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Introduction

Vitamin A is an essential nutrient responsible for regulating 
and maintaining mammalian vision, embryogenesis, 
immunity, proliferation and differentiation (1). Once 
obtained from the diet as retinol, retinyl esters, and  

pro-vitamin A carotenoids (mainly β-carotene), vitamin A is 
predominantly stored in the liver as retinyl ester, synthesized 
by lecithin-retinol acyltransferase (LRAT). From the liver, 
retinol generated upon hydrolysis of retinyl esters is secreted 
into the circulation bound to retinol-binding protein (RBP) 
to reach the extrahepatic target tissues. Within the target 
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cells, retinol dehydrogenases (RDHs), and also alcohol 
dehydrogenases (ADHs), convert retinol into retinaldehyde, 
which is  subsequently  oxidized by ret inaldehyde 
dehydrogenases (RALDHs) to generate retinoic acid, the 
active form of vitamin A that functions as a transcriptional 
regulator (2-7).

The well-known detrimental effects of alcohol on adult 
tissues include the impairment of retinoid (vitamin A 
and its derivatives) metabolism following both acute and 
chronic alcohol exposure (8). This effect has been ascribed 
to the biochemical similarity between ethanol and retinol 
metabolism, which also share enzymes such as ADH and 
cytochrome P450 2E1 (CYP2E1) (8). In humans, chronic 
consumption of alcohol progressively decreases plasma 
retinol levels and depletes hepatic retinoid stores, in 
both hepatocytes and stellate cells, affecting both retinol 
and retinyl ester levels (9-15), and overall, predisposing 
alcoholics to develop clinical signs of vitamin A deficiency 
(VAD) (8). Studies in various animal models, although 
predominantly in rodents, have confirmed the findings in 
humans with the exception of the decreased plasma retinol 
levels (8). Interestingly, chronic alcohol consumption 
also has an effect on extrahepatic retinoid homeostasis by 
increasing, rather than decreasing, retinoid concentrations 
in various brain regions, the colon, esophagus, kidney, 
lung, testes and trachea (16-22). The effects of alcohol 
consumption on tissue retinoic acid levels have not been 
unequivocally defined, due to discrepant data reported 
in the literature (23). Multiple mechanisms have been 
proposed to explain the effects of alcohol on retinoid 
metabolism, including the possibility that alcohol stimulates 
mobilization of hepatic retinoid stores towards extra-hepatic 
tissues and retinoid catabolism (8).

Retinoid homeostasis in the developing tissues is critical 
to normal embryonic development in mammals (24). 
Therefore, both deficiency and excess of vitamin A during 
gestation result in fetal death or in a spectrum of congenital 
defects (25). Alcohol exposure in utero has also been shown 
to perturb retinoid metabolism and signaling in developing 
tissues (26). Although, an exact mechanism of this 
disturbance has yet to be established, it has been associated 
with the development of fetal alcohol spectrum disorders 
(FASD) (27,28). This term comprises a broad array of diverse 
pathological conditions of children born from mothers 
consuming alcohol during pregnancy (29). The most severe 
of these conditions is called fetal alcohol syndrome (FAS), 
with central nervous system dysfunctions, impaired growth, 
facial abnormalities, and both structural and functional brain 

damage (30). Many features of FAS mimic those of VAD 
or vitamin A excess, including poor fetal growth, eye and 
brain deficiency, heart defects, and impaired neural crest 
cell migration (27). The similarity between VAD and FAS 
has led to the hypothesis that alcohol-induced embryonic 
VAD contributes to FAS (27,28). Initially, it was proposed 
that ethanol competes with retinol for the enzyme ADH 
IV (ADH-IV), thus reducing the formation of retinoic 
acid from retinol (28,31). More recently, however, others 
have postulated that alcohol-induced vitamin A toxicity 
contributes to FAS, as hippocampal retinoic acid levels were 
elevated in alcohol-exposed fetuses (21). 

In addition to inducing FASD, intrauterine alcohol 
exposure is also one of many factors known to predispose 
offspring to adult diseases by deregulating developmental 
and/or metabolic pathways heavily interconnected to 
one another. For example, maternal alcohol exposure can 
predispose progeny to cancer (32-34), circadian disruptions 
(35-40), and metabolic diseases in response to other stressors 
in adult life (41). Given that many adult pathological 
conditions have been attributed to alterations in vitamin A 
metabolism (42-45), to better understand the mechanisms 
whereby prenatal exposure to alcohol compromises health 
later in life, this study investigates the effects of maternal 
consumption of alcohol on retinoid metabolism of adult 
offspring in sprague dawley rats. We chose to analyze the 
liver, lung and prostate as diseases linked to pathological 
conditions of these organs have been associated with 
perturbation in retinoid metabolism (42-45). We show that 
prenatal alcohol exposure in rats affects retinoid metabolism 
in adult life, in a tissue- and sex-dependent manner. 

