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Background: Prediction models for the histological grade of hepatocellular carcinoma (HCC) remain 
unsatisfactory. The purpose of this study is to develop preoperative models to predict histological grade of 
HCC based on gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced 
magnetic resonance imaging (MRI) radiomics. And to compare the performance between artificial neural 
network (ANN) and logistic regression model.
Methods: A total of 122 HCCs were randomly assigned to the training set (n=85) and the test set (n=37). 
There were 242 radiomic features extracted from volumetric of interest (VOI) of arterial and hepatobiliary 
phases images. The radiomic features and clinical parameters [gender, age, alpha-fetoprotein (AFP), 
carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), alanine aminotransferase (ALT), 
aspartate transaminase (AST)] were selected by permutation test and decision tree. ANN of arterial phase 
(ANN-AP), logistic regression model of arterial phase (LR-AP), ANN of hepatobiliary phase (ANN-HBP), 
logistic regression mode of hepatobiliary phase (LR-HBP), ANN of combined arterial and hepatobiliary phases 
(ANN-AP + HBP), and logistic regression model of combined arterial and hepatobiliary phases (LR-AP + 
HBP) were built to predict HCC histological grade. Those prediction models were assessed and compared.
Results: ANN-AP and LR-AP were composed by AST and radiomic features based on arterial phase. 
ANN-HBP and LR-HBP were composed by AFP and radiomic features based on hepatobiliary phase. 
ANN-AP + HBP and LR-AP + HBP were composed by AST and radiomic features based on arterial and 
hepatobiliary phases. The prediction models could distinguish between high-grade tumors [Edmondson-
Steiner (E-S) grade III and IV] and low-grade tumors (E-S grade I and II) in both training set and test set. In 
the test set, the AUCs of ANN-AP, LR-AP, ANN-HBP, LR-HBP, ANN-AP + HBP and LR-AP + HBP were 
0.889, 0.777, 0.941, 0.819, 0.944 and 0.792 respectively. The ANN-HBP was significantly superior to LR-
HBP (P=0.001). And the ANN-AP + HBP was significantly superior to LR-AP + HBP (P=0.007). 
Conclusions: Prediction models consisting of clinical parameters and Gd-EOB-DTPA-enhanced MRI 
radiomic features (based on arterial phase, hepatobiliary phase, and combined arterial and hepatobiliary 
phases) could distinguish between high-grade HCCs and low-grade HCCs. And the ANN was superior to 
logistic regression model in predicting histological grade of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common 
cancer in the world and the second leading cause of cancer-
related death (1). Surgical resection and liver transplantation 
are potential curative treatments for HCC patients (2), but 
postoperative recurrence is common. The recurrence rate 
of HCC after resection is up to 70% (3). Histological grade 
is one of the most important predictors of postoperative 
recurrence and prognosis in HCC patients (4-7). Compared 
with moderately differentiated and highly differentiated 
HCCs, poorly differentiated HCCs often indicate poor 
survival (8). Oishi et al. concluded that liver transplantation 
is not recommended for patients with poorly differentiated 
HCC >3 cm (9). Okusaka et al. reported that patients with 
poorly differentiated HCC need more extensive treatment 
for a large safety margin and more frequent posttreatment 
follow-up (10). Biopsy, as the only preoperative method for 
obtaining tumor histopathological information, is invasive 
and has sampling errors. Thus, accurate assessment of 
HCC histological grade based on preoperative imaging is of 
paramount importance for treatment planning, prognosis, 
and postoperative management. 

Radiomics is an emerging field of research that focus 
on high-throughput extraction of massive amounts of 
information and complex, hidden information based on 
statistics in medical images (11). Radiomics has been used 
for a variety of biological behavioral assessments (tumor 
recurrence, prognosis and histological grade) of various 
types of tumors (12-14). Computed tomography (CT) 
texture features, non-contrast-enhanced magnetic resonance 
imaging (MRI) radiomics signature, and Gd-DTPA 
contrast-enhanced MRI radiomics have been potentially 
applied to the prediction of preoperative HCC histological 
grade (15-17). 

Gadolinium-ethoxybenzyl diethylenetriamine pentaacetic 
acid (Gd-EOB-DTPA) is a hepatocyte-specific contrast 
agent. Observational studies have confirmed that Gd-EOB-
DTPA-enhanced MRI plays an important role in predicting 
HCC histological grade (18-20). Recently, Kim et al. 

reported that radiomics on Gd-EOB-DTPA-enhanced MRI 
could predict early (≤2 years) and late recurrence (>2 years)  
after curative resection of single HCC patients (21). 
However, no one has attempted to predict histological 
grade of HCC with radiomic features on Gd-EOB-DTPA-
enhanced MRI. 

