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Background: Hepatocholangiocarcinoma (H-ChC) has the clinicopathological features of both
hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) and is a more aggressive
subtype of primary hepatic carcinoma than HCC or iCCA.

Methods: We sequenced 91,112 single-cell transcriptomes from 16 human samples to elucidate the
molecular mechanisms underlying the coexistence of HCC and iCCA components in H-ChC.

Results: We observed two molecular subtypes of H-ChC at the whole-transcriptome level (CHP and CIP),
where a metabolically active tumour cell subpopulation enriched in CHP was characterized by a cellular pre-
differentiation property. To define the heterogeneity of tumours and their associated microenvironments,
we observe greater tumour diversity in H-ChC than HCC and iCCA. H-ChC exhibits weaker immune cell
infiltration and greater CD8" exhausted T cell (Tex) dysfunction than HCC and iCCA. Then we defined
two broad cell states of 6,852 CD8" Texcells: GZMK" CD8" Tex cells and terminal CD8" Tex cells. GZMK*
CDS8" Tex cells exhibited higher infiltration of after treatment in H-ChC, the effector scores and expression
of the immune checkpoints of them greatly increased after immunotherapy, which indicated that H-ChC
might be more sensitive than HCC or iCCA to immunotherapy.

Conclusions: In this paper, H-ChC was explored, hoping to contribute to the study of mixed tumours in

other cancers.
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Introduction

Primary hepatic carcinoma is one of the most common
cancers worldwide (1), and hepatocholangiocarcinoma
(H-ChC) is a specific form of hepatic carcinoma exhibiting
the pathological features of both hepatocellular carcinoma
(HCC) and intrahepatic cholangiocarcinoma (iCCA) (2).
The true incidence of H-ChC may be underestimated
because it may be misdiagnosed as HCC or iCCA, and
most patients are inoperable (3). Moreover, the specific risk
factors associated with its development remain unknown.
Some studies have shown that the expression of nestin, a
marker of dual-potent progenitor oval cells, can be used as
a diagnostic biomarker of H-ChC (4,5). However, nestin is
expressed in only a subset of HCC and iCCA cases, and its
value for H-ChC remains to be evaluated. Therefore, the
molecular characterization of H-ChC is urgently needed to
facilitate accurate diagnosis and accelerate the development
of professional therapy.

The clonal origin of H-ChC remains a matter of debate.
H-ChC tumours exhibit a high degree of intratumoural
heterogeneity, and features associated with different
subtypes often coexist within the same tumour; further
studies are needed to better identify the different expansions
associated with different phenotypes. Although genetic
alterations may drive histological differentiation, a role of
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the microenvironment (inflammatory and immune cells,
fibroblasts, and blood vessels) cannot be ruled out. Single-
cell RNA sequencing (scRNA-seq) can provide insight into
these issues by revealing the intratumour heterogeneity and
tumour immune microenvironment (TIME) of H-ChC.

In this study, we performed scRNA-seq analysis using
tissue specimens which got from the Department of
Liver Surgery of Peking Union Medical College Hospital
(PUMCH), obtaining H-ChC patients and tissue samples of
HCC and iCCA patients used as controls. We constructed
a comprehensive atlas for H-ChC, in which the mixed
lineage tumour cells of three tumours were detected for
the first time. Our data indicate two subtypes of H-ChC:
one has a metabolism-related phenotype (CHP), and
the other has a proliferation-related phenotype (CIP),
suggesting that H-ChC could be identified through CIP
and CHP at the whole-transcriptome level. In addition, a
specific tumour cell subpopulation enriched in CHP has
characteristics of activation status [named non-quiescent
cell cycling malignant epithelial cells (NCM-Epi)], which
is more strongly related to disorders of CD8" Tex cells in
H-ChC. We also found that GZMK" CD8" Tex cells may
play a key role in clinical immunotherapy, and transcriptome
heterogeneity might be largely driven by NCM-Epi and
GZMK" CD8" Tex cell dysfunction. Our analysis is critical
for understanding the carcinogenesis of H-ChC and presents
a thorough characterization of its molecular features.

Methods
Resource availability

Lead contact

Further information and requests for resources and reagents
should be directed to and will be fulfilled by the lead
contact, Haitao Zhao (pumchzht@aliyun.com).

Material availability
"This study did not generate unique reagents.

Experimental model and subject details

Human specimens

In the Department of Liver Surgery at PUMCH, 13 cancer
patients were enrolled and pathologically diagnosed with
H-ChC, HCC, or iCCA. The patients included 11 males
and 2 females. Fresh tumour samples were surgically
dissected from the aforementioned patients. A median

HepatoBiliary Surg Nutr 2024 | https://dx.doi.org/10.21037/hbsn-23-400



HepatoBiliary Surgery and Nutrition, 2024

age of 57 years was observed among the participants, and
patient age ranged from 37 to 78 years. According to
the American Joint Committee on Cancer (AJCC) and
Barcelona Clinic Liver Cancer (BCLC) recommendations,
individuals with HCC and iCCA were divided into distinct
clinical phases. Patients with unresectable advanced
H-ChC confirmed by pathology were included in the
study, while patients with HCC or cholangiocarcinoma
were excluded. Patients who had received chemotherapy or
radiation before tumour removal were also excluded from
the study. The 10 patients with advanced H-ChC in the
cohort study had received immunotherapy-based systemic
therapy during treatment and had more than 1 measurable
lesion [according to Response Evaluation Criteria In Solid
Tumors, version 1.1 (RECIST vl1.1) criteria]. Table S1
summarizes the clinical features and follow-up information.
The studies involving human participants were reviewed
and approved by the institutional review board and ethics
committee at Peking Union Medical College Hospital (No.
JS-1391). The patients/participants provided their written
informed consent to participate in this study. The study was
conducted in accordance with the Declaration of Helsinki (as
revised in 2013).

Method details

Single-cell collection

Tissue samples were obtained by washing in ice-cold RPMI
1640 and dissociating using a Multitissue Dissociation Kit
2 following the package recommendations. The viscosity of
the homogenate was taken into consideration during DNase
treatment. After removing erythrocytes from the samples
(Miltenyi 130-094-183, Shanghai, China), the cells were
counted, and viability was determined using a fluorescence
cell analyser (Countstar® Rigel S2, Shanghai, China) with
acridine orange (AO)/propidium iodide (PI) reagent.
Removal of debris and dead cells was then performed as
needed (Miltenyi 130-109-398/130-090-101). Finally, after
a second wash in RPMI 1640, fresh cells were resuspended
in 1x PBS containing 0.04% bovine serum albumin at
1x10° cells per mL.

