesis, inhibition of apoptosis, 
induction of stem-cell-like phenotype, and enhancement 
of cell motility. EBV antigens also aid in immune escape 
through various mechanisms, including switching off 
immunodominant viral antigens, impairing the HLA I 
or HLA II pathway, up-regulating immune-inhibitory 
molecules, and recruiting T regulatory cells and inducing 
T-cell anergy (37). Hence, an understanding of the virus–host 
interaction in the NPC environment is essential for successful 
EBV-targeted immunotherapies. Selection pressure-driven 
evolution constantly stimulates the emergence of new EBV 
variants (38,39) which may be more oncogenic and less 
immunogenic than the parental strain, with for example 
a higher tropism for epithelial cells rather than B cells, 
suggesting that some EBV strains may carry an increased 
NPC risk (40). 

It is important to note that NPC, while associated with 
EBV and the expression EBV proteins, is an entity that 
encompasses a broader range of other distinct molecular 
aberrations that may also represent immune targets. 

Non-EBV targets

Genomic alterations in NPC represent neoantigens that 
may be immunogenic. Studies in this area are few given 
the limitation of accessible tissue for interrogation in this 
disease and the paucity of pre-clinical models. Nevertheless, 
a landmark study of comprehensive sequencing analysis of 
56 NPC patients (41) has shed light on cancer mutations 
relevant in NPC. Nine significantly mutated genes included 
BAP1, MLL2, TSHZ3, TP53, PIK3CA, ERBB3, ERBB2, 
KRAS and NRAS. Copy number alterations in MAPKAPK2 
have been shown to be associated with NPC risk (42). 
Epigenetic alteration in NPC include the CpG island 
methylator phenotype and a high load of hypermethylated 
tumor suppressor genes (43). These genomic and proteomic 
alterations and more, can contribute to the production of 
oncogenic and immunogenic alterations. 

Immunogenic alterations can broadly be categorized 
into (I) tumor specific mutations that result in neoantigens; 
(II) tumor specific antigens and proteins overexpressed in 

tumors but not expressed or are expressed at very low levels 
in normal cells including proteins such as surviving; (III) 
lineage specific antigens expressed on tumor cells as well 
as on normal cells such as gp100; and (IV) cancer/testis 
antigens including MAGE and NY-ESO-1 (44). Emerging 
sequencing technologies with predictive computational 
algorithms now offer the possibility of developing 
HLA-restricted epitope maps for each tumor and the 
corresponding mutational landscape. These technologies 
will accelerate neo-antigen discovery and improve efficiency 
of immune targeting strategies in trials.

Immune checkpoints

PD-1 is an inhibitory receptor expressed on the surface 
of activated T cells. PD-1 is a known marker of T-cell 
exhaustion in animal models of viral infection. This 
manifests itself as loss of effector functions such as 
the secretion of cytokines (IFN-γ, IL-2, and TNF-α), 
production of the cytolytic effector molecules perforin and 
granzyme B, and eventually apoptosis (45-47). The immune 
infiltrates of chronic inflammation frequently employ 
the B7-H1/PD-1 axis. Both PD-1 ligands, B7-H1 (PD-
L1) and B7-DC (PD-L2) are up-regulated in peripheral 
tissues during an inflammatory response to infectious 
agents, in response to type 1 (α, β) and type 2 (IFN-γ) 
interferons (48). The biologic role of this upregulation 
is the prevention of collateral tissue damage mediated by 
antigen-experienced T cells during inflammation (49-52). 
Other immune-checkpoint molecules such as 2B4, CD160, 
T cell Immunoglobulin and Mucin domain-3 (TIM3), 
Lymphocyte Activation Gene-3 (LAG3) are upregulated 
in conjunction with PD-1 on “exhausted” CD8 T cells 
in tumor and chronic viral models (53). Programmed cell 
death ligand-1 (PD-L1) is highly expressed by cancer cells 
and tumor-infiltrating macrophages in virus-associated 
malignancies including NPC (54). PD-L1 expression on 
tumor correlates with advanced tumor stage and lymphatic 
metastasis (55) while PD-1 overexpression is associated with 
shorter overall survival and recurrence free survival and 
is an independent risk factor for death, treatment failure 
and local recurrence of NPC (56). These early studies in 
NPC have added to rationale to apply immune checkpoint 
inhibitor antibodies to this disease.