Artificial neural network (ANN) is a commonly used 
machine learning method, consisting of a set of highly 
interconnected processing units (neurons), which are 
connected together by weighting (22). The network 
consists of input layer, output layer and one or more hidden 
layers. Hidden units enable neural networks to encode 
the nonlinear relationship between input and output (23). 
The interaction between many factors related to clinical 
decision is complex and nonlinear (24,25). Traditional linear 
discriminant analysis is difficult to distinguish categories. 
ANN can fit the non-linear mapping of any relation with 
any accuracy for the multi-dimensional radiomics, and 
become a potential application tool to predict the clinical 
points (26,27). In epidemiology and medicine, logistic 
regression is one of the most commonly used multivariate 
analysis for classification (28). ANN is found to be superior 
to logistic regression model in predict histopathological 
characteristics of HCC (29). 

Thus, the purpose of this study was to develop 
preoperative models to predict histological grade of HCC 
based on Gd-EOB-DTPA-enhanced MRI radiomic features 
and clinical parameters. And to compare the performance 
between ANN and logistic regression model. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://hbsn.amegroups.
com/article/view/10.21037/hbsn-19-870/rc).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by local institutional review board (No. 
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2019AE01036), and informed consent from patients was 
waived due to its retrospective nature. From September 
2014 to July 2018, 284 HCC patients were confirmed by 
pathological findings. The inclusion criteria were: (I) with 
definite Edmondson-Steiner (E-S) grade classification from 
postoperative pathology; (II) with complete Gd-EOB-
DTPA-enhanced MRI within 3weeks before treatment 
initiation. The guidelines for receiving Gd-EOB-DTPA-
enhanced MRI in our institution referred to the updated 
Asian Pacific Association for the Study of the Liver (APASL) 
and Japan Society of Hepatology-Liver Cancer Study 
Group of Japan (JSH-LCSGJ) diagnostic algorithm (30,31). 
The exclusion criteria were: (I) with any systemic or local 
anti-tumor treatment such as radiofrequency or microwave 
ablation, transcatheter arterial chemoembolization (TACE), 
or molecular targeted therapy before surgery (n=63); (II) 
without complete clinical or laboratory data (n=21); (III) 
poor MRI quality due to artifact (n=9). 

Finally, a total of 122 HCC patients were enrolled in our 
research cohort, 105 males and 17 females, with an average 
age of 58.2±10.1 years (range, 35–84 years). Patients were 
randomly assigned to the training set (n=85, 70%) and 
the test set (n=37, 30%). The flowchart of inclusion and 
exclusion is shown in Figure 1. The clinicopathological 
information are summarized in Table 1. The flow-chart of 
the whole study is shown in Figure 2.

The clinical parameters, gender, age, alpha-fetoprotein 
(AFP), carcinoembryonic antigen (CEA), carbohydrate 
antigen 19-9 (CA19-9), alanine aminotransferase (ALT), 
and aspartate transaminase (AST), were obtained from 
electronic medical record system.

MR examination

All patients underwent routine Gd-EOB-DTPA-enhanced 
MR examination. Before the examination, each patient 
fasted for 6 hours and received breathing training. MR 
examination was performed using a whole body 3.0 T 
scanner (Ingenia 3.0 T, Philips Healthcare, Best, The 
Netherlands) with a 32 channels dStream Torso coil. The 
scan range was set from right side diaphragm to the level 
of the renal hilum. All patients received a rapid bolus of 
0.025 mmol/kg body weight (0.1 mL/kg) gadoxetic acid 
(Primovist; Bayer Schering Pharma AG, Berlin, Germany) 
at a rate of 1 mL/s, immediately followed by a 10 mL saline 
flush using an automatic power injector (Medrad Spectris 
Solaris EP MR Injector System; One Medrad Drive 
Indianola, PA, USA).

We obtained unenhanced and triple-arterial-phase 
(with a fixed 18-s scanning delay, each of these data sets 
lasted only 8 s), portal-phase (60 s), late-phase (3 min), and 
hepatobiliary phase (15 min) images using a T1-weighted 

Figure 1 Flow-chart of inclusion and exclusion of this study. HCC, hepatocellular carcinoma; Gd-EOB-DTPA, gadolinium-ethoxybenzyl 
diethylenetriamine pentaacetic acid; MRI, magnetic resonance imaging.

