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Hepatic progenitor cells (HPC) are a bipotent cell 
population of the liver that may differentiate towards 
hepatocytes or cholangiocytes (1-3). HPC are mostly 
quiescent in normal livers while proliferate following liver 
injury. The activation of HPC results in mature hepatocytes 
or mature cholangiocytes or, in case of chronic damage, 
in the appearance of “reactive” cholangiocytes (2,3). The 
latter are small cells positive for cytokeratin 7 and 19 that 
try to form new ducts but result in clusters that not encircle 
a well-defined lumen. This reactive process that, in human 
livers, is mainly localized at the interface between the portal 
and parenchymal compartments is called ductular reaction” 
(DR) (4). DR is a well-known reparative mechanism of the 
liver and several studies have shown how these reparative 
mechanisms recapitulate developmental liver morphogenetic 
processes (3,5-8). Reparative processes are different 
between biliary and hepatocellular diseases, and involve 
different signaling mechanisms, for example Notch (9-11)  
or Wnt (12) for biliary or hepatocellular specification, 
respectively. Reactive cholangiocytes are often confused 
with hepatic progenitor cells; in fact, the evidence that 
reactive cholangiocytes are bipotential is scant. In chronic 
conditions, reactive cholangiocytes correlate with fibrosis 
and disease progression, indicating that they are the result 
of pathologic, rather than physiologic repair (3). In fact, 
“reactive” cholangiocytes re-expresses growth factors, 
transcription factors and morphogens enabling an active 
cross-talk between biliary, mesenchymal, vascular and 
inflammatory cells (3,6). Among these factors, vascular 
endothelial growth factor (VEGF) and angiopoietins have 
drawn considerable attention (5,13,14). 

VEGF is a complex system of six different factors: 

VEGF-A, -B, -C, -D and -E and placenta growth factor. 
Together with its receptors VEGFR1 (Flt-1), VEGFR2 
(Flk-1), VEGFR3 (Flt-4) and angiopoietins, VEGF is 
involved in the regulation of vascular growth, permeability, 
migration and survival of endothelial cells (15). Although 
originally thought to be restricted to vascular cells, 
recent studies have shown that VEGF, together with its 
receptors, is expressed and functional also in epithelial 
cells. In particular, in cholangiocytes, VEGF-A appears 
to regulate VEGF regulate cell proliferation and cross-
talk during development, as well as in normal and diseased 
conditions (5,13,16-18). During liver development, VEGF 
is a key signal, able to link bile ducts and the network of 
capillaries emerging from the finest branches of the hepatic 
artery known as peribiliary plexus (PBP) (13). In fact, the 
developing bile ducts produce VEGF-A which in turn acts 
on endothelial cells and their precursor to promote arterial 
and PBP vasculogenesis (13). Similarly, in ductal plate 
malformations (DPM), the dysmorphic bile ducts actively 
secrete VEGF-A and are surrounded by an increased 
number of vascular structures (19). This is particular evident 
in cystic cholangiopathies where, in addition to secreting 
VEGF-A the biliary epithelium expresses VEGFR-2 
receptor, that respond to VEGF by increasing proliferation 
and cyst growth (13). Studies in animal models of Autosomal 
Dominant Polycystic Kidney Disease (ADPKD) indicate 
that VEGF stimulates the progression of liver cysts in via 
autocrine stimulation of cholangiocytes proliferation and 
paracrine induction of pericystic angiogenesis (17,18). In 
fact, VEGF induces cell proliferation through the activation 
of PKA/ERK1/2 signaling, the most important proliferative 
pathway in cholangiocytes. In turn, an altered cAMP/PKA/
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ERK1/2 signaling is responsible of the increased hypoxia-
inducible factor 1 α-mediated VEGF secretion (16-18). The 
blockade of this signaling using inhibitors of VEGFR-2 
or mTOR or cAMP production resulted in a significantly 
decreased in cyst growth (17,18). 

In this issue of Hepatobiliary Surgery and Nutrition, 
Franchitto and colleagues shows that in chronic liver 
diseases, such as primary biliary cirrhosis (PBC) and HCV-
related cirrhosis, VEGF is expressed in HPC and ductular 
reactive cells (20). In particular, the results show that 
expansion of HPC is more extensive in PBC with respect 
to HCV samples. PBC samples were also characterized 
by a more extensive angiogenesis and by an increased 
expression of VEGF-A and VEGF-C and VEGF receptors. 
Moreover, the average number of HPC expressing VEGFs 
was higher in samples with more extensive ductular reaction 
and angiogenesis. These findings are of interest because 
they are consistent with the idea that a VEGF-mediated 
cross talk between HPC/DR and endothelial cells may be 
involved in the remodeling of the vascular bed occurring in 
ductular reaction. The increased nutritional and functional 
demand is supported with changes in vascular architecture 
mediated by an increased secretion of VEGF. Furthermore, 
in PBC samples, reactive ductules were closer to fibrous 
septa and strands of ductular reactive cells penetrated in the 
cirrhotic nodules stimulating the formation of new vessels 
within fibrous septa. Interestingly, previous studies have 
shown that VEGF, released at the leading or lateral edge of 
developing fibrous septa, recruits activated hepatic stellate 
cells (HSC), which express VEGFR-1 and VEGFR-2 (21). 
In addition, in vitro experiments have shown that HSC 
migration was VEGFR-2-dependent through the activation 
of the Ras/ERK pathway. Furthermore, other studies have 
shown that in vivo administration of VEGFR-2 neutralizing 
antibody reduced neovascularization as well as fibrosis and 
the number of α-SMA positive cells in the chronic model of 
CCl4-induced fibrosis (22). 

Franchitto et al. did not find immunohistochemical 
evidence of VEGFR-2 expression in hepatic progenitor 
cells/oval cell. Unfortunately, the criteria used to distinguish 
HPC from reactive ductular cells remained unclear. Several 
studies in humans and rodent have shown that VEGFR-2 
is expressed in reactive cholangiocytes. Strong expression 
of VEGFR-2 in cholangiocytes was reported in biliary 
atresia (23,24) , in ischemia/reperfusion damage (25)  
in chronic alcoholic liver disease (26), as well as in 
developing ductal plates (5). Furthermore, VEGFR-2 is 
expressed in cholangiocytes, in several animal models of 

cholangiopathies (17,18,22) both in vitro and in vivo, After 
administration of VEGF, VEGFR-2 is phosphorylated and 
induces cholangiocytes proliferation through the activation 
of the MEK/ERK1/2 pathway (12,13,19).  

In conclusion, this study is consistent with the idea that 
VEGF is a major factor in liver repair through an autocrine 
effect on HPC/DR cell proliferation and a paracrine effect 
on surrounding endothelial cells. Exploring the complex 
interactions of HPC with surrounding inflammatory, 
mesenchymal and in the case of this study with endothelial 
cells will further enhance our understanding of physiologic 
and pathologic liver repair and, thereby, lead to new 
therapeutic possibilities.
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