Generation of patient scRNA-seq data

scRNA-seq libraries were prepared with a SeekOne® MM
Single Cell 3' Library Preparation Kit (SeekGene, Beijing,
China). Briefly, an appropriate number of cells were loaded
into the flow channel of the SeekOne® MM chip with
170,000 microwells and allowed to settle in the microwells
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by gravity. After removing unsettled cells, sufficient cell-
barcoded magnetic beads (CBBs) were permitted to stay
after being pipetted into the flow path in the microwells with
the aid of a magnetic field. Excess CBBs were rinsed out,
and the cells in the MM chip were lysed to release RNA,
which was captured by the CBBs in the same microwell.
Then, all CBBs were collected, and reverse transcription
was performed at 37 °C for 30 min to label cDNA with
cell barcodes on the beads. Exonuclease I treatment
was performed to remove unused primers on the CBBs.
Subsequently, barcoded cDNA on the CBBs was hybridized
with a random primer carrying the SeqPrimer sequence on
the 5' end, which was extended to form the second strand
DNA with the cell barcode on the 3" end. The resulting
second-strand DNAs were denatured off the CBBs, purified,
and amplified by PCR. The amplified cDNA product was
then cleaned to remove unwanted fragments, a full-length
sequencing adapter was added, and the sample was indexed
by index PCR. We cleaned the indexed sequencing libraries
using SPRI beads and calculated them using quantitative
PCR (KAPA Biosystems KK4824) and an Illumina NovaSeq
6000 with a PE150 read length.

scRINA-seq data processing

SeekOne Tools were used with the scRINA-seq data to match
reads and produce gene-cell-specific unique molecular
identifiers (UMIs). We utilized the GRCH38 genome
as a guide. The Seurat methodology was then applied in
subsequent analyses (6). Using the Harmony function,
various samples were combined. Cells were subjected to
additional quality control; the high-quality cell numbers in
each group are listed in Table S1. Using the NormalizeData
function, a logarithmic data matrix was generated, and
the FindVariableFeatures function was applied to discover
genes with high variability. The dimension numbers were
reduced by T-distribution stochastic neighbour embedding
(t-SNE) implemented with the DimPlot function with
default parameters for better visibility (7).

Annotation of cell types

The expression of recognized markers was used to annotate
cell types: ALB, TF, TTR, HNF4A, CYP2A6, EPCAM,
KRT19 and CD24 for detecting hepatocholagiocyte; ALB,
TF, TTR, HNF4A4, CYP2A6 for hepatocyte; EPCAM,
KRT19 and CD24 for cholangiocyte; PDGFRB, ACTA2,
COLIA1, COL1IA2, COL3A1, DES and DCN for fibroblasts;
PECAMI, CDHS, ICAM?2, KDR and ERG for endothelial
cells (ECs); CD3D, CD3E and CD3G for T cells; CD79A4,
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CD79B, CD19 and MS4AI for B cells; CD14, CDI163,
CD68 and CSFIR for myeloid cells; and KIT, TPSABI and
TPSB?2 for mast cells. The method for identifying the three
epithelial cell types is based on the study by Li et a/. (8).
Cancer cells were identified as aneuploid cells using the R
package CopyKAT (9).

Gene programs in malignant epithelial cells

The utilization of nonnegative matrix factorization (NMF)
on tumour cells was in contradictory to previous published
articles (10), which used NMF independently for every
patient, and then used hierarchical clustering to identify
consensus expression programs across patients (11). We
believed that if we could find that heterogeneity in patient
was smaller than heterogeneity in cancer, then it would be
more necessary to perform NMF among cancers rather than
integrating the results of NMF for each patient. Therefore,
we employed two measures, mutual information (MI) and
heterogeneity score (12,13), to validate that heterogeneity of
patient was smaller than heterogeneity in cancer types. The
specific procedure involved: (I) randomly sampling 75% of
the cells for 200 rounds to identify characteristic genes; (II)
calculate cosine distances (IIT) NMF was then performed to
extract expression programs; (IV) enrichment analysis (14).
Then we identified two subtypes CHP and CIP.

Detecting the heterogeneity of malignant cells
We utilized the diversity score to quantify heterogeneity
between CHP and CIP (15).

Differences in the proportions of cell subpopulations
We used the scDC algorithm (16) to execute differential cell
type composition analysis, and a bias-free and accelerated
bootstrap calculation of cell-sort percentage comparison
was applied.

Construction of single-cell trajectories

Malignant cell transitions from one state to another were
inferred by performing partition-based graph abstraction
(Slingshot) analysis (17).

Analysis of cell-cell interactions
The correlation between immune cells and stromal cells was

predicted with iTALK (version 2.0) (18) and scCellChat (19).

Identification of signature genes
The marker genes for every group were identified using the
Seurat package’s FindAllMarkers function.
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Survival analysis

We used the R packages survival and survminer for survival
analysis. The R functions survfit() and survdiff() were
utilized to produce Kaplan-Meier survival curves, calculate
P values, and conduct log-rank testing. The tumour
response was evaluated by two independent professional
radiologists who were blinded to the therapeutic outcomes
and clinicopathological features at PUMCH according to
RECIST V1.1. Objective response rate (ORR), disease
control rate (DCR), and progression-free survival (PFS)
are acknowledged as useful clinical metrics of therapeutic
efficacy. ORR is defined as the proportion of patients who
achieved objective response, including complete remission
(CR) or partial remission (PR); DCR is the proportion of
patients who acquired objective response or stable disease
(SD); and PFS is the time from the initial dose to the first
radiologically confirmed progressive disease (PD) or death.
All of the outcomes are determined by radiology.

Quantification and statistical analysis

Statistical analysis

Statistical analyses were conducted as described in the figure
legends. The R package pwr was used to perform power
analyses.

Results

A comprebensive atlas of different cell components of
H-ChC, HCC, and iCCA

The coexistence of HCC and iCCA components in
H-ChC is an interesting phenomenon, and scRNA-seq was
performed to investigate the relationship between these
two components. Samples were obtained from 13 patients
in the Department of Liver Surgery of PUMCH (Figure
14 and Table S1), including 8 samples from 5 H-ChC
patients, 4 samples from 4 HCC patients, and 4 samples
from 4 iCCA patients. We first analysed the 15 samples
from the 12 untreated tumour patients and obtained 35 cell
subpopulations of 91,112 high-quality single cells, which
included 15,708 epithelial cells, 63,248 immune cells, and
12,156 stromal cells (Figure 1B and Figure S1).

The cells were annotated according to known cell-
specific marker genes (20-23) of epithelial cells, T cells, B
cells, fibroblasts, ECs, and myeloid cells (Figures S1B,S2A).
We observed that compared with nonepithelial cells,
epithelial cells from different patients formed farraginous
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Figure 1 A comprehensive atlas of different cell components of H-ChC, HCC, and iCCA. (A) Study details. The clinical characteristics of
the sample are shown on the left. Samples from different tumour types were collected. (B) t-SNE plot of all cells coloured by cell type. (C)
Histopathology images of samples from H-ChC, HCC, and iCCA patients. Scale bars, 50 ym. (D) The columns show the expression levels
of CK19 and Arg-1 in H-ChC, HCC, and iCCA. BCLC, Barcelona Clinic Liver Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus;
ECOG, Eastern Cooperative Oncology Group; H-ChC, hepatocholangiocarcinoma; HCC, hepatocellular carcinoma; iCCA, intrahepatic
cholangiocarcinoma; II'TH, inter- and intra-tumor heterogeneity; CNV, copy number variant; TIME, tumour immune microenvironment;
Tex, exhausted T cell; EC, endothelial cell; DC, dendritic cell; t-SNE, T-distribution stochastic neighbour embedding.
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clusters and exhibited more apparent inter- and intra-
tumor heterogeneity (II'TH) (Figure SI1A). Inter-tumour
heterogeneity refers to the heterogeneity between different
tumours, while intra-tumor heterogeneity refers to the
heterogeneity among different samples/cells within the
same tumour. The same type of cancer may present
differently in different patients, and there may also be
variations among different tumour sites within the same
patient. Subsequently, we observed differences in the
proportions of epithelial to nonepithelial cells among the
three tumours (Figure S2B-S2F), highlighting the complex
composition of the TIME in H-ChC, HCC, and iCCA.
Three tumours were verified by histopathological analysis
(Figure 1C,1D). All evidence supported the heterogeneous
landscape of primary liver cancer (PLC) biopsies observed
in the pathology images.