Materials and methods

Animals and diet 

Pregnant Sprague Dawley rats were purchased from Charles 
River (Wilmington, MA, USA) and individually housed in 
a controlled environment with a 12-hour light/dark cycle 
with the period of darkness between the hours of 19:00 and 
07:00. Dams were acclimated to the environment for 2 days 
and, then, fed a liquid diet containing ethanol (alcohol-fed; 
F1258SP; Bio-Serv, Frenchtown, NJ, USA) or an isocaloric 
liquid diet (pair-fed; F1259SP; Bio-Serv, Frenchtown, 
NJ, USA) or an ad libitum rat regular chow (chow-fed; 
Purina, St Louis, MO, USA; LabDiet 5012). The liquid 
diets contained 6 IU of vitamin A/mL, and calories from 
protein, carbohydrates and fat were 15%, 49% and 36%, 
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respectively, giving rise to an estimated calorie intake of 
about 75 kcal/day and to an estimated vitamin A intake of 
450 IU vitamin A/day, based on a consumption of 75 mL 
diet/day (46). The regular rat chow diet contained 12 IU 
vitamin A/g and 1.9 ppm of β-carotene/g. Calories from 
protein, carbohydrates, and fat were 27%, 60% and 13%, 
respectively, giving rise to an estimated calorie intake of 
about 70 kcal/day and to an estimated vitamin A intake of 
264 IU vitamin A/day, based on a consumption of 20-25 g 
diet/day (47). 

Experimental scheme

Dams were acclimated to the alcohol diet from day 7 to 9 of 
gestation by feeding a liquid diet containing 2.2% ethanol 
on day 7 and 4.4% ethanol on day 8. Once acclimated, dams 
were fed the liquid diet containing 6.7% ethanol from days 
9 to 21. This concentration of ethanol represented 35% 
of total calories/day (32). Dams drinking 6.7% alcohol are 
expected to present with blood alcohol levels between 100 
to 150 mg/dL (48,49), which translates to approximately 
three to five drinks in 2 hours in women (50). At birth, male 
and female pups were cross-fostered to dams fed ad libitum 
with the regular rat chow diet and litters were normalized 
to 8 pups per dam. Pups were weaned at 21 days of age and 
fed the regular rat chow diet ad libitum until 60-70 days of 
age (n=9-13 offspring pups per treatment group) when they 
were sacrificed by rapid decapitation. Serum, liver, lung 
and prostate were collected, frozen and stored at −80 ℃  
until further analyses. Prior to freezing, the three lobes 
of the prostate (dorsal, lateral and ventral) were quickly 
dissected and stored in separate tubes. All experiments were 
conducted in accordance with the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals 
and were approved by the Rutgers University Institutional 
Committee on Animal Care.

High-performance liquid chromatography (HPLC)

Measurements of retinol and retinyl ester in serum, and 
tissue (liver, lung and prostate) were performed by reverse-
phase HPLC, as previously described (51,52). Retinol 
and retinyl esters (retinyl oleate, linoleate, palmitate and 
stearate) were identified by comparing retention times and 
spectral data of experimental compounds with those of 
authentic standards. Retinyl acetate (Sigma, MO, USA) was 
added as internal standard.

Western blot analysis

Analysis was performed as previously described (4) by 
using a rabbit polyclonal anti-rat RBP antiserum for 
immunodetection. Albumin, detected upon treating the 
membranes with either Coomassie Blue or Ponceau S 
stain, and detected by a rabbit polyclonal anti-albumin 
antibody (Abcam, Cambridge, MA, USA), was used as a 
loading control. The molecular weight of each detected 
protein is as follow: RBP, 21 kDa and albumin, 65 kDa. 
The quantification of the membranes was completed by 
densitometry analysis with Quantity One Program (Bio-
Rad, CA, USA).

RNA extraction, cDNA synthesis, and qPCR

RNA extraction, cDNA synthesis, and qPCR were 
performed as previously described (53,54). To determine 
changes in gene expression of Lrat, the ∆∆Ct method 
was used. Gene expression changes were expressed 
as fold of the control group (PF). List of primers and 
amplicon size is as follows: LRAT forward primer 
5'-AACCGTGTCGCCCATCTAAT-3', LRAT reverse 
primer 5'-TTCTGAGTGCGTTCCTTGTCA-3', 
expected amplicon size is 68 bp; 18S reverse primer 
5'-GCTGGAATTACCGCGGCT-3', 18S forward primer 
5'-CGGCTACCACATCCAAGGAA-3', expected amplicon 
size is 187 bp.