HCC patients were confirmed by pathological findings between Spetember 
2014 and July 2018 (n=284)

Inclusion criteria (n=215)
(1) With definite Edmondson-Steiner grade classification from pathology;
(2) With complete Gd-EOB-DTPA-enhanced MRI within 3 weeks before 
treatment initiation

Exclusion criteria (n=93)
(1) With systemic or local anti-tumor treatment before surgery (n=63);
(2) Without complete clinical or laboratory data (n=21);
(3) Poor MRI quality due to artifact (n=9)

HCC patients (n=122)

Training set (n=85) Test set (n=37)
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3D turbo-field-echo (TFE)sequence with a multi-echo 
Dixon fat-water separation technique. The triple-arterial-
phase and hepatobiliary phase MRI parameters included 
repetition time (TR)/echo time (TE), 3.7 ms/1.32 ms, 
2.4 ms; matrix size, 268×236; section thickness, 5 mm; 
reconstruction section thickness, 2.5 mm; field of view, 
400×352; flip angle, 10°. 

Axial  T2 weighted images  were obtained with 
respiratory-triggered turbo spin-echo sequence without fat-
saturation (TR/TE, 582 ms/70 ms; matrix size, 252×217; 
section thickness, 5 mm; field of view, 350×400; flip angle, 
90°). The parameters for diffusion-weighted imaging (b=0, 
800 s/mm2) were as follows: TR/TE, 2,944 ms/57 ms; 
matrix size, 120×116; section thickness, 6 mm; field of view, 
360×360; flip angle, 90°.

MRI radiomics analysis

Two radiologists (Y.M. and Y.Z., with 4 and 8 years’ 
experience in abdominal radiology, respectively), who 
were blinded to clinicopathological information of 
patients, analyzed Gd-EOB-DTPA-enhanced MR images 
independently. The second phase of the triple-arterial-
phase (arterial phase) and hepatobiliary phase images at 
2.5-mm thickness (DICOM) of all patients were obtained 
from a picture archiving and communication system 
(PACS). We drew regions of interests (ROIs) of the whole 
tumor (including necrosis or cystic components) manually 
layer by layer on the arterial phase and hepatobiliary 
phase MR images separately with an in-house software 
(Image Analyzer 1.0, China), carefully avoiding the liver 
parenchyma and vessels around the tumor and the adjacent 
adipose tissue of abdominal cavity. Four tumors’ boundary 
was slightly unclear on the arterial phase image. The 
completed ROI of tumor on hepatobiliary phase image was 
automatically copied to the arterial phase image. Then ROI 
on the arterial phase image was fine-tuned. Volumetric of 
interest (VOI) of tumor was obtained after reconstruction. 
A total of 121 radiomic features were extracted from each 
VOI, including histogram features (n=19), shape features 
(n=10), texture features (n=23×4) from gray-level run-length 
matrix (GLRLM) and gray-level co-occurrence matrix 
(GLCM) (Table S1). To verify the robustness of the features, 
intraclass correlation coefficients (ICCs) were used to assess 
the interobserver agreement of the feature extractions. 
Features with an ICC lower than 0.75 were excluded from 
the final feature dataset. The average obtained by the two 
radiologists was used as the final result. 

Table 1 The clinicopathological information of hepatocellular 
carcinoma patients

Characteristics Value

Gender 

Male 105

Female 17

Age (years) 58.2±10.1

Chronic viral hepatitis

Hepatitis B virus infection 101

Hepatitis C virus infection 9

Other 12

Liver cirrhosis

With 96

Without 26

AFP

>10 ng/mL 78

≤10 ng/mL 44

CEA

>5 ng/mL 4

≤5 ng/mL 118

CA19-9

>39 U/mL 17

≤39 U/mL 105

ALT 38.6±37.5

AST 34.8±27.8

TNM stage

I 71

II 41

III 10

E-S grade 

I 14

II 65

III 41

IV 2

TNM stage is determined based on the 7th edition of the 
AJCC/UICC staging system. AFP, alpha-fetoprotein; CEA, 
carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; ALT, 
alanine aminotransferase; AST, aspartate transaminase; E-S grade, 
Edmondson-Steiner grade classification; AJCC, American Joint 
Committee on Cancer; UICC, Union for International Cancer Control.

https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
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E-S grade 

A pathologist (J.C., with 15 years’ experience in surgical 
pathology) reviewed hematoxylin-eosin staining slices 
microscopically to confirm histological grade of HCCs. 
According to the E-S grade classification, the histological 
grade was subclassified to E-S grade I to IV (32). E-S grade 
I and II corresponded to low-grade tumors, and E-S grade 
III and IV corresponded to high-grade tumors (33). 

