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Introduction

Mantle cell lymphoma (MCL) is an aggressive disease that 
has been recognized as a histotype of B-cell non-Hodgkin 
lymphoma (NHL), a heterogeneous group of human 
lymphoid neoplasms with significantly increased incidence 
in the United States over the past three decades (1,2). 
Conventional chemotherapy induces MCL remission in many 
previously untreated patients. However, within a few years 
after chemotheraphy treatment, these patients experience 
relapse that often leads to death with a relatively short median 
survival duration of 5 to 7 years (3,4). Therefore, the discovery 
of novel therapeutic agents for MCL with low toxicity and 
better treatment outcomes remains a challenge.

In MCL, the non-random t[11,14][q13;32] translocation 
leads to cyclin D1 overexpression, which is believed to be 
associated with oncogenesis. However, the overexpression 
of cyclin D1 alone is not sufficient for MCL development, 
which suggests that additional genetic events are necessary 
for oncogenesis (5), such as the chromosomal region 
maintenance/exportin1/Xpo1 (CRM1) gene. CRM1 gene 
was first identified in the fission yeast Schizosaccharomyces 

pombe through genetic screening, and was determined 
to be involved in chromosomal structural control (6). 
CRM1 overexpression has been detected in several cancers 
(glioblastoma, ovarian, and cervical cancer) and has been 
associated with worse outcome (7-9).

The  nuc leocy top la smic  exchange  o f  pro te ins 
(macromolecules larger than 40 kDa) is a spatially 
and temporally regulated process that involves several 
nucleocytoplasmic shuttling proteins. CRM1 is a nuclear 
protein export receptor belonging to the karyopherin β 
family of transport receptors, which transports target proteins 
across a guanosine triphosphate (GTP)-bound rat sarcoma 
(Ras)-related nuclear protein (RanGTP) gradient (10-13). 
CRM1 has a broad substrate range and mediates the export 
of leucine-rich nuclear export signal (NES)-bearing proteins 
through the nuclear pore complexes (NPCs) and the transfer 
of messenger RNAs (mRNAs) (14-18) (Figure 1). 

Mechanistic studies have demonstrated the importance of 
the CRM1 nuclear export pathway to many NES-containing 
signaling molecules, including P53 (19), histone deacetylase 
5 (20), protein kinase 1 (21), epidermal growth factor 
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receptor (22), and others (23,24). Given the key roles of these 
exported molecules in the proliferation and survival of cancer 
cells, including MCL cells, CRM1 could represent a new 
therapeutic target in MCL treatment (25-28). In this study, 
we summarize MCL pathogenesis and CRM1 involvement in 
the regulation of several vital signaling pathways contributing 
to MCL pathogenesis. A preclinical study is also presented 
to compare the CRM1 status in MCL cell lines and primary 
MCL cells with normal B cells, as well as the therapeutic 
efficiency of CRM1 inhibition in MCL in vitro and in vivo. 

MCL pathogenesis

A brief overview of the relevant pathways and pathogenic 
mechanisms in MCL is shown in Figure 2. Cyclin D1 
overexpression is the diagnostic hallmark in the majority of 
MCL patients (29). The aberrant B-cell receptor (BCR) (30) 
and B-cell activating factor signaling (31) both activate MCL 
cells. Furthermore, phosphoinositide kinase-3 (PI3K), Wnt, 

and transforming growth factor-β (TGF-β) signaling are also 
altered in MCL cells (32). Mutations in tumor suppressors 
such as P53 and ataxia telangiectasia-mutated (ATM) attenuate 
the DNA damage response in MCL cells (33). Disordered 
protein homeostasis and pro-apoptotic and anti-apoptotic 
protein imbalances also occur in MCL. Epigenomic changes 
in DNA methylation and histone modifications can cause 
genomic instability, resulting in the aberrant expression 
of oncogenes and/or tumor suppressor genes, thereby 
contributing to MCL pathogenesis (34,35). 