scRNA-seq detected farraginous-lineage tumounr cells in
H-ChC, HCC and iCCA

To characterize the underlying molecular features of tumour
cells exhaustively, we constructed an epithelial cell atlas
(Figure 24-2C) that contained 5,234 hepatocholangiocytes
(simultaneously expressing hepatocyte and cholangiocyte
markers), 6,268 hepatocytes and 3,527 cholangiocytes
(Figure S3A,S3B, Table S2) (15,24-26). At the tumour
cell level, to distinguish different pathological features of
H-ChC, single-cell copy number variants (CNVs) were
acquired through CopyKAT (9), and malignant epithelial
cells were then obtained (Figure S3C) (4,5). We found that
the proportion of tumour cells we redefined expressing well-
established marker genes of hepatocytes and cholangiocytes
ranged from 15% to 93.9% depending on the gene
expression pattern (Figure 2B-2D, Figure S3D-S3F).
Hepatocholangiocytes were observed in all the patients from
whom we isolated epithelial cells (Figure 2D), hepatocytes
were enriched in HCC, while cholangiocytes were enriched
in iCCA. In addition, these results were also confirmed
by the previously published scRNA-seq dataset (27),
in which we used the same method to calculate the
expression of the cancer-specific marker genes. A total of
69.47% (2,301 out of 3,312) of the tumour cells in H-ChC
were considered hepatocholangiocytes (Figure S3G-S31).
To investigate this further, the expression of marker genes
of hepatocytes and cholangiocytes were compared among
the three cell types (hepatocytes, cholangiocytes, and
hepatocholangiocytes). We have demonstrated through
RNA velocity that hepatocholangiocytes are a mixed cell
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type between hepatocytes and cholangiocytes (Figure 2E).
Using previously established methods, we constructed a
Markov graph from the dataset. The expression pattern
of the corresponding gene can be readily represented by a
3-coordinate ternary graph, as implemented in the ggtern
package (Figure 2F) (12). To the best of our knowledge, this
is the first work to detect farraginous-lineage tumour cells
at the single-cell level in liver cancer. All the results above
showed that hepatocholangiocytes are not unique in H-ChC
but are prevalent in most PLC patients, although not in the
same proportion.

H-ChC bas two phenotypes: CHP and CIP

Subsequently, to better identify the effect of the
malignant epithelial component on H-ChC tumour
progression, the status of the 9,347 malignant epithelial
cells (hepatocholangiocytes: 4,372; hepatocytes: 2,271;
cholangiocytes: 2,424) was characterized at single-cell
resolution (Figure S4A). It has been suggested that tumour
cells cannot be used directly for stratification (27), and we
observed that the tumour cells of HCC, iCCA, and H-ChC
were not divided by cancer subtype due to the existence of
hepatocholangiocytes (Figures S3D,S4A-54K), although the
heterogeneity between patients is significantly lower than
that between cancer types (Figure S5A-S5C).

Because the single-gene approach is often unreliable for
scRNA-seq due to common gene deletions (22,23,28,29),
the cellular composition of different components and
gene programs of tumour cells were assessed by NMF.
The NMF results showed (I) an H-ChC component that
is functionally similar to HCC with high expression of
iCCA epithelial markers (i.e., an HCC component with the
iCCA phenotype, CHP); (II) an H-ChC component that
is functionally similar to iCCA with high levels of HCC
epithelial markers (i.e., an iCCA component with the HCC
phenotype, CIP) (Figure 34,3B, Figure S4B,54C); and (III)
CHP and CIP were both enriched in H-ChC, while HCC
just comprised CHP, iCCA contained CIP merely. The
relationship between the hepatocyte/cholangiocyte scores
and the CHP/CIP phenotype, reflecting the distribution
of the three cell types in CHP and CIP based on the two
scoring measures (Figure 3B).

In this context, the biphenotype refers to the functional
similarity while having high expression of iCCA/HCC
marker genes in the same tumour cell population, rather
than being an admixture of two or more tumour cell
subpopulations. The findings support the point of view that
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H-ChC can be defined as a separate tumour from HCC and
iCCA, but we found that it also had two subtypes (CHP and
CIP), indicating that the two subtypes could be used when
it was difficult to distinguish H-ChC, HCC and iCCA by
pathology, although larger samples are still required to
verify CHP and CIP.

CHP has a metabolism-related phenotype, while CIP shows
a proliferation-related phenotype

The previous results demonstrated that H-ChC is a
separate biphenotypic cancer with two subtypes (CHP and
CIP, Figure S4B,54C). We identified subtype- and cluster-
specific gene programs by differential expression (DE)
and pathway analysis, respectively (Figure 3C-3E, Figure
S4D-S4K, Tables S3,54). Genes regulating metabolism
(including the IFN-a gene) and apoptosis-related genes
(e.g., the IFI6 gene) were enriched in CHP. IFN-a inhibits
HIF1a signalling by suppressing FosB transcription in HCC
cells, leading to a reduced glucose consumption capacity;
this process establishes a high-glucose microenvironment
and promotes the transcription of the T-cell costimulatory
molecule CD27 in infiltrating CD8" T cells through
mTOR-FoxM]1 signalling (30). It has been suggested that
IF16 negatively regulates endogenous apoptotic signalling
pathways and TNFSF10-induced apoptosis (31-33)
and exerts antiviral activity against hepatitis C virus by
inhibiting EGFR signalling (34).

In contrast, CIP exhibits a gene expression pattern of
epithelial cell proliferation, including expression of the
tumour-associated transcription factors (TFs) SOX9 (35) and
ELF3. SOXY, as a regulatory factor of epithelial progenitor
cell proliferation and differentiation (36,37), participates
in the branching morphogenesis of the lung epithelium
by balancing proliferation and differentiation (38). ELF3
plays an important role in epithelial cell differentiation and
tumorigenesis (39,40). In addition, ELF3 promotes tumour
growth by activating the NF-«B pathway (41), regulates the
apoptosis of intestinal epithelial cells in ulcerative colitis, and
regulates the cell cycle and cell proliferation in non-small
cell lung cancer and chemical lung injury (42).

To further illustrate the potential functional phenotypes
of CIP and CHP, we also used the ARACNe algorithm (43)
in VIPER to construct gene regulatory networks and
infer TF targets based on correlation to the TF protein
abundance. TFs with an adjusted P value less than 0.05
were considered significant. There were 25 significantly
activated TFs in CHP: EHF, ZNF292, SOX9, JUNB, SOX4,

© HepatoBiliary Surgery and Nutrition. All rights reserved.

ZNF165, ZNF281, HNF1B, EPASI, CSRNPI, MYRF,
MEF2D, FOSB, NR3C1, YY1, GTF2I, NPAS2, SMAD3,
YBX3, HMG20B, ELF1, ELF3, KLF3, KLF7, KLFS. And 3
significantly activated TFs in CIP: ATF6, PA2G4, GTF3A4
(Figure S5D). We found that the significantly activated TFs
in CHP targeted genes in metabolic pathways, whereas
the significantly activated TFs in CIP targeted genes in
cell proliferation (Figure SSE). These results indirectly
demonstrated the potential functions of the two molecular
subtypes. TFs were highly activated in the ARACNe
immune-suppressive biological interaction network of CHP
and CIP, which suggests that they have a certain degree of
metabolic and cell proliferation effect.