Statistical analyses 

Shapiro-Wilk test and Levene test was used for normality 
and equality of variance respectively. ICC was firstly used 
to determine the reliability of each parameter between the 
two independent radiologists (ICC values greater than 0.75 
indicate good reliability). The Gd-EOB DTPA-enhanced 
MRI radiomic features and preoperative clinical parameters 
were compared between low-grade tumors and high-grade 
tumors using permutation test. Decision tree was used 
for further parameter selection (34). Parameters selected 

by decision tree were used to build ANN and logistic 
regression model to predict histological grade of HCC. The 
probability of presence of the interest was obtained by the 
formula of logistic regression model: p = 1/[1 + e−logit(p)], and 
logit (p) = b0 + b1x1 + b2x2 + b3x3 + b4x4 + ... + bkxk. ANN is a 
three-layer feedforward neural network with input nodes 
(clinical parameters or radiomic features), 23 neurons in 
the hidden layer, and one output neurons (high-grade 
HCC or low-grade HCC). The learning rule used here 
was back propagation of error, which adjusts the internal 
parameters of the network over the repeated training 
cycles to reduce the overall error (23). Area under a 
receiver operating characteristic (ROC) curve (AUC) was 
used to assess the performance of the prediction model. 
The best cutoff value for the output value of the model is 
obtained at the most approximate index. Delong’s test (35)  
with a significant level of 0.05 was used to compare 
differences in AUCs of the prediction models. Decision 
curve analysis was used to assess the net benefits from 
different prediction models. Prediction models were 

Figure 2 The flow-chart of the whole study. ROC, receiver operating characteristic.

MR imaging Feature extraction Feature selection Model evaluation

Shape features

 Histogram features Mean value comparison ROC curve

Decision tree

Texture features

Decision cure analysis
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built by Python 3.7 (Amsterdam, Netherlands). Other 
statistical analyses were conducted using R 3.5.1. A two-
tailed P value less than 0.05 was considered statistically 
significant.

Results

The baseline clinicopathological information of 122 HCC 
patients is shown in Table 1. The 122 HCC specimens were 
separated into 79 low-grade tumors (14 E-S grade I tumors 
and 65 E-S grade II tumors) and 43 high-grade tumors (41 
E-S grade III tumors and 2 E-S grade IV tumors). 

Interobserver reproducibility calculation 

AUC low (ICC value, 0.638), compactness 2 (ICC value, 
0.513), sphericity (ICC value, 0.290), and cluster shade 
(ICC value, 0.655) were excluded from the arterial phase 
MRI radiomic dataset, and ICC values for the remaining 
48 arterial phase MRI radiomic features between two 
radiologists ranged from 0.840 to 1.000. Meanwhile, 
only sphericity (ICC value, 0.428) was excluded from the 
hepatobiliary phase MRI radiomic dataset, and ICC values 
for the remaining 51 hepatobiliary phase MRI radiomic 
features between two radiologists ranged from 0.757 to 
1.000 (Table S2). 

Differences of clinical parameters and MRI radiomic 
features between low-grade tumors and high-grade tumors

AFP and AST were significantly higher in patients with 
high-grade tumors than those with lower-grade tumors 
(505.77±685.94 vs.  230.10±824.16, 46.62±44.94 vs. 
31.57±20.37, P<0.001, P=0.02, respectively). MRI radiomic 
features based on arterial phase image (n=39) and hepatobiliary 
phase image (n=43) differed significantly between low-grade 
tumors and high-grade tumors (Table S3).

Features selected by decision tree

Decision tree selected AST and 5 radiomic features based 
on arterial phase MR image(standard deviation，maximum, 
entropy, s-sDav distribution width, inverse variance) for the 
LR-AP and ANN-AP (Figure S1A). Decision tree selected 
AFP and 8 radiomic features based on hepatobiliary phase MR 
image (max frequency, mode, minimum, the 10th percentile, 
s-sDlowest, AUC low, compactness2, inverse difference 
normalized) for the LR-HBP and ANN-HBP (Figure S1B). 

At the same time, decision tree selected AST and 6 radiomic 
features based on arterial and hepatobiliary phases MR images 
(energy-AP, AUC low-HBP, mode-HBP, inverse variance-
AP, inverse difference moment normalized-AP, maximum-AP) 
for LR-AP + HBP and ANN-AP + HBP (Figure S1C). The 
calculation formula or notes for the radiomic features selected 
by decision trees were showed in Supplement I.

ANN-AP and LR-AP 

ANN-AP has 6 input nodes (AST, standard deviation, 
maximum, entropy, s-sDav distribution width, inverse 
variance). The AUC, sensitivity and specificity of ANN-
AP were 0.945, 0.980, 0.962 in the training set, and 0.889, 
0.913, 0.882 in the test set. Logit (p) of LR-AP = 0.285144 × 
AST − 0.3999 × standard deviation + 0.650041 × maximum 
+ 0.106613 × entropy − 0.22434 × s-sDav distribution 
width + 0.697344 × inverse variance − 0.14349. The AUC, 
sensitivity and specificity of LR-AP were 0.805, 0.627, 0.962 
in the training set, and 0.777, 0.652, 0.882 in the test set 
(Table 2) (Figure 3A).