Regulatory roles of CRM1
 

Subcellular localization and function of cyclin D1 

Although cyclin D1 is responsible for MCL pathogenesis, 
cyclin D1 overexpression does not lead to the transformation 
of normal lymphocytes into lymphoid malignancy in nude 
mice (5), whereas cyclin D1 overexpression in the nucleus 
induces mature B-cell lymphoma in transgenic mice (36) and 

Figure 1 Nuclear export of proteins. Cargo proteins containing a nuclear export signal (NES) bind to chromosome maintenance protein 
1 (CRM1) and rat sarcoma (Ras)-related nuclear protein (RanGTP) before they are exported from the nucleus through the nuclear pore 
complex (NPC). In the cytoplasm, the hydrolysis of guanosine triphosphate (GTP)-bound Ran (RanGTP) to guanosine diphosphate (GDP)-
bound Ran (RanGDP) by a Ran GTPase activating protein promotes complex dissociation. In the nucleus, the phosphorylation of RanGDP 
to RanGTP by a guanine nucleotide exchange factor for Ran (Ran-GEF) allows it to reassociate with a NES-containing protein and CRM1 
to restart the nuclear export process
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drives the oncogenic transformation of murine fibroblasts in 
the absence of a collaborating oncogene (37,38), suggesting 
that the nuclear export deregulation of cyclin D1 increases its 
oncogenic capacity. Cyclin D1 is sequestered in the cytoplasm 
of mammalian cancer cells (39), where the enforced nuclear 
localization of cyclin D1 induces apoptosis. Thus, the 

subcellular localization of cyclin D1 may play a role in cell 
survival. 

The competing processes of nuclear import and export 
induce cyclin D1 localization (40,41). Although the 
mechanisms of cyclin D1 nuclear import remain poorly 
characterized, the export of cyclin D1 complexes from 

Figure 2 Major pathogenic lesions in MCL. The B-cell receptor (BCR) signaling pathway is initiated through the phosphorylation of 
coreceptors Igα (CD79α) and Igβ (CD79β), which recruits spleen tyrosine kinase (SYK). In turn, SYK phosphorylates several downstream 
kinases, including Bruton’s tyrosine kinase (BTK) and phosphoinositide kinase-3 (PI3K). PI3K phosphorylates phosphatidylinositol-
4,5-bisphosphate (PIP2) on the plasma membrane to generate the second messenger, phosphatidylinositol-3,4,5-trisphosphate (PIP3). 
PI3K phosphorylates phosphoinositide-dependent kinase 1 (PDK1) and the serine/threonine kinase AKT (Thr308), which activates the 
mammalian target of rapamycin (mTOR) and nuclear factor-κB (NF-κB) by inactivating the TSC1/2 inhibitor and by activating the 
inhibitor of nuclear factor-κB kinase (IKK), respectively. B-cell activating factor belonging to the TNF family (BAFF) receptor signaling 
cross-talks with BCR and activates NF-κB. NF-κB transcription factors form heterodimers and homodimers to activate the transcription 
of genes involved in cell survival, proliferation, and apoptosis. Several steps in these signaling pathways are altered in MCL. Blue symbols 
indicate inactivated or downregulated molecules in MCL; green symbols indicate activated or overexpressed molecules in MCL. Arrows 
indicate activating connections, and lines indicate inhibitory effects



377Chinese Journal of Cancer Research, Vol 24, No 4 December 2012

© Chinese Journal of Cancer Research. All rights reserved. Chin J Cancer Res 2012;24(4):374-387www.thecjcr.org

nucleus into cytoplasm is known to be CRM1-dependent (42). 
Leptomycin B (LMB), a small-molecule inhibitor of CRM1, 
inhibits cell cycle progression and reduces cyclin D1 
expression in fission yeast and mammalian cells (43). Hence, 
CRM1 inhibition has therapeutic potential in patients 
exhibiting cyclin D1 overexpression in MCL cells.

Cell cycle progression 

Cell cycle dysregulation is central to MCL pathogenesis. 
Cyclin D1 overexpression and abnormalities in cell-cycle 
inhibitory genes p21WAF1, p16INK4a, and p27KIP1 have been 
reported in MCL (44,45). The role of CRM1 in controlling 
the localization and function of P21WAF1 and P27KIP1 could be 
exploited to treat MCL.

P21WAF1 is a cyclin-dependent kinase (CDK) inhibitor 
that prevents cell cycle progression at the G1 phase. The 
nuclear localization of the unmodified P21WAF1 is essential 
to elicit its anticancer functions. Two NESs are necessary 
to facilitate the export of P21WAF1 from the nucleus (46,47). 
However, the site-directed mutation of the two NESs or 
by LMB blocks the P21WAF1 nuclear export, which suggests 
the process is CRM1-mediated. P21WAF1 mainly localizes 
to the cytoplasm in many tumor cells (48), and cytoplasmic 
P21WAF1 is anti-apoptotic (49). Van der Watt et al. (9) found 
that CRM1 inhibition in cancer cells significantly reduces 
cell proliferation and increases apoptosis and P21 nuclear 
localization, which suggests that CRM1 is both a biomarker 
and a potential therapeutic target in MCL treatment.