A specific subpopulation enviched in CHP has characteristics
of activation status

Subsequently, phenotypes across multiple tumours were
analysed to determine whether there is a status that could
explain the general aggressiveness of tumour cells. We
identified a subpopulation named nonquiescent malignant
epithelial cells in the cell cycle (NCM-Epi) as having a
nonquiescent cell cycle phenotype (Figure 3E-3H and
Figure S4I-S4K). Unsupervised clustering of tumour cells
confirmed 9 cell clusters, and NCM-Epi was cluster 6
(including 395 cells), which was significantly enriched in the
CHP subtype of H-ChC (Figure S4A-S4C and Table S4)
and spanned a range of H-ChC patients (Figure S3B).

Further functional analyses were used to assess whether
this population contributes to H-ChC tumorigenesis.
NCM-Epi were enriched in E2F_TARGETS and G2/M_
CHECKPOINT within HALLMARK terms (Figure S4K),
which suggests that most of the gene signatures from cells
in NCM-Epi are important factors in the cell cycle and
might be crucial for cancer progression (Figure 3E). Analysis
of the cell cycle revealed that the remaining clusters were
in the quiescent state, while most of the cells in NCM-
Epi were in the G2/M phase (with a small number being
in the G1/S phase) (Figure S41,54]). Importantly, cells in
NCM-Epi coexisted in almost all patients in this study and
had elevated expression of proliferation markers, epithelial
mesenchymal transition (EMT) markers and cell cycle
marker genes (Figure 3F and Figure S5F).

In order to further demonstrate the immunosuppressive
function of NCM-epi, TF activity for each cell was inferred
using the VIPER package (43). Activity scores for NCM-
epi and other malignant tumour cells were compared
using Student’s ¢-test and the P values were adjusted using
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the Benjamini-Hochberg method. It was found that five
TF¥Fs, DNMTI1, YXBI, GTF21, HMGAI1, and PA2GA,
were significantly activated in NCM-epi, which had been
implicated in various biological processes and diseases
(Figure 3G). Moreover, PA2GA and GTF2[ have targeting
relationships with genes in the PD1 signalling pathway
(PTEN, 7AK1, EML4, CSNK2B), with MI scores greater
than 0.5 (Figure 3H). PA2GA and GTF2I were highly
activated in the ARACNe immune-suppressive biological
interaction network of NCM-epi, which suggests that
NCM-epi has a certain degree of immunosuppressive effect
and is different from proliferating cells of other types.

Collectively, these findings suggest that NCM-Epi is
a tumour cell subpopulation with an immunosuppressive
phenotype that is selectively increased in H-ChC.
Importantly, because of their hyperactive status, NCM-
Epi cells were not expected to serve as tumour stem cells.
To this end, we conducted evolutionary analysis according
to Slingshot (17). We found that NCM-Epi could act as
the intermediate status cell subgroup (Figure S4F,S4G),
which is inconsistent with the dedifferentiated phenotype
of cancer stem cells with promiscuous signals (44,45).
However, subsequent work with an expanded cohort size is
needed to validate these results.

H-ChC shows greater exbausted CD8"* T-cell dysfunction
than HCC and iCCA

To describe the immune cell status in the H-ChC TIME,
immune cells from 7 H-ChC samples were extracted in
the cohort (N=28,760 cells), with immune cells from HCC
samples (N=20,235 cells) and iCCA samples (N=18,437
cells) used as controls (Figure 44 and Figure S6A). Taking
into account the heterogeneity in cellular composition
among patients, we estimated cell proportions using a bias-
corrected and accelerated bootstrap algorithm (BCa) (16),
which uses bootstrap resampling (1,000 times), to calculate
the standard error associated with estimates of cell type
proportion and conduct statistical analyses of the three
tumour types (Figure 4B).

The immune cell abundance can be divided into three
patterns: H-ChC enriched, HCC enriched, and iCCA
enriched. CD8" Tex, CD4" follicular helper T cell (Tth),
CD4" Treg, CD8" MAIT, CDS8" prolifer ative T cell (T'prf),
and CD8" tissue-resident memory T cell (Trm) cells were
enriched in H-ChC samples, with CXCL10" macrophages,
inflammatory carcinoma-associated fibroblasts (1ICAFs),
lymphatic ECs, and SPP1" macrophages being mostly
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enriched in iCCA samples (Figure 4B,4C, Figure S6B).
Native T cell (Tn) cells, NK cells, Tip ECs, and SLC40A1"
C1QC" macrophages were enriched in HCC, consistent
with previously reported results (46,47). These results
suggest a tumour-specific distribution of certain immune
cells. Interestingly, these cells were present simultaneously
in the TIME, suggesting a common tumour education
role of immune cells (Figure S6A and Figure 4B).
Immunosuppressive cells accounted for a substantial part
of H-ChC, comprising the surge of CD8" Tex cells and
neutrophils with potential tumour-promoting effects,
which was similar to a previous study (Figure 4C and
Figure S6B) (48).

Given the three patterns of immune cell abundance, we
hypothesized that different tumour-specific distributions
may function distinctly in the three tumours. We performed
a ligand-receptor crosstalk analysis and compared the three
tumour types (Figure 4D and Figure S6C). The total number
and strength of interactions were highest in H-ChC (Figure
S6D), followed by iCCA (weakest interaction strength) and
HCC (lowest number of interactions). Notably, the signal
fluctuation (interaction strength of incoming and outgoing)
of CD8" Tex cells was the strongest, which was obviously
higher than that of HCC and iCCA cells (Figure 4D and
Figure S6C). CXCL10" macrophages and lymphatic ECs
ranked high among the crosstalk cell types for CD8" Tex
cells in the H-ChC samples (Figure 4E and Figure S7A-
S7D). CXCL10" macrophages highly express CXCR4 (49)
and CCRI, key molecules that promote tumour stem cell-
like properties and influence stem cell proliferation (50,51)
(Figure S7A,S7B, Table S5). CCRS, a chemotactic receptor,
participates in the migration of T lymphocytes to the site
of infection (52). In contrast to CXCL10" macrophages,
we found that lymphatic ECs exhibited higher ACKR2
expression than CXCR4 or CCRI expression. By removing
chemokines from tissues, lymphatic vessel surfaces, and the
placenta, ACKR?2 plays an important role in the resolution
(termination) of the inflammatory response and in the
regulation of the adaptive immune response (53). These
data suggested that the immunological inhibition phenotype
of CXCL10" macrophages may be shaped by the suppressive
antitumour immune response in the TIME (Figure 4E).

scRNA-seq detected GZMK™ CD8" Tex cells in H-ChC,
HCC and iCCA

Previous studies have demonstrated that PD-1 pathway
blockade can terminally reduce the dysfunctional state
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of CD8" Tex cells, suggesting an extensive mechanism
for immune checkpoint blockade (ICB) therapy (54-56).
However, it is still unknown how most T cells are deprived
of their tumoricidal action and become CD8" Tex cells,
which play a major regulatory role in H-ChC. To gain
further insight into the molecular heterogeneity of
CD8" Tex cells in response to ICB therapy, we clustered
6,852 CD8" Texcells into two broad cell states, GZMK"
CD8" Tex cells and terminal CD8" Tex cells (Figure S5A-
S5C). GZMK' CDS8" Tex cells were characterized by high
expression of GZMK, while terminal CD8" Tex cells were
identified by low expression of GZMK, which was an
effector signature (Figure S8A-S8C). To address whether
tumour regression was mainly driven by these two CD8"
Tex cell states (Figure 5A), we observed a higher infiltration
of terminal CD8" Tex cells but a higher strength of
interactions for GZMK" CD8" Tex cells in the TIME of
H-ChC (Figure 5B-5D).