Statistical analyses

Normality of variables was assessed by the Shapiro-Wilk 
test. When the data were not normally distributed, values 
were logarithmically transformed prior to statistical analysis 
(female serum retinyl esters and hepatic retinol; male liver, 
lung, ventral and lateral prostate retinyl esters). Normally 
distributed values were statistically analyzed by one-way 
ANOVA for the comparison. Not normally distributed values 
were statistically tested by Kruskal-Wallis followed by Mann-
Whitney test for the comparison. A P value of <0.05 was used 
to establish statistical significance. Analyses were performed 
by means of SPSS (SPSS Inc., Chicago, IL, USA).

Results

Serum retinoid and RBP levels

Serum retinol and retinyl ester concentrations were 
measured by reverse phase HPLC in male and female 
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offspring rats from dams that were alcohol-fed, pair-fed or 
chow-fed during gestation. As previously reported, serum 
retinol levels were higher in males than in females rats 
(55-57). Whereas serum retinol levels were slightly but 
significantly elevated in the alcohol-fed compared to the 
chow-fed male group, females rat did not show significant 
differences in serum retinol concentrations, regardless of 
the maternal treatment (Figure 1A). In agreement with 
these data, serum Western blot analysis of RBP and the sole 
specific retinol carrier in the bloodstream (4), showed similar 
levels of the protein in both males (Figure 1B) and females 
(data not shown) when the alcohol-fed and the pair-fed 
groups were compared. Serum retinyl ester levels were not 
different among offspring from the three different maternal 

treatment groups, regardless of the sex (Figure 1C). 

Tissue retinol and retinyl ester levels

Retinol and retinyl ester levels were measured by reverse 
phase HPLC in liver, lung and prostate from the same 
groups of rats described above. As previously reported, liver 
retinol and retinyl ester levels were generally higher in female 
than in male rats (Figure 2A,B) (55-58). Hepatic female 
retinol levels were significantly lower in the chow-fed group 
compared to both alcohol-fed and pair-fed female offspring 
(Figure 2A). In contrast, hepatic retinyl ester levels were 
not significantly different among female rats from the three 
different maternal treatment groups (Figure 2B). In the case 
of the male offspring, whereas hepatic retinol concentrations 
were similar among the three experimental groups  
(Figure 2A), hepatic retinyl ester levels were lower in males 
alcohol-fed vs. pair-fed and chow-fed groups (Figure 2B).

Lung retinol and retinyl ester levels were generally 
similar in female compared to male rats (55,58). In the male 
offspring, lung retinol levels where not different among 
the three experimental groups (Figure 2C), whereas in the 
females, lung retinol levels were lower in the chow-fed 
group compared to the pair-fed animals of the same sex 
(Figure 2C). Retinyl ester levels were significantly lower in 
alcohol-fed vs. pair-fed, regardless of the gender (Figure 
2D). Moreover, lung retinyl ester concentrations were 
significantly greater in the female pair-fed vs. the chow-fed 
group of the same sex (Figure 2D).

Finally, in the case of the ventral prostate, whereas 
retinol levels were unchanged among the various groups 
(Figure 2E), retinyl ester (Figure 2F) levels were significantly 
decreased in animals of the alcohol-fed vs. pair-fed group. 
Retinol and retinyl ester levels were not different in the 
dorsal and lateral prostate, regardless of the maternal 
treatment (Figure 2E,F). Note that alterations of the acyl 
composition of the retinyl ester stores of the offspring from 
alcohol-fed dams were not observed in any of the tissues 
analyzed.

Overall, these data indicate that maternal alcohol intake 
decreased retinyl ester levels in the adult offspring, in a 
tissue- and sex-dependent manner. 

Transcriptional levels of lecithin-retinol acyltransferase 
(LRAT)

To establish whether the changes in retinyl ester 
concentrations observed in liver, lung and prostate of the 

Figure 1 Serum retinol, retinyl ester and RBP levels. (A) Serum 
retinol and (C) retinyl ester levels were measured by HPLC 
analysis. Retinyl ester concentrations are the sum of retinyl oleate, 
linoleate, palmitate and stearate levels. Results are expressed as 
mean ± SD; n=6-7 animals/group; (B) serum RBP levels of male 
rats were measured by western blot by using albumin as loading 
control. Molecular mass (kDa) of detected proteins is indicated 
on the left side of the panels. Statistical analysis as described in 
the materials and methods. RBP, retinol-binding protein; HPLC, 
high-performance liquid chromatography. 
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offspring from dams alcohol-fed during pregnancy was 
correlated to an attenuated transcription of Lrat, the main 
enzyme that synthesizes retinyl ester in mammalian tissues 
(2,59), we measured Lrat mRNA levels by qPCR. No 
differences were observed in Lrat mRNA levels between 
alcohol-fed and pair-fed groups (males: liver, lung and 
prostate; females: liver and lung; Figure 3), suggesting that 
alcohol exposure in utero does not affect Lrat transcription 
in these organs. 