P27KIP1, a potent cell cycle inhibitor, is significantly 
expressed during the G0–G1 phase transition. Sanchez-
Beato et al. found that P27KIP1 expression correlated with the 
proliferative index in five MCL patients (50). Furthermore, 
low P27KIP1 expression is associated with blastoid MCL, 
which suggests that P27KIP1 negatively regulates the cell 
cycle under MCL conditions (51). The nuclear localization 
of P27KIP1 enables this regulatory function. However, 
the nuclear export of P27KIP1 is mediated by the CRM1 
export receptor. Hence, CRM1 inhibition may restore the 
negative regulatory function of P27KIP1 in MCL cell cycle 
progression (52). 

DNA damage-response pathways

Exogenous and endogenous stress can activate ATM, a 
DNA damage sensor that activates the tumor suppressor 
P53, which, in turn, inhibits cell cycle progression and 
activates DNA repair mechanisms (53). P53 is often 

inactivated in MCL due to its deletion or mutation (33). 
However, P53 activity can be regulated by its subcellular 
localization. P53 mislocalization arising from an aberrant 
import mechanism, hyperactive export, or sequestration 
with a cytoplasmic factor, such as the glucocorticoid 
receptor, has been observed in several cancers, including 
MCL (54,55). 

One promising method of controlling cell proliferation 
is the relocalization of P53 to the nucleus, where it 
becomes active. Normally, the nuclear-cytoplasmic 
transportation of P53 is tightly regulated. P53 contains 
three nuclear localization signals (NLSs), one NES in the 
carboxyl terminus, and one NES in the transactivation 
domain (19,56-58). LMB was previously used to sequester 
P53 in the nucleus, leading to P53 activation and cell 
cycle arrest and apoptosis (59). This finding signifies the 
importance of modulating P53 localization and provides an 
impetus for developing compounds that specifically target 
the export of P53 from the nucleus. 

PI3K pathway 

The constitutive activation of the PI3K pathway is key to 
MCL cell survival (29). In normal cells, phosphatase and 
tensin homolog (PTEN) (60), the cellular PI3K antagonist, 
can inhibit PI3K activation, resulting in the nuclear 
localization of forkhead box O (FOXO) transcription 
factors. In the nucleus, FOXO can activate the transcription 
of genes that promote cell cycle arrest and apoptosis (61). 
Thus, localizing FOXO to the nucleus is beneficial to 
controlling cell survival.

MCL cells frequently express the inactive phosphorylated 
form of PTEN that contributes to constitutive PI3K 
signaling. The constitutive activation of PI3K can also 
constitutively activate protein kinase B (AKT) (62). The 
constitutively activated AKT phosphorylates the FOXO 
transcription factors at multiple sites, thereby preventing 
FOXO-DNA binding and transcriptional activities, as well 
as promoting the CRM1-dependent export of FOXO from 
the nucleus (Figure 3) (63,64). FOXO re-localization to the 
nucleus, where it becomes active, is a promising method of 
controlling cell proliferation. Thus, CRM1 inhibition is a 
potential treatment for MCL. 

Nuclear factor-κB activity

The transcriptional activator nuclear factor-κB (NF-κB) has 
been implicated in tumorigenesis and resistance therapy and 
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has various roles in inflammation and immune response. The 
molecular mechanisms of NF-κB activation in the nucleus and 
the roles of NF-κB in cell proliferation and apoptosis inhibition 
are adequately described (65-67). In normal cells, NF-κB 
forms a complex with the inhibitor of κB (IκB), which masks 
the NLS on NF-κB and prevents NF-κB translocation 
to the nucleus. When IκB is phosphorylated by the IκB 
kinase complex and degraded by the 26S proteasome, 
the NLS is unmasked, and NF-κB is imported into the 

nucleus (60,64,68). Furthermore, the p300 acetylation 
of NF-κB prevents NF-κB-IκB assembly and subsequent 
export from the nucleus, whereas the deacetylation of 
NF-κB enhances its interaction with IκB and promotes 
subsequent export from the nucleus (69). 

MCL cells express constitutively activated NF-κB. 
The constitutive activation of NF-κB may serve as a 
surrogate marker for MCL, which will be valuable in 
assessing the effectiveness of therapeutic agents (70). 