Since multiple mouse studies have demonstrated that
anti-PD-1 could also target other types of Tex cells to
enhance antitumour immunity (54-56). We hypothesized
that GZMK" CD8" Tex cells might interact with tumour
cells to preferentially decrease progression. We detected
the different regulatory networks of GZMK" CD8" Tex
cells based on CHP, CIP and NCM-Epi (Figure S8D,S8E).
Notably, the interaction between GZMK® CD8" Tex cells
and malignant cells in the TIME of the three tumour types
was strongest for NCM-Epi (Figure S8E).

A deeper inspection of specific cell-ligand pairs that were
enriched in CD8" GZMK" Tex cells and NCM-Epi was
conducted. Using partial correlation coefficients (PCCs)
and the gene set enrichment analysis (GSEA) algorithm (57),
we identified immune-related gene sets in NCM-Epi. All
pairs were ranked based on RS scores and then subjected to
enrichment analysis, in which COL4A42-CD44 is a specific
cell ligand pair that has been found to be enriched in CD8"
GZMK" Tex cells and NCM-Epi. COL4A?2 is a collagen
protein that plays a role in extracellular matrix assembly and
remodelling, and has been implicated in promoting tumour
invasiveness and angiogenesis. CD44 is a transmembrane
glycoprotein that is involved in cell-cell interactions and
signalling, and has been shown to be upregulated in a
variety of cancer types, where it promotes tumour cell
survival, migration, invasion and metastasis. The interaction
between COL4A2 and CD44 may thus contribute to the
infiltration and control of immune cells in the tumour
microenvironment, and potentially influence the prognosis
of cancer patients. Together, our findings suggest that these
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GZMK" CD8" Tex cells may exist in an immunosuppressed
TIME characterized by the NCM-Epi subpopulation.

GZMK'® CDS§" Tex cells may play a key role in clinical
immunotherapy

Given that most tumours regress (albeit incompletely)
during PD-1 immunotherapy, it is extremely challenging to
obtain serial clinical tumour biopsy samples from a single
patient with advanced H-ChC cancer before and during
treatment (58,59). However, we obtained a sample before the
treatment time point from the tumour of a patient (S16) who
received targeted treatment and anti-PD-1 immunotherapy
(Figure S9A). Therefore, we used scRNA-seq to investigate
the temporal dynamics of immune cells and to characterize
the features associated with immunotherapy.

We obtained the single-cell transcriptome data of 33,918
immune cells, including myeloid, mast, T and B cells,
through high-quality screening (Figure S9B,S9C, Table S6).
We also identified cell subtypes for all major cell types (Figure
6A). The abundances of major types of immune cells changed
dynamically after treatment: the numbers of lymphocytes
increased, those of myeloid cells decreased (Figure S9C), and
the tumour cells no longer existed after treatment.

Considering the significance of T cells in anti-
programmed cell death ligand 1 (anti-PD-L1) therapy,
higher levels of T cells were observed after immunotherapy
(Figure 6B and Figure S9C). Subsequently, we investigated
the temporal transcriptional dynamics of the different
T-cell subpopulations induced by treatment (Figure 6C).
Transcriptome analysis showed that the expression of
effector genes such as IFNG, GZMH, and GZMB was
upregulated after treatment, whereas the expression of
exhaustion-related genes in CD8" Tex cells, including
CTLA4 and TIGIT, was downregulated (Figure 6B,6C; Table
S7). The phenotypic transformation in CD8" Tex cells was
also manifested by a decreased exhaustion degree and an
increased effector memory score after treatment (Figure
6B-6D). In addition, H-ChC showed high infiltration
of GZMK" CDS8" Tex cells after treatment (Figure 6E),
considering that PD-1 blockade may preferentially increase
their proportions and further expand tumour-reactive
T cells following treatment (Figure 6E and Figure S9D),
which may indicate that immunotherapy would benefit
patients with advanced H-ChC.

In our analysis, we found that the deficiency of tumour
cells after immunotherapy was just one feature of H-ChC,
with stronger levels of interaction between GZMK"
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Figure 5 Cell communication network of GZMK" CD8" Tex cells and terminal Tex cells. (A) Expression levels of selected genes in CD8" Tex

subpopulations in H-ChC tumours.

* P<0.05; **, P<0.01; ***, P<0.001.

(B) Interaction strengths between selected cell types and CD8" Tex

subpopulations in H-ChC tumours. (C) Interaction strengths between selected cell types and CD8" Tex subpopulations in HCC tumours.

(D) Interaction strengths between selected cell types and CD8" Tex subpopulations in iCCA tumours. H-ChC, hepatocholangiocarcinoma;

HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; Tex, exhausted T cell.

CD8" Tex cells and other proinflammatory cells after
immunotherapy (Figure S9E) (60,61). Thus, we recruited
10 patients with advanced H-ChC into one of our real-
world studies, where they were treated with PD-1 and

© HepatoBiliary Surgery and Nutrition. All rights reserved.

lenvatinib. With a median follow-up time of 23.3 months,
the median progression-free survival (PFS) was 10.1 months
(IQR, 3.0-17.2 months) (Figure 6F). Regarding the best
overall response, according to RECIST version 1.1,
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Figure 6 CD8" Tex cells may act as a potendal driver for H-ChC development. (A) t-SNE plot of all cells coloured according to cell type.

(B) The cellular compositions of T-cell subtypes in H-ChC tumours pre- and posttreatment (left). Box plots showing the alterations in the

effector memory score of CD8" Tex cells (right, STAR Methods).

(C) Expression levels of selected genes in CD8" Tex subpopulations in

H-ChC tumours pre- and posttreatment. (D) The difference between the incoming signal strength of H-ChC pre- and posttreatment. (E)

The cellular compositions of myeloid (left) and immune (right) cell

subtypes in H-ChC tumours pre- and posttreatment. (F) Kaplan-Meier

analysis of follow-up time and PFS in an independent cohort of H-ChC patients. ***, P<0.001. TIME, tumour immune microenvironment;

H-ChC, hepatocholangiocarcinoma; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; Tex, exhausted T cell; t-SNE,

T-distribution stochastic neighbour embedding; PFS, progression-free survival.

6 patients achieved PR, 3 patients achieved SD, and 1
achieved PD. The ORR was 60%, and the DCR was 90%,
which suggests that H-ChC is more sensitive than HCC
or iCCA to immunotherapy. In further studies, H-ChC
should be considered a separate tumour and observed for its

response after immunotherapy.

© HepatoBiliary Surgery and Nutrition. All rights reserved.