Tumor microenvironment

NPC is characterized by substantial immune infiltrate 
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in the primary tumor that consists of T cells, B cells, 
dendritic cells, monocytes, and eosinophils. This massive 
lymphoid infiltrate in the primary tumor is likely favored by 
inflammatory cytokines produced by tumor cells (57-60).  
There is evidence that despite the immunogenic nature 
of EBV antigen expressing cancer cells, there is a marked 
local tolerogenic immune suppression. T regulatory 
cells (Treg) within the tumor site may contribute to the 
functional inactivation of innate cytotoxic T cell responses. 
Significant expansion of circulating naïve and memory 
CD4+CD25high Foxp3+ was identified in 56 patients (61) 
and a smaller number was also noted to have infiltrating 
Treg in the tumor microenvironment. Another study of 40 
untreated patients implicated the suppressive role of Treg 
cells with its findings of rich populations of Treg amongst 
tumor-infiltrating lymphocytes (TILs). A further finding 
in this study was that EBV-specific T cells are enriched but 
inactivated in the tumor microenvironment. TILs from 
NPC failed to produce IFN-gamma and to exert cytotoxicity 
when stimulated by lymphoblastoid cell lines (34).  
A more recent study demonstrated that both physical and 
pharmacologic mediated depletion of Tregs from PBMC 
enhances EBV-specific T cell responses in EBV-stimulated 
T cell lines generated from NPC (62). 

A holistic immunotherapy strategy to target NPC must 
take into account the following:

(I) Cancer specific factors
• Genomic and proteomic differences between 

cancer and host, that are both EBV specific, but 
otherwise cancer genome specific too;

• Presence of cancer-associated antigens, that are 
ordinarily poorly expressed in normal tissue, 
including the known cancer testis antigens;

• Presence of immune-suppressive checkpoints on 
cancer cells;

• Immunosuppress ive  f ac tors  in  the  tumor 
microenvironment such as but not limited to tumor 
hypoxia, immune-suppressive cytokine production, 
the presence of myeloid derived suppressor cells, 
and immunosuppressive regulatory T cells;

(II) Host specific factors
• HLA Class I and II type and expression that determines 

presentation of peptide sequences of intracellular 
proteins to various subsets of immune cells;

• Immune cell population diversity and matching to 
tumor immune epitopes and other immunogenic 
cancer epitopes;

• Dendritic cell function, presentation of tumor 

antigens, and interaction with immune cell subsets;
• Host specific tumor permissive factors that have yet 

to be identified.

Immunotherapy strategies against NPC—
overview

In our opinion, these strategies fall into two broad 
categories. The first category comprises strategies that 
aim to harness the host’s pre-existing anti-tumor capability 
that may be suppressed by tumor, or to augment the host’s 
innate ability to mount an immune response against tumor. 
This category of strategies assumes an innate pre-existing 
capacity to augment host immune response that the cancer 
may already have escaped, and aims to meaningfully directly 
impact the host immune system to mount an immune 
response against NPC, which represents an inflammatory 
cancer phenotype. Examples of these include immune 
checkpoint inhibitors anti-PD1, anti-PD-L1, anti-CTLA4, 
and anti-LAG3 antibodies to disinhibit the immune 
response against cancer, and cancer vaccines that attempt to 
stimulate and generate a host immune response. 

The second category comprises therapeutic strategies 
that directly and preferentially target cancer cells. 
Chemotherapy and radiation can stimulate immunogenic 
cell death and this is increasingly being studied and 
understood for use with other immunotherapy strategies. 
Immune cells that target cancer cells directly include 
cytotoxic T lymphocytes and cytokine induced killer cells. 