Figure 3 CRM1 regulates the PI3K signaling pathway in MCL. In normal cells, phosphatase and tension homolog (PTEN) can inhibit 
PI3K activation, resulting in the nuclear localization of FOXO transcription factors and P27. In the nucleus, FOXO can activate the 
transcription of genes that promote cell cycle arrest and apoptosis, and P27 can form complexes with cyclin-dependent kinase (CDK2) and 
cyclins to inhibit E2F-mediated transcription, leading to cell cycle arrest. In MCL cells without PTEN activity, PI3K/AKT signaling is 
active, resulting in the AKT-mediated phosphorylation of FOXO and P27. The phosphorylation of FOXO promotes its nuclear export in a 
CRM1-dependent manner, thereby preventing the activation of its target gene transcription. AKT also phosphorylates P27, which disrupts 
the nuclear localization signal (NLS) of P27 and forces it to remain in the cytoplasm. Thus, CDK2 is no longer inhibited and is free to 
activate E2F1 transcription factors, leading to cell proliferation
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One integral component of normal NF-κB regulation 
is the autoregulatory negative feedback inhibition 
of continuous activity through the NF-κB-directed 
synthesis of the inhibitor of κBα  (IκBα) (71). The 
newly synthesized IκBα enters the nucleus, removes 
NF-κB from the DNA, and exports NF-κB to the 
cytoplasm, thereby restoring the pool of inactive NF-
κB-IκBα complexes (Figure 4) (72). A CRM1-dependent 
pathway mediates IκBα nuclear export (73). Therefore, 
the perturbation of the CRM1-dependent nuclear export 

of IκBα may attenuate constitutively activated NF-κB and 
cause immediate apoptosis in different cancer types (74). 
Therefore, the perturbation of the CRM1-dependend IκBα 
nuclear export induces apoptosis in MCL.

Centrosome duplication

One potential therapeutic target in MCL is centrosome 
aberration. Blastoid MCL is characterized by high mitotic 
rate of MCL cells and poor prognosis, regardless of its 

Figure 4 Inhibition of CRM1 blocks constitutive NF-κB activity and induces cancer cell death in MCL. Constitutively activated NF-
κB is generally associated with a dynamic process involving the continual activation of NF-κB via an upstream activation mechanism (e.g., 
activation of BCR, inhibition of activated IKK, continual NF-κB-dependent synthesis of inhibitor of nuclear factor κBα (IκBα), formation 
of inactive NF-κB-IκBα complexes in the nucleus, and export of these inactive complexes to the cytoplasm via CRM1 and its cofactor Ran-
GTP). A CRM1 inhibitor covalently modifies CRM1 to inactivate it, thereby preventing its export of NF-κB-IκBα complexes from the 
nucleus. This leads to the nuclear accumulation of inactive NF-κB-IκBα complexes, as well as free IκBα, with a concomitant inhibition 
of NF-κB function regardless of the upstream activation mechanisms involved. These events lead to the inhibition of NF-κB-dependent 
survival gene expression, thereby contributing to the rapid onset of apoptosis
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cytomorphological subclassification (1,75-78). It contains 
more chromosomal imbalances than non-blastoid MCL and 
exhibits high-level DNA amplifications. Moreover, blastoid 
MCL tends to be a tetraploid (78,79), a rare phenomenon 
occurring in B-cell neoplasms (80). 

Chromosomal aberrations, which are common features 
of malignant neoplasias, can be induced by impaired DNA 
damage response pathways, mitotic checkpoint alterations, 
or centrosome aberrations. As the major microtubule-
organizing centers in animal cells, centrosomes play 
a significant role in cell cycle progression, spindle 
formation, and cytokinesis (81). Neben et al. (82) found 
that centrosome aberrations occur more frequently in 
near-tetraploid MCL than in diploid MCL, suggesting 
that centrosome aberrations may play a role in MCL 
tetraploidization and are thus potential therapeutic targets 
in MCL, especially blastoid MCL.

In principle, centrosome aberrations could arise de novo 
or through the over-duplication of centrosomes within a 
single cell cycle, through aborted cell division, or through 
cell fusion (83). However, the mechanisms underlying the 
regulation of centrosome duplication are poorly understood. 
Some studies suggest that the Ran/CRM1 complex regulates 
nucleocytoplasmic transportation and is independently 
involved in mitotic spindle assembly. CRM1 may regulate 
the fidelity of centrosome duplication (84) by acting as 
a licensing factor to prevent unscheduled duplication. 
Hence, CRM1 inactivation either by a CRM1-specific 
inhibitor, such as LMB, or through the interaction of the 
hepatitis B virus HBx protein with its NES motif results in 
supernumerary centrosomes (84,85), which suggests that 
CRM1 may negatively regulate the initiation of centrosome 
duplication, possibly through its association with NES-
containing proteins (Figure 5) (86,87). 