Discussion

H-ChC is a rare primary hepatic carcinoma with varying
degrees of differentiation of hepatic carcinoma and
cholangiocarcinoma due to its substantial heterogeneity in
morphological, immunophenotypic, molecular, radiological,
and clinical features; this heterogeneity is a challenge to
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overcome. Our previous work, a CNV analysis based on
exome data, revealed substantial intratumour heterogeneity
within H-ChC and suggested that H-ChC is monoclonal
(4,5). The factors that determine HCC and iCCA
phenotypes in H-ChC remain to be explored (62-64).

Elucidation of the biological complexity that cannot be
described by bulk-level subtyping was sought here, and the
findings support the view that H-ChC is an independent
biphenotypic cancer, and the two components we identified,
CHP and CIP, had similar functions in iCCA and HCC,
respectively. However, CHP highly expressed iCCA
epithelial markers, and CIP highly expressed HCC markers
(Figure 3B). ScCRNA-seq affords a unique opportunity to
assess the potential for plasticity between subtypes, and
these subtypes may not have been captured by previous
techniques (22,23,65-69), particularly the specific malignant
cell state, NCM-Epi. The tumour stem cell populations
may correspond to the upstream of NCM-Epi and result
in the loss of the undifferentiated state of stem cells and/
or hepatocytes or cholangiocyte differentiation and then
generate multiple epithelial morphologies (e.g., hepatocytes
and/or cholangiocytes) owing to the promiscuous signalling
property.

In our study, we also characterized the immunogenicity
of biphenotypic carcinoma, which may drive future work
to ultimately decode the different formations of TIME
properties in biphenotypic carcinoma. Nevertheless, the
consistent presence of cold immune phenotypes (70) with
latent impacts on the determinants of the dual phenotype
of H-ChC was distinguished. We obtained pre- and
posttreatment tumour samples from a patient (P017)
receiving anti-PD-1 immunotherapy and found that the
CD8" Tex cells from this patient exhibited phenotypic
alterations after therapy, with a decreased exhaustion score
and increased effector memory score. These results may
indicate that many antigens recognized by the immune
system may be present on tumour cells in biphenotypic
carcinoma, further suggesting enhanced effector properties
after PD-L1 blockade treatment.

Furthermore, CD8" Tex cells were significantly enriched
in H-ChC, followed by iCCA and HCC. The patient had
increased levels of GZMK" CD8" Tex cells after PD-1
treatment, and we posit that inhibiting the interaction
between NCM-Epi and GZMK"™ CD8" Tex cells is a critical
step towards improving the therapeutic treatment of
H-ChC. In addition, the higher expression of TIGIT and
CTAL4 in H-ChC than in HCC and iCCA implies that

immunotherapy is more suitable for biphenotypic carcinoma.
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Moreover, potential treatment methods for biphenotypic
carcinoma should be discussed after collecting tumours from
new chemotherapy or immunotherapy groups, rather than
simply applying treatments for HCC and iCCA, although
both HCC and iCCA treatments may be effective.

Mechanistic studies employing lineage tracing models
can help locate the origins of cells of H-ChC populations.
However, our data describe the landscape of H-ChC,
HCC, and iCCA tumours in detail and reveal the impacts
of the ecological niche and malignant tumours on distinct
subtypes, thus offering valuable resources for future studies
of specific tumours. Such a detailed understanding will pave
the way for the development of targeted immunotherapeutic
strategies for specific components of TIME:s.

Conclusions

Here, we used scRNA-seq data analysis to systematically
compare the transcriptomic signatures of different cell
populations in HCC, iCCA and H-ChC, which revealed
the molecular mechanisms underlying the coexistence of
HCC and iCCA components in H-ChC.
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Figure S5 (A,B) The heterogeneity between patients is significantly lower than that between cancer types in our cohort (A) and Xue’s data (B).
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Figure S6 H-ChC shows greater exhausted CD8+ T-cell dysfunction than HCC and iCCA. (A) t-SNE projections of the nonepithelial
subsets of H-ChC, HCC and iCCA coloured by tumour type. (B) The proportions of the other nonepithelial cell subsets. The y-axis
represents the percentage (bootstrap), and the x-axis represents different tumours. The shaded areas represent the upper and lower quantile
bootstrap cell proportions. (C) The incoming interaction and outgoing interaction strengths of different cell types in H-ChC (left) and HCC
(right). (D) The total number and intensity of interactions in H-ChC, HCC and ICC. The total number and intensity of interactions were
both highest in H-ChC. H-ChC, hepatocholangiocarcinoma; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma;
t-SNE, T-distribution stochastic neighbour embedding.
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Figure S7 The interaction relationship of CD8" Tex cells. (A) iTALK analysis showing the interaction of CD8" Tex cells with CXCL10"
Macro- and lymphatic ECs. (B) Bubble heatmap showing the expression patterns of selected marker genes in distinct stromal cell subtypes.
(C) Bubble heatmap showing the expression patterns of selected marker genes in distinct myeloid cell subtypes. (D) Scatterplots showing
correlations of CD8" Tex cells with CXCL10" Macro, lymphatic ECs, and C1QC" Macro in H-ChC (left), HCC (middle) and iCCA (right).
EC, endothelial cell; H-ChC, hepatocholangiocarcinoma; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma.
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Figure S8 NCM-Epi was associated with immunosuppression and CD8" T-cell exhaustion. (A) t-SNE plot of T cells coloured according
to their cell type in H-ChC, HCC and iCCA (top). t-SNE plot of Tex cells coloured according to their cell type in H-ChC, HCC and
iCCA (middle and bottom). (B) The proportions of selected T-cell subsets. The percentage is presented along the y-axis, and the different
tumours are presented along the x-axis. (C) The proportions of selected Tex-cell subsets. The percentage is presented along the y-axis, and
the different tumours are presented along the x-axis. (D) The differential crosstalk of CHP and CIP with other cells. (E) The differential
crosstalk of cluster 6 with other cells. t-SNE, T-distribution stochastic neighbour embedding; H-ChC, hepatocholangiocarcinoma; HCC,

hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma;.
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Figure S9 CD8" Tex cells may play a key role in clinical immunotherapy. (A) t-SNE plot of all cells coloured by samples and treatment

option. (B) t-SNE plot of all cells coloured by cell type. (C) The cellular compositions of major immune cell types in H-ChC tumours

pre- and posttreatment. (D,E) Interaction strengths between selected cell types and CD8" Tex subpopulations in H-ChC tumours (pre-

vs. posttreatment). t-SNE, T-distribution stochastic neighbour embedding; H-ChC, hepatocholangiocarcinoma; HCC, hepatocellular

carcinoma; iCCA, intrahepatic cholangiocarcinoma.
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Table S1 Clinical features and follow-up information of this study

Patient Sample Sex ;g:r's HBV  HCV cirl_rir:/c?;is Alcohol iic()): ;::Ilri Pathology Differentiation nzur;nk?;r I:g Ig_;(e;
P01 So1 Male 67 0 0 0 0 2 A iCCA L-M 2 B
P02 S02 Male 59 0 0 0 0 0 A iCCA M 3 B
P03 S03 Female 57 0 0 0 0 0 A iCCA M 3 B
P04 S04 Male 53 0 0 0 1 1 A iCCA L 4 B
P05 S05 Male 56 1 0 1 1 0 A HCC M-H 3 C
P06 S06 Male 46 1 0 1 1 1 A HCC M 6 C
P07 S07 Male 78 0 1 0 0 1 A HCC M-H 1 A
P08 S08 Male 64 1 0 1 1 0 A HCC M 2 B
P09 S09,S10  Male 37 1 0 1 0 0 A H-ChC M 1 A
P10 S11,S12  Male 40 1 0 1 1 0 A H-ChC L-M 1 A
P11 S13,814 Female 52 1 0 1 0 0 A H-ChC NA 2 B
P12 S15 Male 60 1 0 1 0 1 A H-ChC NA 1 A
P13 S16 Male 53 1 0 1 0 0 A H-ChC L-M 1 A