Host targeting agents

Immune checkpoint inhibitors

More than a fifth of patients with previously treated 
metastatic NPC showed an objective measurable response 
when treated with the pembrolizumab, according to a 
study reported at the 2015 European Cancer Congress. 
Pembrolizumab is a highly selective humanized monoclonal 
IgG4-kappa isotype antibody against PD-1 that is designed 
to block the negative immune regulatory signaling of 
the PD-1 receptor expressed by T cells (63). Two-thirds 
of patients in the study had some degree of reduction in 
target lesion size. The median duration of response was  
10.8 months. The objective response rate with pembrolizumab 
in NPC was 22.2%, all partial responses. Another 15 patients 
had stable disease, resulting in a disease control rate of 
77.8%. Forty one out of 44 patients screened for study had 
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tumors that tested positive for PD-L1 expression. All but 2 
of the patients had received at least 1 prior line of therapy 
for advanced disease, and a third of the patients had received 
5 or more prior regimens. Median progression-free survival 
was 5.6 months. A recently opened trial uses Nivolumab 
(BMS), another anti-PD1 antibody, to treat patients with 
recurrent and/or metastatic NPC (NCT02339558). LAG3 
represents another immune checkpoint that may confer 
immune escape. There is an ongoing Phase I clinical trial 
evaluating the safety and efficacy of an anti LAG3 antibody, 
LAG525 (Novartis), as a single agent and in combination 
with an anti-PD1 antibody, PDR001 (Novartis), in patients 
with advanced malignancies (NCCT02460224). This study 
includes NPC in its inclusion criteria. 

Cancer vaccines

Therapeutic cancer vaccines for NPC have historically 
targeted EBV antigens. A study using an LMP2 vaccine 
has been reported. Autologous monocyte-derived dendritic 
cells cultured from patients with NPC and matured with 
cytokines were pulsed with HLA-A1101, A2402, or B40011 
restricted epitope peptides from EBV-LMP2, and injected 
into inguinal lymph nodes. This strategy generated an 
expansion in the LMP2-specific response in the peripheral 
blood in the majority of patients, and a partial clinical 
response in 2 of 16 patients enrolled in the study was  
seen (64). A more recent Phase II study evaluated the use of 
dendritic cells transduced with an adenovirus-DeltaLMP1-
LMP2 vector given as five biweekly intradermal injections 
to sixteen heavily pretreated stage 4c NPC patients. This 
first-in-human study demonstrated the safety of this 
strategy. No increase was seen in the frequency of LMP1/2-
specific T cells (65). Another clinical trial using the MVA-
EL vaccine has provided evidence for the effectiveness 
of the direct administration of a poly-specific vaccine to 
generate LMP/EBNA1-specific CTL responses in patients. 
This recombinant vaccinia virus–based vaccine, which 
encodes a functionally inactive fusion protein containing 
the CD4 epitope-rich C-terminal half of EBNA1 and CD8 
epitope-rich LMP2A could induce T-cell response in 80% 
of patients, in some cases boosting response to both CD4+ 
and CD8+ mediated immunity against EBNA1 and/or 
LMP2 (66). This vaccine is now being evaluated in a phase 
II trial involving patients who have detectable plasma EBV 
DNA after RT or who experience optimal response to 
palliative chemotherapy (NCT01094405).

Cancer targeting agents

Immunogenic cell death with chemotherapy and 
radiotherapy: concepts from studies in other cancers

Cancer cell death can be immunogenic or non-immunogenic. 
Immunogenic cell death (ICD) involves changes in the 
composition of the cell surface as well as release of soluble 
mediators that occurs in a defined temporal sequence. 
Endoplasmic reticulum stress and autophagy result in 
calretuculin (CRT) exposure in the outer leaflet of pre-
apoptotic cancer cells. Additionally, these pre-apoptotic 
cells secrete ATP, and release nuclear protein HMGB1 as 
membranes become permeabilized during necrosis. CRT, 
ATP, and HMGB1 bind to CD91, P2RX7, and TLR4 
respectively, facilitating the recruitment of dendritic cells 
in the tumor bed, and engulfment of tumor antigens by 
dendritic cells and optimal antigen presentation to T cells (67).  
Radiation is commonly used in NPC and is known to cause 
ICD accompanied by CRT exposure, ATP release, and 
HMGB1 release. The concept of immunogenic cell death may 
well underpin the rationale for strategies that combine standard 
treatments of chemotherapy, small molecule inhibitors, and 
radiation therapy with immunotherapy. Studies to characterize 
the capacity of these treatments to cause immunogenic cell 
death specifically in NPC are needed.