ANN-HBP and LR-HBP

ANN-HBP has 9 input nodes (AFP, max frequency, mode, 
minimum, the 10th percentile, s-sDlowest, AUC low, 
compactness2, inverse difference normalized). The AUC, 
sensitivity and specificity of ANN-HBP were 0.975, 1.000, 
0.970 in the training set, and 0.941, 0.979, 0.926 in the test 
set. Logit (p) of LR-HBP = −0.19038 × AFP + 1.07289 × 
max frequency + 9.477355 × mode + 1.265287 × minimum 
− 13.3298 × the 10th percentile + 1.911985 × s-sDlowest 
− 0.02488 × AUC low − 0.49382 × compactness2 − 0.1581 
× inverse difference normalized + 0.724399. The AUC, 
sensitivity and specificity of LR-HBP were 0.820, 0.783, 
0.788 in the training set, and 0.819, 0.883, 0.722 in the test 
set (Table 2) (Figure 3B).

ANN-AP + HBP and LR-AP + HBP

ANN-AP + HBP has 7 input nodes (AST, energy-AP, 
AUC low-HBP, mode-HBP, inverse variance-AP, inverse 
difference moment normalized-AP, maximum-AP), the 
AUC, sensitivity and specificity of ANN-AP + HBP were 
0.953, 1.000, 0.792 in the training set, and 0.944, 0.840, 
0.998 in the test set. Logit (p) of LR-AP + HBP = 0.601374 
× AST − 0.147834 × mode (HBP) − 0.218004 × AUC low 
(HBP) – 0.149234 × maximum (AP) − 0.596663 × energy 

https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
https://cdn.amegroups.cn/static/public/HBSN-19-870-supplementary.pdf
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(AP) + 2.033877 × inverse difference moment normalized 
(AP) − 1.153323 × inverse variance (AP) + 0.272895. The 
AUC, sensitivity and specificity of LR-AP + HBP were 
0.921, 0.773, 0.979 in the training set, and 0.792, 0.680, 
0.854 in the test set (Table 2) (Figure 3C).

Comparison for different prediction models in the test set

As shown in Table 3, the difference between ANN-HBP 
and the LR-HBP was statistically significant (P=0.001). 
And there was significant difference between ANN-AP + 
HBP and the LR-AP + HBP (P=0.007). As shown in Figure 
4A, ANN-AP provided a better net benefit to differentiate 
HCC grades than LR-AP for threshold probabilities of 
50–66% in the test set. As shown in Figure 4B, ANN-HBP 
provided a better net benefit to differentiate HCC grades 
than LR-HBP for threshold probabilities of more than 20% 
in the test set. As shown in Figure 4C, ANN-AP + HBP 
provided a better net benefit to differentiate HCC grades 
than LR-AP + HBP for threshold probabilities of more than 
10% in the test set. 

Discussion

We compared the differences of the clinical parameters and 
Gd-EOB-DTPA enhanced MRI radiomic features (based 
on arterial phase and hepatobiliary phase) between low-

grade HCCs and high-grade HCCs. ANN and logistic 
regression models composed of MRI radiomic features 
and clinical parameters were established for predicting 
histological grades of HCC preoperatively.

There were significant differences in MRI radiomic 
features (based on arterial phase and hepatobiliary phase) 
between low-grade and high-grade HCCs. Histogram 
reflects heterogeneity or distribution of voxel values and 
texture reflects the relationship of voxel measures with 
neighboring voxels. Many studies have shown that the 
relative signal intensity of tumors (18,20) and subjective 
imaging features (36) on the arterial phase and hepatobiliary 
phase MR images different significantly between high-
grade and low grade HCCs. Taking voxels as a unit, we 
analyzed the distribution of signals on the arterial phase and 
hepatobiliary phase images. We proved that a large number 
of hidden radiomic features had significant differences 
between different grades of HCC, which were expected to 
become a new tool for predicting HCC histological grade.

We found significant differences in entropy and entropy 
(H) on arterial phase and hepatobiliary phase MR images 
between low-grade and high-grade HCCs. Although no 
definite relationship between entropy (based on MRI texture 
analysis) and histological grade of HCC has been reported, 
some studies have reported that entropy in the hepatobiliary 
phase was significantly associated with early recurrence and 
prognosis in HCC patients (37,38). In addition, entropy 

Table 2 Performance of ANN model and LR model in differentiating different histological grades