HBV: HBV infection status of patients, 1 indicates HBV infection. HCV: HCV infection status of patients, 1 indicates HCV infection. Liver
cirrhosis: liver cirrhosis or not of patients; 1 indicates liver cirrhosis. Alcohol: degree of liver cirrhosis, 1 indicates patient drinking alcohol.
ECOG score: 0 points, the activity ability of patient is completely normal; 1 points, able to move freely and engage in light physical
activities, including general household or office work, but unable to engage in heavy physical activities; 2 points, patients can be able to
move freely and take care of oneself, but has lost the ability to work, and can wake up and exercise at least half of the day. Child score:
the lowest score for the total is 5 points, and the highest score is 15 points. Liver reserve function is divided into three levels: A, B, and
C, indicating three different degrees of liver damage (the higher the score, the worse the liver reserve function). Pathology: pathological
indications of cancer types in patients. Differentiation: L, Low differentiation; L-M, low medium differentiation; M, medium differentiation;
M-H, medium high differentiation. BCLC stage, A, liver cancer is still limited to the liver, but it is over 5 centimeters in size or has small
cancer lesions. Liver function is normal or slightly damaged, and there are no symptoms or only mild symptoms. B, liver cancer has
invaded liver blood vessels or lymph nodes, or liver function is moderately damaged, with symptoms such as abdominal pain and fatigue.
C, liver cancer has spread to surrounding tissues or organs, or liver function is severely damaged, with serious symptoms such as ascites,
jaundice. ECOG, Eastern Cooperative Oncology Group; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; H-ChC,
hepatocholangiocarcinoma; BCLC, Barcelona Clinic Liver Cancer.

Table S2 Clustering results of epithelial cell subpopulations

Cluster Cholangiocyte Hepatocyte Hepato-cholangiocyte Non-hepatobiliary
0 46 1406 1,057 3

1 1403 16 497 78

2 738 0 1,188 0

3 0 351 429 0

4 80 71 480 18

5 117 0 431 0

6 21 75 122 177

7 0 297 72 0

8 0 54 44 0
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Table S3 The results of pathway analysis for CHP and CIP

ID Description GeneRatio BgRatio P value Padjust Q value
G0:0072575  epithelial cell proliferation involved in liver morphogenesis 6/366 21/18862 2.17E-06 0.000101936 6.99E-05
GO0:1904019  epithelial cell apoptotic process 7/366 116/18862  0.007499678 0.039408852 0.027041118
G0:0030856  regulation of epithelial cell differentiation 11/366 156/18862  0.000239539 0.003483129 0.002390014
GO0:0002064  epithelial cell development 14/366 207/18862 5.54E-05 0.001199403 0.000822993
GO:0050679  positive regulation of epithelial cell proliferation 16/366 203/18862 2.35E-06 0.000108556 7.45E-05
GO0:0010631  epithelial cell migration 17/366 357/18862  0.000649938 0.007099692 0.004871586
GO0:0050673  epithelial cell proliferation 26/366 428/18862 3.15E-07 2.37E-05 1.62E-05
GO0:0044262  cellular carbohydrate metabolic process 10/215 288/18862  0.001784299 0.013594191 0.010345719
G0:0019318  hexose metabolic process 12/215 250/18862 3.13E-05 0.000474842 0.000361374
G0:0006641  triglyceride metabolic process 13/215 108/18862 3.03E-10 2.32E-08 1.77E-08
GO:0033559  unsaturated fatty acid metabolic process 14/215 115/18862 5.28E-11 5.20E-09 3.96E-09
G0:1901605  alpha-amino acid metabolic process 14/215 191/18862 4.20E-08 1.61E-06 1.22E-06
GO0:0006520  cellular amino acid metabolic process 15/215 331/18862 6.40E-06 0.000124268 9.46E-05
G0:0009259  ribonucleotide metabolic process 20/215 425/18862 9.53E-08 3.28E-06 2.50E-06
G0:0006163  purine nucleotide metabolic process 20/215 441/18862 1.73E-07 5.48E-06 4.17E-06
G0:0008202  steroid metabolic process 29/215 329/18862 1.10E-17 3.37E-15 2.57E-15
G0:0006631  fatty acid metabolic process 35/215 392/18862 2.21E-21 6.08E-18 4.63E-18
GO0:0072575  epithelial cell proliferation involved in liver morphogenesis 6/366 21/18862 2.17E-06 0.000101936 6.99E-05

GeneRatio: The number of gene in CHP and CIP, which enriched in each GO term. BgRatio: gene background in pathway analysis. P value: P value of
pathway analysis. Padjust: adjust P value of pathway analysis. Q value: q value of pathway analysis. CHP, an H-ChC component that is functionally similarity
to HCC with high expression of iCCA epithelial markers (HCC component with the iCCA phenotype, CHP); CIP: an H-ChC component that is functionally
similarity to iCCA with high levels of HCC epithelial markers (i.e., an iCCA component with the HCC phenotype, CIP).

Table S4 Sample distribution of malignant epithelial cells in each cluster

Sample Cluster0 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8
number number number number number number number number number
PO1 46 783 661 0 0 3 6 1 0
P02 10 236 301 0 1 1 5 0 0
P03 15 888 920 0 2 0 38 0 0
P04 10 4 2 0 118 0 2 0 0
P05 954 1 0 8 0 0 43 14 0
P06 3 0 0 0 0 0 2 4 31
P07 140 0 1 3 0 0 30 161 0
P08 120 1 0 5 0 0 7 183 0
P09 1,168 0 0 763 0 0 18 0 0
P0O10 12 31 12 0 36 542 3 0 0
P0O11 2 0 0 0 16 0 184 0 0
P012 1 0 0 0 27 0 1 1 0
P013 24 36 24 1 330 2 32 5 1
P014 2 0 0 0 0 0 0 0 66
P015 5 14 5 0 119 0 24 0 0
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Table S5 The ligand-receptor pairs between lymphatic EC/CXCL10" Macro and CD8" Tex cells