Cell based therapies 

EBV is associated with several cancer namely, post-transplant 
lymphoproliferative disease (PTLD), Hodgkin lymphoma 
(HL), Burkitt lymphoma, tumors in HIV-infected patients, 
T cell lymphoma, NK/T cell lymphoma, gastric cancers, 
and NPC (5). Following primary infection, EBV persists for 
life as a latent infection which is controlled by cytotoxic T 
lymphocytes (CTL) (68). Adoptive immunotherapy was first 
developed for the treatment of PTLD and has now been 
successfully utilized for over ten years using autologous EBV-
immortalized LCLs to stimulate the expansion of EBV-
specific CTLs (69). CTL therapies in NPC were developed 
on the basis of this evidence. 

CTL can be heterogeneous, primarily with regards 
to their differentiation status and homing properties. 
Following antigen encounter, a naïve or memory T cell will 
proliferate and acquire an increasing number of effector 
functions, resulting in fully differentiated effector cells 
which display the full array of effector functions (70,71). 
However, differentiation into effector cells significantly 
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alters the trafficking properties of the T cell (72). There is 
now evidence that this change in homing properties can be 
tissue-specific, whereby stimulation in different lymphoid 
organs can influence trafficking to particular peripheral 
tissues (73,74). Effective immunotherapeutic treatment of 
NPC may be dependent upon the capacity to generate CTL 
that can home in to nasopharyngeal tissue and other sites 
of metastatic disease. It also remains to be elucidated what 
impact the differentiation status of CTL has upon survival 
post-transfer. Although terminal differentiation may generate 
greater effector function, poor survival of these T cells post-
transfer may reduce the number of cells accessing tumor 
sites. There is evidence that less differentiated T cells retain 
a greater capacity to expand following antigen encounter  
in vivo and provide greater protection following transfer (75). 
Therefore, treatment with non-terminally differentiated 
CTL may have some benefit in prolonging their survival and 
proliferation capacity following adoptive transfer.

Current strategies used to generate CTL that rely 
upon long-term in vitro cultures will generate cells with 
a late-stage effector phenotype. Lymphodepletion prior 
to adoptive transfer may provide another mechanism to 
enhance survival and proliferation of transferred CTL. In 
addition to the benefits associated with the removal of Treg 
cells, there is evidence that lymphodepletion can enhance 
the efficacy of CTL-based therapy by removing T cells 
which compete for homeostatic cytokines, such as IL-15 
and IL-7, and thus creating ‘space’ in the lymphoid system 
to accommodate transferred T cells (76,77). However, 
some recent observations have suggested that whilst 
lymphodepletion may promote T cell engraftment (78) 
it may not improve the clinical outcome following T cell 
therapy (79). Our group had previously shown that a delayed 
graft-versus-NPC effect was demonstrable in three of 21 
heavily-pretreated advanced NPC patients who received 
a conditioning regimen of subablative cyclophosphamide,  
in vivo T cell lymphodepletion with iv thymoglobuline and 
thymic irradiation followed by sibling HLA-matched and 
one-antigen mismatched allogeneic peripheral blood stem 
cells. The delayed objective responses were coincident with 
rising donor haematopoietic chimerism and better survivors 
correlated with chronic graft-versus-host disease. These 
results indicated to us that a potentially powerful immune 
alloresponse was operative against even bulky, progressing, 
and chemoresistant NPC disease (80). 

We proceeded to conduct and complete a phase II trial 
exploring the role of cytoreductive chemotherapy followed 
by autologous CTL in previously untreated patients with 

advanced EBV-associated NPC. The patients received four 
cycles of gemcitabine and carboplatin followed by six doses 
of EBV-specific T cells (81).This combination therapy was 
well tolerated and resulted in an encouraging response 
rate of 71.4% with 3 complete and 22 partial responses. 
Moreover, the median overall survival of 29.9 months and 
the 2- and 3-year overall survival rates at 62.9% and 37.1%, 
respectively, were significantly higher than those observed 
in historical controls receiving chemotherapy alone  
(11–22 months). The study was the first in which a 
chemotherapy regimen followed by a planned cell-
therapy is given as frontline therapy for any cancer, 
allowing timely delivery of adequate CTL cells following 
chemotherapy completion. The study also had a high 
overall completion rate, with 35 of the 38 enrolled patients 
receiving the planned consolidation with EBV-specific T 
cells with no attendant grade III or IV toxicities with CTL 
therapy. A multicenter Phase III randomized control trial 
(NCT02578641) using this protocol is underway.