Models AUC (95% CI) Sensitivity Specificity

Training set ANN-AP 0.945 (0.865–1.000) 0.980 0.962

LR-AP 0.805 (0.710–0.901) 0.627 0.962

ANN-HBP 0.975 (0.925–1.000) 1.000 0.970

LR-HBP 0.820 (0.724–0.917) 0.783 0.788

ANN-AP + HBP 0.953 (0.907–0.998) 1.000 0.792

LR-AP + HBP 0.921 (0.856–0.986) 0.773 0.979

Test set ANN-AP 0.889 (0.804–0.974) 0.913 0.882

LR-AP 0.777 (0.681–0.864) 0.652 0.882

ANN-HBP 0.941 (0.886–0.995) 0.979 0.926

LR-HBP 0.819 (0.742–0.895) 0.883 0.722

ANN-AP + HBP 0.944 (0.887–0.996) 0.840 0.998

LR-AP + HBP 0.792 (0.681–0.904) 0.680 0.854

ANN, artificial neural network; LR, logistic regression; AP, arterial phase; HBP, hepatobiliary phase; AUC, area under the receiver operating 
characteristic curve; CI, confidence interval.
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based on MRI texture analysis was confirmed to be effective 
for grading renal cell carcinoma, pancreatic neuroendocrine 
tumor and gliomas (39-41). In this study, we also found that 
some histogram features on arterial phase and hepatobiliary 
phase MR images (mean, minimum, maximum, the nth 
percentile, etc.) of low-grade tumors were significantly 
higher than those of high-grade tumors. Zhou et al. had 
similar findings as us, they demonstrated that the mean 
intensity value in the arterial phase of low-grade HCCs was 
significantly higher than that of high-grade HCCs, which 
may be owing to more necrotic components in the high-
grade HCCs (17). Chang et al. illustrated that low-grade 
HCCs had significantly higher relative intensity ratio (signal 
intensities of the HCC/signal intensities of the adjacent 
liver parenchyma) in the arterial phase and hepatobiliary 
phase than high-grade HCCs (42), which also supported 
our findings. Oh et al. found that the mean of positive 
pixels of HCCs based on CT texture analysis in the arterial 
phase was positively correlated with histological grade of  
tumors (15), which was not in conflict with our findings, 
because the mean on the arterial phase images in our study 
was the average pixel value including the necrotic components.

In our study, prediction models based on Gd-EOB-
DTPA-enhanced MRI radiomic features could distinguish 
between high-grade HCCs and low-grade HCCs, with 
AUCs of 0.805−0.975 in the training set and AUCs of 
0.777 to 0.944 in the test set. Zhou et al. declared that 
the mean value and grey-level run-length non-uniformity 
(GLN) based on Gd-DTPA-enhanced MRI texture analysis 
were associated with the pathological grade of HCC (with 

Table 3 Delong test for the prediction models in the test set

Models P value

ANN-AP vs. LR-AP 0.093

ANN-HBP vs. LR-HBP 0.001*

ANN-AP + HBP vs. LR-AP + HBP 0.007*

ANN-AP vs. ANN-HBP 0.318

ANN-AP vs. ANN-AP + HBP 0.306

ANN-HBP vs. ANN-AP + HBP 0.974

LR-AP vs. LR-HBP 0.487

LR-AP vs. LR-AP + HBP 0.633

LR-HBP vs. LR-AP + HBP 0.524

*, P<0.05. ANN, artificial neural network; LR, logistic regression; 
AP, arterial phase; HBP, hepatobiliary phase. 

Figure 3 ROC curve for differentiating different histological 
grades in test set: comparison between ANN-AP and LR-AP (A), 
comparison between ANN-HBP and LR-HBP (B), and comparison 
between ANN-AP + HBP and LR-AP + HBP (C). ROC, receiver 
operating characteristic; ANN, artificial neural network; AP, arterial 
phase; LR, logistic regression; HBP, hepatobiliary phase.
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Figure 4 Decision curve analysis for the prediction model evaluation in the test set: comparison between ANN-AP and LR-AP (A), 
comparison between ANN-HBP and LR-HBP (B), and comparison between ANN-AP + HBP and LR-AP + HBP (C). ANN, artificial 
neural network; AP, arterial phase; LR, logistic regression; HBP, hepatobiliary phase.
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AUCs of 0.827–0.918) (17), but they had a very limited 
number of cases, with only 46 HCC patients, and without 
further testing. Wu et al. established the combined models 
composed of clinical factors and radiomics signatures (based 
on T1WI images, T2WI images and combined T1WI and 
T2WI images) to distinguish between low grade tumors 
(E-S grades I, I–II and II) and high grade tumors (E-S 
grades II–III, III, III–IV and IV), with AUCs from 0.742 
to 0.800 for the test dataset (16), which was inferior to us. 
This may be because Gd-EOB-DTPA-enhanced MRI 
radiomic features can provide more information about the 
heterogeneity of tumors. We found no significant difference 
between ANN-AP and ANN-HBP in distinguishing HCC 
grades. And there was no significant difference between LR-
AP and LR-HBP in distinguishing HCC grades. However, 
Chang et al. believed that the relative intensity ratio (signal 
intensities of the HCC/signal intensities of the adjacent 
liver parenchyma) in the arterial phase performed better 
than that in the hepatobiliary phase in grading HCCs (AUC, 
0.95 vs. 0.70) (42). They believed that the background of 
cirrhosis weakened the ability of signal intensities in the 
hepatobiliary phase of HCCs to differentiate tumor grade. 
Nevertheless, a large proportion of patients with cirrhosis 
were also included in our cohort (77/122, 63.11%). Of 
course, research methods are fundamentally different 
between us, and the MRI radiomic features based on 
hepatobiliary phase may have captured more information. 
We found that ANN-AP performed better than LR-AP, 
ANN-AP + HBP performed better than LR-AP + HBP 
in grading HCCs. ANN is superior to the conventional 
statistical linear approach, which is increasingly being used 
in clinical research (43). Cucchetti et al. also found that 
ANN model performed better than logistic regression 
model in predicting tumor grade of HCC (AUC, 0.94 vs. 
0.85), which confirmed our results (29). 