Discussion 

Over the past decade, it has become clear that the 

intrauterine environment plays a critical role in determining 
the susceptibility to develop chronic pathological 
conditions, such as diabetes, cardiovascular diseases and 
cancer, later in life (60). Among the factors that have been 
shown to influence fetal programming, maternal diet is an 
important determinant (61). 

Alcohol consumption during pregnancy occurs at 
surprisingly high rates. Roughly 40% of women drink during 
pregnancy, with about 10% of them drinking heavily (62).  
Although ideally this condition would be prevented by 
total sobriety during pregnancy, the prevalence of alcohol 
use among women of child-bearing age is over 50% (62). 
Drinking alcohol at any level during pregnancy has been 
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Figure 2 Tissue retinoid levels. Hepatic retinol (A) and retinyl ester (B) levels; lung retinol (C) and retinyl ester (D) levels; and prostate 
retinol (E) and retinyl ester (F) levels were measured by HPLC analysis. Retinyl ester concentrations are the sum of retinyl oleate, linoleate, 
palmitate and stearate levels. Results are expressed as mean ± SD; n=5-6 animals/group. Statistical analysis as described in the materials and 
methods. HPLC, high-performance liquid chromatography.
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known to cause various pathological conditions of the 
offspring, depending upon the frequency and dose of alcohol 
intake, stage of gestation, maternal racial/ethnic population, 
and nutritional status and/or intake (63-65). In addition to 
the variety of neurobehavioral and physical abnormalities 
generically referred to as FASD, intrauterine alcohol 
exposure has also been linked to a variety of adult diseases 
of the offspring, likely resulting from the deregulation 
of developmental and/or metabolic pathways heavily 
interconnected to one another (66). For example, maternal 
alcohol consumption has been associated with increased 
susceptibility to carcinogen-induced mammary (32,33) and 
prostate (34) tumors in rodents and increased risk of acute 

myeloid leukemia in children (67), circadian disruption  
(35-40) and inhibition of insulin signaling in certain tissues 
(68,69). The mechanisms of such effects are not fully 
understood. However, it is noteworthy that alcohol has been 
reported to interfere with the metabolism of various micro- 
and macro-nutrients such as lipids, vitamin A, folate and 
choline, for instance. Hence, the hypothesis that some of the 
effects of maternal (and adult) alcohol intake may be due to 
dysregulations of the metabolism of such nutrients rather 
than to a direct effect of alcohol (27,70). 

In mammals, retinoids support numerous crucial 
biological functions (1), and disruption of retinoid 
homeostasis in tissues has been linked not only to abnormal 
embryonic development (25), but also to various adult 
pathological conditions, including proliferative diseases 
like cancer and skin disease (71-73), metabolic disorders 
such as obesity, diabetes and dyslipidemia (42-44) and even 
abnormal lung function (45). Given the crucial role of 
vitamin A in maintaining the health of the body throughout 
life, the current study was conducted to investigate whether 
alcohol exposure in utero may perturb retinoid metabolism 
in the adult offspring. By using a well-established rat model 
of prenatal alcohol exposure (34), we observed that maternal 
alcohol intake affects tissue retinoid concentrations of the 
adult offspring, in a tissue- and sex-dependent manner. 
Specifically, the levels of retinyl ester, the storage form of 
vitamin A, were significantly decreased in the lung of both 
males and females and in the liver and ventral prostate of 
males born from dams administered with alcohol during 
pregnancy. As discussed earlier, the well-known effects 
of alcohol consumption on both adult and embryonic 
retinoid metabolism have been linked to the similarity 
between alcohol and retinol metabolism, even though the 
molecular details of such interaction still need to be fully 
clarified (8). Our results add a novel layer of complexity to 
the relationship between alcohol and vitamin A metabolism 
suggesting, for the first time, a long-term impact of alcohol 
on tissue retinoid homesotasis. 

