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Nonalcoholic fatty liver disease (NAFLD) is regarded as 
the most frequent cause of chronic liver damage (1,2). The 
natural history of the disease presents a complex scenario 
of potential progression into severe clinical outcomes, 
including nonalcoholic steatohepatitis (NASH), NASH-
fibrosis, cirrhosis, and hepatocellular carcinoma (1,2). In 
addition, NAFLD is closely associated with comorbidities of 
the metabolic syndrome (MetS), including type 2 diabetes, 
obesity, arterial hypertension, and dyslipidemia, which 
together aggravate the morbidity and mortality associated 
with the disease. 

It is known that NAFLD pathogenesis is dictated 
by multiple factors, including the interplay between 
genetic predisposition and environmental exposure (1-3).  
Nevertheless, the molecular landscape that determines 
the disease progression is not sufficiently understood. 
This scenario suggests that the design of safe and efficient 
pharmacological interventions aimed at reverting liver 
inflammation and fibrosis—major prognostic outcomes—is 
an extremely complex process. 

In fact, there are only a few approved drugs for the 
treatment of NASH that remain untested in clinical 
practice, although many promising molecules and novel 
drug candidates are currently being investigated. The 
large proportion of these drugs are in phase II (Figure 1A).  
Hence, it is expected that it will take time to establish 
whether any of these drugs will be useful, or identify 
those that might be the most effective for treating the 

multifaceted histological conditions associated with the 
disease. Most importantly, safety of any new treatment must 
be proven. 

Drug repurposing, also known as repositioning, 
can circumvent the long time-to-market for drug  
development (4). This concept refers to repositioning 
already approved drugs for new indications, which may 
offer several advantages. Among the many opportunities, 
drug repositioning is economical and riskless, and avoids 
the need for passing lengthy clinical tests required for new 
drugs. Nevertheless, in our opinion, repositioning of an 
existing drug, rather than involving serendipity, must be 
biologically justified. 

Recent discoveries resulting from OMICS-evolving 
technologies have challenged the classical single-
level conception of “disease”, replacing it with a more 
multidimensional concept of “pathophenotypes”. It is 
then plausible to presume that the underlying mechanisms 
associated with chronic l iver damage, specifically 
inflammation and fibrogenesis, share common perturbed 
pathways as well as similar genetic and epigenetic modifiers 
(5-7). Commonality of risk and genetic factors across 
NAFLD and MetS has also been suggested (8). 