The Italian group had previously treated ten advanced 
NPC patients progressing after conventional therapy, using 
autologous EBV-specific T cells generated from EBV-
infected LCLs as antigen presenting cells to stimulate a 
polyclonal response to latent EBV antigens. They observed 
partial responses in two patients and stable disease in 
four others (82). The Baylor group previously observed 
10 responses in 15 patients treated with active disease  
(5 complete responses, 2 partial responses, and 3 with stable 
disease) (83,84). An additional eight patients were treated 
in their second or subsequent remission, and five remained 
free of disease with follow-up of six years. Both groups have 
attempted to improve these results by pretreating patients 
with lymphodepletion using either chemotherapy with 
cyclophosphamide and fludarabine (79) or CD45-depleting 
antibodies (78) but neither added approach improved the 
overall response rate. In the studies by both groups, the 
LCL-induced EBV-specific T cells contain T cell clones 
that target all nine latent-cycle antigens of EBV as well as 
some of the virus’s lytic antigens. The majority of the T cells, 
however, are responding to the most immunogenic antigens, 
including EBNA3 and the lytic-cycle antigens such as 
BZLF1, which are not expressed by EBV-infected NPC cells. 
Instead, the tumor cells express antigens associated with the 
type II latency pattern, including LMP1, LMP2, EBNA1, 
and BARF, which are less immunogenic and are present 
at a lower frequency in polyclonal LCL-induced EBV-
specific T cells. It is therefore notable that both groups 
have identified an association between measurable benefit 
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of EBV-specific T cells and the presence in the product 
of LMP2-reactive clones that expand in the patient after 
infusion (82,83). This observation was also seen in the 
Phase II study reported by Chia et al., who showed a 
strong association of benefit with specificity for EBV-
LMP2 in the infused line (P=0.04) (81).

Hence current studies are enriching lines for cells that 
recognize the EBV antigens expressed in NPC and other 
type II latency tumors, using either overlapping peptide 
pools pulsed on dendritic cells (85) or an adenoviral 
construct termed AdE1-LMPpoly that encodes EBNA1 
fused to CD8+ T cell epitopes from LMP1 and LMP2 
to stimulate T cells (86). The second approach has been 
tested in 16 patients with recurrent and metastatic NPC 
who received EBV-specific T cells generated by stimulation 
with AdE1-LMPpoly. After adoptive transfer, there was a 
transient increase in the frequency of T cells responding to 
LMP1, LMP2, and EBNA1. The median overall survival 
of these patients was 523 days, compared with 220 days in 
patients who did not receive T cells (86). 

Currently, several novel strategies to improve the 
activity of CTL in NPC are being explored in clinical 
trials. MALTED is testing closely matched allogeneic CTL 
(NCT01447056), and RESIST-NPC is testing CTL cell 
that additionally express Dominant Negative Receptor that 
confers them resistance to TGFbeta, a factor secreted by 
cancer cells that confers immune suppression to CTL and 
allows immune escape (NCT02065362). 

Cytokine-induced killer (CIK) cells represent a 
heterogeneous population of immune cells that have been 
expanded from peripheral blood mononuclear cells using 
cytokines. These have shown in vitro killing in a variety 
of cancers (87). NPC patients who received autologous 
CIK cell transfusion in combination with gemcitabine 
plus cisplatin chemotherapy had a higher overall survival 
and progression-free survival rates than patients with 
gemcitabine plus cisplatin chemotherapy (88) CIKs have 
also demonstrated tumor killing capacity against putative 
cancer stem cells of nasopharyngeal cancer, in pre-clinical 
models. This was demonstrated to be mediated somewhat 
via NKG2D–ligands as blocking by anti-NKG2D antibody 
significantly but partially abrogated CIK cell-mediated 
cytolysis against putative NPC cancer stem cells (89).

Future directions

The broad and potent responses of immune checkpoint 
inhibitors in a wide variety of tumors, is deepening our 

understanding of tumor immunogenicity and spearheading a 
resurgent interest in immunotherapy for NPC. As the complex 
interplay of EBV and NPC continues to be unraveled, it 
is likely that immunotherapeutic strategies will merge into 
mainstream clinical practice and offer durable remissions in 
patients with advanced NPC who are this day incurable.
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