Among the multiple mechanisms that have been 
proposed for the actions of alcohol, it has been shown 
that alcohol influences gene transcription by inducing 
various type of epigenetic modifications (74). We therefore 
hypothesized that the prenatal alcohol exposure in our 
rat model could have induced epigenetic modifications 
leading to attenuated transcription of Lrat and, thus, 
decreased synthesis of retinyl esters. However, the lack 
of differences in Lrat mRNA levels in the liver, lung and 
prostate between alcohol-fed and pair-fed groups does not 

C

B

A

Figure 3 qPCR analysis of Lrat mRNA levels in various tissues. (A) 
Analysis performed in liver; and (B) lung of male and female rats; 
and (C) in ventral prostate. Values are expressed as mean ± SD; 
n=3-4/group. Statistical analysis as described in the materials and 
methods.
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favor this possibility. We cannot exclude, at the moment, 
that post-transcriptional modifications of the LRAT protein 
might have possibly occurred resulting in the attenuation of 
its enzymatic activity, and ultimately in the reduced tissue 
retinyl ester levels. Alternatively, it could be considered 
that in utero alcohol exposure might have epigenetically 
modified genes controlling other key metabolic pathways 
that maintain tissue retinoid homeostasis, such as hydrolysis 
of the retinoid stores via retinyl ester hydrolases (75); 
retinaldehyde oxidation via RALDH2 (6); retinoic acid 
oxidation into non-active metabolites via CYP26A1 (76); 
and possibly cellular efflux of retinol mediated by the plasma 
membrane receptor STRA6 (77-79). All these hypotheses 
need to be further investigated.

Currently, we do not understand the reasons for the 
tissue- and sex-specificity of the effect of alcohol on retinoid 
homeostasis. However, it is interesting that a compromised 
metabolism of vitamin A in the liver, lung and prostate 
has been associated with various adult pathological states. 
Although the cause-effect relationship has not been clarified 
in all instances, depleted hepatic retinoid stores have been 
correlated with fatty liver, hepatitis, and cirrhosis in patients 
with alcoholic liver disease (8). More generally, retinoids 
control a number of crucial pathways of lipid metabolism 
that, when compromised, can also lead to non-alcoholic 
fatty liver disease (NAFLD), which could be considered as 
the hepatic manifestation of the metabolic syndrome (80).  
In addition, since retinoids are key regulators of cell 
proliferation and differentiation (81), a compromised tissue 
vitamin A homeostasis has been linked to cancer onset and 
progression at various body sites, including prostate (82)  
and lung (83). Retinoid metabolism and susceptibility to 
carcinogenesis have been shown to be different in the 
various murine prostate lobes (82). Our data confirm that 
retinoid concentrations seems to be lobe-specific also in the 
rat prostate, but call for further studies to understand the 
functional differences that resulted in the retinoid stores 
being reduced only in the ventral prostate of the offspring 
from dams alcohol-fed.

Overall, it is intriguing to speculate that adverse 
influences during development, such as the impairment 
of tissue retinoid stores induced by maternal alcohol 
consumption, may cause permanent changes in various 
organs, leading to increased risk of diseases in adulthood. 
In our study, we did not measure retinoid levels in fetuses 
or offspring at birth. Therefore, we cannot establish with 
certainty that the decline in retinoid stores began in utero. 
However, it is intriguing that disruption of retinoic acid 

signaling during embryonic development has been shown 
to have a negative impact on postnatal lung function in the 
offspring (45) and that reduced lung function at birth has 
been associated with an increased risk of airway diseases, 
such as asthma, later in life (84). 

Finally, we would like to point out the sex- and tissue-
specific differences in the retinoid concentrations of liver, 
lung and ventral prostate in the offspring of the dams fed 
the regular chow diet ad libitum compared to the offspring 
of the pair-fed dams. At the moment, we do not understand 
the reason for these differences. It is interesting, however, 
that the vitamin A intake of the chow-fed and the pair-
fed dams was different (264 vs. 450 IU vitamin A/day, 
respectively), raising the possibility that the intrauterine 
vitamin A availability per se may also influence the ability to 
maintain retinoid homeostasis in certain organs later in life, 
in a sex- and tissue dependent manner.

Conclusions

In summary, this study is the first to report that prenatal 
alcohol exposure in rats affects retinoid metabolism in 
adult life, in a tissue- and sex-dependent manner. Given 
the crucial role of vitamin A in maintaining the health 
of the body throughout life, these data warrant further 
investigations to identify the molecular mechanism(s) 
through which alcohol exposure during embryonic 
development compromises retinoid metabolism of adult 
organs such as liver, lung and prostate, likely predisposing 
to detrimental consequences on health. It is desirable 
to perform future studies in genetically modified mouse 
models of altered retinoid metabolism to ease the 
identification of the targets of the alcohol action.
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