This novel approximation implies the concept of 
pathobiological processes interacting in an intricate 
network. As a proof-of-concept, we have explored to what 
extent the concept of repurposing of established medicines 
or active substances can be used for the treatment of 
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Figure 1 Tackling the complexity of NASH treatment. Machine learning approaches identify candidate targets associated with NAFLD 
progression and suggest drug repositioning as an alternative strategy until novel drugs currently in the pipeline become available. (A) 
Number of drugs in clinical trials or approved for non-alcoholic fatty liver disease. Results were retrieved from The Open Targets Platform 
(https://www.targetvalidation.org/disease), which consists of data integration for access to and visualization of potential drug targets 
associated with diseases. The search was conducted using ChEMBL, a database of bioactive drug-like small molecules, and ClinicalTrials.gov 
(https://clinicaltrials.gov), a database of privately and publicly funded clinical studies around the world; (B) Venn diagram representation of 
genes/ proteins shared between NAFLD, fibrosis, and inflammation. The search of genes/proteins was performed by literature-enrichment 
analysis offered by the Genie web server (http://cbdm.uni-mainz.de/genie), a tool that computes associations of genes with keywords (in 
our case NAFLD/NASH, inflammation, and fibrosis as three distinct concepts) using biomedical literature annotations. The diagram was 
generated using the FunRich tool available online: http://www.funrich.org; (C) gene enrichment analysis for biological processes of the 
shared list of genes/proteins obtained as the intersection set from the three gene lists using the platform NetworkAnalyst (http://www.
networkanalyst.ca). The analysis was conducted using the FunRich tool (http://www.funrich.org). Bonferroni, Benjamini-Hochberg, and 
FDR (false discovery rate) methods were used to correct for multiple testing. Pathways were ranked according to the P value (red bar) and 
P<0.05 was considered statistically significant. The blue bar indicates the percentage of altered genes in a whole pathway; (D) NAFLD/
fibrosis/inflammation gene-drug connectivity network. The network is shown as a Cytoscape graph. The training set consisted of the lists 
of genes/proteins related to NAFLD/NASH, fibrosis, and inflammation, as explained above. Prediction analysis was performed by the 
ToppCluster resource available online: https://toppcluster.cchmc.org/. The list of predicted drug terms was manually curated to highlight 
examples of drug repositioning and was restricted to the P values below 1×10–10. The enrichment map shows terms corresponding to 
selected genes/proteins in the shared gene list (red hexagons), and predicted drugs/bioactive compounds that had significance scores (orange 
squares); the complete gene-drug connectivity network is shown in Figure S1. Pink squares show predicted drugs that are shared among all 
the selected targets. STAT3, signal transducer and activator of transcription 3; PPARA, peroxisome proliferator activated receptor alpha; 
PTGS2, prostaglandin-endoperoxide synthase 2; VEGFA, vascular endothelial growth factor A; AGTR1, angiotensin II receptor type 1; 
NOS2, nitric oxide synthase 2; NOS3, nitric oxide synthase 3; NAFLD, nonalcoholic fatty liver disease.
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NASH until new drugs become available (Figure 1). We 
then combined machine learning approaches and system 
biology resources to identify candidate targets associated 
not only with NAFLD, but also with inflammation and 
fibrosis as systemic pathobiological processes, rather than 
“liver-specific” processes. Further analysis was prioritized 
to the list of genes/proteins common to NAFLD, 
inflammation, and fibrosis (see footnote of Figure 1 and 
http://hbsn.amegroups.com/public/system/hbsn/supp-
hbsn.2018.09.06-1.pdf). Not surprisingly, shared molecular 
targets were predicted to be involved in major distinctive 
pathways, including hypoxia, immune response, cytokine 
signaling, and angiogenesis (Figure 1C). Using molecular 
targets shared by NAFLD, inflammation, and fibrosis 
(http://hbsn.amegroups.com/public/system/hbsn/supp-
hbsn.2018.09.06-1.pdf, 247 genes), we found a very complex 
gene-drug connectivity network (Figure S1), which we 
manually edited to show interesting examples of potential 
repositioning-pharmacological candidates (Figure 1D). For 
example, five drugs/compounds (pioglitazone, simvastatin, 
enalapril, aspirin, and genistein) were predicted to share the 
same gene and protein network associated with the NAFLD, 
inflammation, and fibrosis (Figure 1D). This analysis 
reinforces the concept that treatment of the NAFLD-
associated conditions, including arterial hypertension, 
type 2 diabetes and dyslipidemia, with recommended and 
approved/existing drugs is not only relevant for reducing 
cardiovascular mortality, but represents a rational option 
for partially ameliorating the liver histological outcomes 
associated with poor prognosis. This approach could be 
systematically adopted to overcome the issue of long testing 
and approval process associated with the new drugs that 
are on the horizon. For example, could low-dose aspirin 
be recommended to patients with NASH not only for 
preventing ischemic heart disease but also for preventing 
liver inflammation? Even diet supplements, such as calcium, 
genistein (a natural isoflavone) or L-arginine, or a variety of 
sartans (AT1R antagonists), as well other inhibitors of the 
renin-angiotensin system with pleiotropic effects, may be 
used. A more systematic search can be done by looking at 
other examples in the complex-gene-drug network depicted 
in Figure S1.

In conclusion, it seems that NASH pharmacological 
treatment will not be successfully achieved by monotherapy. 
On the contrary, a dedicated multicomponent therapeutic 
approach might have a better chance of achieving NASH 
resolution and/or reversion of severe histological outcomes, 
and of reducing not only liver-related but also MetS-

associated morbimortality. Nevertheless, any multimodal 
therapeutic strategy must find synergy with the biological 
processes that underlie the disease pathogenesis. While 
the search for the ideal pharmacological agent continues, 
given the unmet medical need for the treatment of NASH, 
we should optimize all available options. Identifying 
repurposing opportunities should be encouraged and 
all options should be explored, including mining of 
existing scientific databases, in silico approaches, in vivo 
experiments, and post-hoc analysis of trials on drugs that 
are already approved. 
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Figure S1 NAFLD/fibrosis/inflammation gene-drug connectivity network. The network is shown as a Cytoscape graph. Details of this 
network are provided in the legend of Figure 1. NAFLD, nonalcoholic fatty liver disease.
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