There were some limitations in our research. Firstly, it 
was a single-center retrospective study in which selective 
bias was inevitable. Although we have done internal 
validation, further external validation is needed to confirm 
the reliability of the model. Secondly, the number of E-S 
grade I and E-S grade IV was limited, but we concentrated 
on the differentiation between low-grade tumors and high-
grade tumors, rather than between four E-S grades. Thirdly, 
different MR machines and scanning parameters may affect 
the extraction of radiomic features, which may limit the 
application of the model to some extent. Finally, our models 
only contained some clinical parameters and MRI radiomic 
features (based on arterial phase and hepatobiliary phase). 

In the future, we will try to analyze macroscopic imaging 
features of Gd-EOB-DTPA-enhanced MRI and radiomic 
features of more sequences of MRI.

In conclusion, our study found that combined models 
consisting of clinical parameters and Gd-EOB-DTPA-
enhanced MRI radiomic features (based on arterial phase, 
hepatobiliary phase, and combined arterial and hepatobiliary 
phases) could distinguish between high-grade HCCs and 
low-grade HCCs. And the ANN was superior to logistic 
regression model in distinguishing HCC histological 
grades.
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Supplementary

Table S1 Gd-EOB-DTPA-enhanced MRI radiomic features extracted from the volumetric of interest of hepatocellular carcinoma

Category Features

Histogram features (n=19) Mean, standard deviation, max frequency, mode, minimum, maximum, the 5th percentile, the 10th 
percentile, the 25th percentile, the 50th percentile, the 75th percentile, the 90th percentile, skewness, 
kurtosis, entropy, AUC low, s-sDlowest, s-sDav distribution width, histogram width

Shape features (n=10) Area, volume, surface area, compactness1, compactness2, volume diameter, spherical disproportion, 
sphericity, surface volume ratio, elongation

Texture features (n=23×4) Entropy (H), energy, correlation, inverse difference moment normalized, cluster shade, cluster prominence, 
cluster tendency, auto correlation, dissimilarity, homogeneity1, homogeneity2, inverse difference 
normalized, inverse variance, max probability, variance, grey level nonuniformity, run length nonuniformity, 
low grey level run emphasis, high grey level run emphasis, short run low grey level emphasis, short run high 
grey level emphasis, long run low grey level emphasis, long run high grey level emphasis

Texture features (23×4) were extracted from four GLRLMs and four GLCMs, when the direction angle θ of matrix was set to 0°, 45°, 90° 
and 135° respectively. Gd-EOB-DTPA, gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid; MRI, magnetic resonance imaging.



Table S2 Intraclass correlation coefficients (ICC) for Gd-EOB-DTPA-enhanced MRI radiomic features based on the arterial phase and 
hepatobiliary phase between two radiologists

Radiomic features ICC (arterial phase) ICC (hepatobiliary phase)