Ligand Receptor Cell_from_mean Cell_from Cell_to_mean Cell_to Comm_type
CTGF ITGAS 2.241534315 Lymphatic EC 2.051873601 CD8 exhausted T  Growth factor
CTGF NTRK1 2.241534315 Lymphatic EC 1.53643783  CD8 exhausted T Growth factor
HBEGF CcDh9 2.12E+00 CD8 exhausted T 0.320861407  Lymphatic EC Growth factor
CCL21 CCR7 —-0.013880989 Lymphatic EC 1.946558075 CD8 exhausted T  Cytokine
TGFB1 TGFBR2 0.584443203 CD8 exhausted T —-1.006550986 Lymphatic EC Growth factor
TGFB1 TGFBR3 0.584443203 CD8 exhausted T -1.326855207 Lymphatic EC Growth factor
VEGFA NRP2 0.995247731  CD8 exhausted T -1.078495717 Lymphatic EC Growth factor
VEGFA ITGA9 0.995247731  CD8 exhausted T -1.200254612 Lymphatic EC Growth factor
IGF1 INSR -1.213266824 Lymphatic EC 1.410906948 CD8 exhausted T  Growth factor
VEGFA KDR 0.995247731  CD8 exhausted T —-2.03562391 Lymphatic EC Growth factor
PGF NRP2 2.858365925 CD8 exhausted T -1.078495717 Lymphatic EC Growth factor
CTGF ITGB2 2.241534315  Lymphatic EC -1.854352123 CD8 exhausted T  Growth factor
CTGF LRP1 2.241534315  Lymphatic EC -1.99961507 CD8 exhausted T  Growth factor
CCL20 CXCRS3 2.713026562 CD8 exhausted T 3.268075237 CXCL10" Macro Cytokine
PDGFA PDGFRB 2.44569463  CXCL10* Macro 2.199402843 CD8 exhausted T  Growth factor
CXCL13 CXCR3 1.559592496  CD8 exhausted T 3.268075237 CXCL10" Macro Cytokine
PDCD1LG2 PDCD1 -2.153288341 CXCL10" Macro -1.968315888 CD8 exhausted T Checkpoint
PGF FLT1 2.858365925 CD8 exhausted T 1.460720315 CXCL10" Macro Growth factor
CCL2 CCR4 1.340128267 CXCL10" Macro 3.010369018 CD8 exhausted T  Cytokine
CD274 PDCD1 -1.760050494 CXCL10" Macro -1.968315888 CD8 exhausted T  Checkpoint
HBEGF CD9 2.117100193  CD8 exhausted T 1.311776193  CXCL10" Macro Growth factor
CCL5 SDC1 -0.889546203 CXCL10* Macro -2.752131668 CD8 exhausted T Cytokine
CCL3LA1 CCR5 -1.579205429 CXCL10" Macro —-1.451614317 CD8 exhausted T Cytokine
CCL19 CCRL2 —-2.098246978 CXCL10* Macro -0.923788443 CD8 exhausted T Cytokine
VEGFA FLT1 0.623892524  CXCL10" Macro 2.751450721 CD8 exhausted T Growth factor
IL16 KCNJ10 —-0.523504711 CD8 exhausted T -3.26174571  CXCL10" Macro Cytokine
CD274 PDCD1 0.991632456  CD8 exhausted T 1.715534214  CXCL10" Macro Checkpoint
CXCL12 CXCR4 -2.650115259 CXCL10" Macro -0.631616657 CD8 exhausted T Cytokine
VEGFA FLT1 0.995247731  CD8 exhausted T 1.460720315 CXCL10" Macro Growth factor
CCL5 CCR5 -0.889546203 CXCL10" Macro -1.451614317 CD8 exhausted T Cytokine

IL10 SIRPG -1.313590966 CXCL10" Macro —-0.97249241 CD8 exhausted T Cytokine
TGFB1 CD109 0.584443203 CD8 exhausted T 2.060182385 CXCL10" Macro Growth factor
VEGFB FLT1 0.784018583  CD8 exhausted T 1.460720315 CXCL10" Macro Growth factor
CCL8 CCR5 -0.783271643 CXCL10" Macro -1.451614317 CD8 exhausted T Cytokine
VEGFB FLTA 0.387632218  CXCL10" Macro 2.751450721 CD8 exhausted T Growth factor
PDGFB PDGFRB 0.475112377  CXCL10" Macro 2.199402843 CD8 exhausted T Growth factor
TNFSF14 LTBR -0.374220439 CXCL10" Macro —-2.048524671 CD8 exhausted T Checkpoint
HBEGF CD44 2.117100193 CD8 exhausted T 0.35278872  CXCL10" Macro Growth factor
VEGFA EPHB2 0.995247731  CD8 exhausted T 0.702710173  CXCL10" Macro Growth factor
HBEGF CD9 0.34170287  CXCL10" Macro 2.008261355 CD8 exhausted T  Growth factor
CCL3 CCR5 -0.469738204 CXCL10* Macro -1.451614317 CD8 exhausted T Cytokine
PDGFB S1PR1 0.475112377  CXCL10" Macro 1.307673326 CD8 exhausted T  Growth factor
TGFB1 TGFBR1 0.584443203 CD8 exhausted T 1.060594525 CXCL10" Macro Growth factor
CXCL12 ITGB1 -2.650115259 CXCL10" Macro —0.198146096 CD8 exhausted T Cytokine

IL18 CD48 -0.945599968 CXCL10" Macro -0.506412474 CD8 exhausted T  Cytokine
CCL5 CCR1 —0.708723492 CD8 exhausted T -0.608173888 CXCL10" Macro Cytokine
CCL13 CCR5 -0.265356963 CXCL10* Macro -1.451614317 CD8 exhausted T Cytokine

IL16 CD4 -0.523504711 CD8 exhausted T -0.673083462 CXCL10" Macro Cytokine
TNFSF14 TNFRSF14 -0.374220439 CXCL10" Macro -0.892274606 CD8 exhausted T Checkpoint
VEGFA SIRPA 0.995247731  CD8 exhausted T 0.320057055 CXCL10" Macro Growth factor
VEGFA ITGB1 0.995247731  CD8 exhausted T 0.2807948 CXCL10" Macro Growth factor
IL3 CSF2RB —-0.311559077 CD8 exhausted T -0.824224417 CXCL10" Macro Cytokine
ICOSLG ICOS —-0.619217922 CXCL10* Macro —-0.390355078 CD8 exhausted T Checkpoint
IL1A IL1R2 0.127680803 CXCL10" Macro 1.681488163 CD8 exhausted T  Cytokine
HBEGF CD44 0.34170287  CXCL10" Macro 0.293561862 CD8 exhausted T Growth factor
CD86 CD28 -0.090943957 CXCL10" Macro -0.992057719 CD8 exhausted T Checkpoint
IL15 IL2RG -1.060111849 CXCL10" Macro -0.06978574 CD8 exhausted T Cytokine
CD86 CTLA4 -0.090943957 CXCL10" Macro -0.435509566 CD8 exhausted T Checkpoint
IL10 IL10RA 1.466048502 CD8 exhausted T 0.021637341  CXCL10" Macro Cytokine
CCL3LA1 CCR1 —-0.014274102 CD8 exhausted T -0.608173888 CXCL10" Macro Cytokine
TNFSF9 TNFRSF9 0.042765332  CXCL10" Macro -0.654331941 CD8 exhausted T Checkpoint
IL15 IL2RB -1.060111849 CXCL10" Macro 0.0795582 CD8 exhausted T Cytokine
VEGFA ITGB1 0.623892524  CXCL10" Macro -0.198146096 CD8 exhausted T Growth factor

ligand: ligand name. receptor: receptor name. cell_from_mean: the average input signal of cells. cell_from: cell which input the signal. cell_
to_mean: the average output signal of cells. cell_to: cell which output the signal. comm_type: the type of different interactions between
ligand and receptor.
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Table S6 The count of major cell types in posttreatment sample

Major cell type Count
Epithelial cell 29
Myeloid cell 855
Stromal cell 357
T cell 3,957
Mast cell 25
B cell 615
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