Mean 1.000 1.000

Standard deviation 0.998 0.959

Max frequency 1.000 1.000

Mode 0.999 1.000

Minimum 0.961 0.990

Maximum 0.999 0.997

The 5th percentile 0.999 0.999

The 10th percentile 1.000 1.000

The 25th percentile 1.000 1.000

The 50th percentile 1.000 1.000

The 75th percentile 1.000 0.999

The 90th percentile 1.000 0.998

Skewness 0.911 0.970

Kurtosis 0.840 0.964

Entropy 1.000 0.987

AUC low 0.638* 0.944

S-sDlowest 0.993 0.999

S-sDav distribution width 0.894 0.997

Histogram width 0.980 0.962

Area 1.000 1.000

Volume 1.000 1.000

Surface area 1.000 1.000

compactness1 0.999 0.995

compactness2 0.513* 0.757

Volume diameter 1.000 1.000

Spherical disproportion 0.928 0.922

Sphericity 0.290* 0.428*

Surface volume ratio 0.921 0.986

Elongation 1.000 1.000

Entropy (H) 0.999 0.995

Energy 0.999 0.998

Correlation 0.998 0.994

Inverse difference moment normalized 1.000 1.000

Cluster shade 0.655* 0.990

Cluster prominence 0.930 0.851

Cluster tendency 0.971 0.930

Auto correlation 0.999 0.999

Dissimilarity 0.996 0.992

Homogeneity1 0.999 0.999

Homogeneity2 0.990 0.982

Inverse difference normalized 0.992 0.987

Inverse variance 0.999 1.000

Max probability 0.999 0.999

Variance 0.972 0.932

Grey level nonuniformity 1.000 1.000

Run length nonuniformity 1.000 1.000

Low grey level run emphasis 1.000 1.000

High grey level run emphasis 0.999 0.999

Short run low grey level emphasis 1.000 1.000

Short run high grey level emphasis 0.999 0.999

Long run low grey level emphasis 1.000 1.000

Long run high grey level emphasis 0.999 0.999

*, ICC <0.750. Gd-EOB-DTPA, gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid; MRI, magnetic resonance imaging.
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Table S3 The differences of clinical parameters and Gd-EOB-DTPA-enhanced MRI radiomic features based on arterial phase and hepatobiliary 
phase between low-grade and high-grade tumors

Clinical parameters and radiomic features P value (arterial phase) P value (hepatobiliary phase)

AFP <0.001* <0.001*

CEA 0.850 0.850

CA19-9 0.448 0.448

ALT 0.419 0.419

AST 0.020* 0.020*

Mean <0.001* <0.001*

Standard deviation <0.001* 0.001*

Max frequency 0.008* 0.003*

Mode <0.001* <0.001*

Minimum <0.001* <0.001*

Maximum <0.001* <0.001*

The 5th percentile <0.001* <0.001*

The 10th percentile <0.001* <0.001*

The 25th percentile <0.001* <0.001*

The 50th percentile <0.001* <0.001*

The 75th percentile <0.001* <0.001*

The 90th percentile <0.001* <0.001*

Skewness 0.003* 0.234

Kurtosis 0.017* 0.852

Entropy <0.001* 0.001*

AUC low / 0.025*

S-sDlowest 0.001* <0.001*

S-sDav distribution width <0.001* 0.117

Histogram width <0.001* 0.001*

Area 0.256 0.044*

Volume 0.410 0.058

Surface area 0.280 0.023*

compactness1 0.497 0.120

compactness2 / 0.027*

Volume diameter 0.195 0.019*

Spherical disproportion 0.162 0.415

Sphericity / /

Surface volume ratio 0.542 0.210

Elongation 0.233 0.040*

Entropy (H) <0.001* <0.001*

Energy <0.001* <0.001*

Correlation <0.001* <0.001*

Inverse difference moment normalized <0.001* <0.001*

Cluster shade 0.076 0.010*

Cluster prominence <0.001* <0.001*

Cluster tendency <0.001* <0.001*

Auto correlation <0.001* <0.001*

Dissimilarity <0.001* <0.001*

Homogeneity1 <0.001* <0.001*

Homogeneity2 <0.001* <0.001*

Inverse difference normalized 0.003* 0.001*

Inverse variance <0.001* <0.001*

Max probability <0.001* <0.001*

Variance <0.001* <0.001*

Grey level nonuniformity 0.005* 0.002*

Run length nonuniformity 0.446 0.068

Low grey level run emphasis <0.001* <0.001*

High grey level run emphasis <0.001* <0.001*

Short run low grey level emphasis <0.001* <0.001*

Short run high grey level emphasis <0.001* <0.001*

Long run low grey level emphasis <0.001* <0.001*

Long run high grey level emphasis <0.001* <0.001*

/, intraclass correlation coefficients <0.750; *, P<0.05. Gd-EOB-DTPA, gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid; MRI, 
magnetic resonance imaging; AFP, alpha fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; ALT, alanine 
aminotransferase; AST, aspartate transaminase.
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Figure S1 Decision tree of selecting clinical parameters and MRI radiomic features for the arterial phase (A), hepatobiliary phase (B), and 
combined arterial and hepatobiliary phase prediction models (C).
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Supplement I
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The minimum gray value
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The 10th percentile: 

The gray value is at 10%, when the gray value is 
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The gray value of the first frequency digit 5 that appears 
along the positive direction of the x-axis

AUC low:
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