Spindle assembly

During mitosis, the supernumerary centrosomes can form 
multipolar spindles, which occur in many tumor types and 
are believed to contribute to chromosomal instability and 
tumorigenesis (83,88). However, some studies have shown 
that multipolar divisions and the resulting chromosomal 
instability undermine cell viability, frequently leading to 
cell death (89-92). Many cancer cells induce supernumerary 
centrosome clustering into two spindle poles, thereby 
enabling bipolar division, to avoid cell death. As the 
phenotype is specific to cancer cells, inhibiting centrosome 
clustering may target cancer cells selectively without 

affecting healthy cells.
The centrosome is composed of centrioles and 

pericentr iolar  materia l .  A key component of  the 
pericentriolar material and centrioles is pericentrin 
(PCNT2), a large conserved coiled-coil protein (93-95) 
that anchors γ-tubulin to the centrosomes and plays a 
key role in microtubule nucleation and mitotic spindle 
organization (93,96,97). Neben, et al. found that the 
expressions of four centrosome-associated proteins 
(PCNT2, calcium/calmodulin-dependent protein kinase 
II, and γ-tubulin complex-associated proteins 3 and 4) 
were high in MCL (98), suggesting that MCL harbors 
aberrant spindle assembly.

CRM1 located at centrosomes by its N-terminal CRM1, 
and importin beta etc. domain can interact with and regulate 
the localization and function of PCNT2 (99). Given the 
ability of PCNT2 to serve as a multifunctional scaffold 
for anchoring a wide range of centrosome proteins (100), 
it is involved in essentially all centrosome functions 
that center primarily around cell cycle regulation and 
microtubule organization. Increased PCNT2 levels 
can alter centrosome number, clustering, and function, 
thereby altering mitotic spindle organization and 
function, as well as causing chromosome missegregation. 
Centrosome clustering may enable cancer cells with 
multiple centrosomes to undergo relatively normal cell 
divisions. However, this likely leads to genetic instability, 
a known contributor to carcinogenesis (101-103). CRM1 
inactivation can cause unscheduled centriole splitting that 
results in multipolar spindles. Hence, CRM1 safeguards 
the bipolar spindle formation by preventing unscheduled 
centriole splitting during mitosis (104). 

Leber et  a l .  found that  the components of  the 
chromosomal passenger complex are necessary for 
centrosome clustering (105). The chromosomal passenger 
complex is composed of aurora B and its regulatory 
subunits, inner centromere protein, survivin, and borealin. 
Survivin and aurora B are involved in the development and 
progression of human tumors and are thus potential targets 
for novel anticancer therapies (106,107). In MCL, survivin 
is commonly expressed in a nuclear and mitotic pattern, 
and its expression levels are strongly associated with 
tumor proliferation and patient survival (108). Dynamic 
nucleocytoplasmic transport regulates the subcellular 
localization and function of survivin and aurora B (109). 
Survivin and aurora B are actively excluded from the 
nucleus by a CRM1-mediated mechanism (110). The spatial 
and functional regulation of survivin by LMB abolishes 
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the cytoprotective effect of survivin towards apoptotic 
executors, resulting in cell apoptosis (Figure 6) (111). 

Novel CRM1 inhibitors for MCL therapy

In a previous study (112), we identified several novel CRM1 
inhibitors that show potential for MCL treatments. We also 
found that CRM1 expression is higher in MCL cell lines 
and primary MCL cells than in normal B lymphocytes. 
Inhibiting CRM1 with small interfering RNA consequently 

inhibited MCL cell growth. These findings suggest that 
CRM1 may play a key role in the pathophysiology of MCL 
cells. In addition, targeting CRM1 in MCL may have 
therapeutic value.

Other researchers found that LMB binds covalently to 
cysteine 528 (Cys528) in CRM1 through a Michael-type 
addition reaction and abrogates the interaction between 
CRM1 and its cargo protein (13,113,114). Although LMB 
possesses strong antitumor activity in vitro, phase I trials 
of LMB were discontinued because of its toxicity and lack 

Figure 5 Ran/CRM1 network: nucleocytoplasmic transport and mitotic spindle assembly. The small GTPase, Ran, shuttles between an 
inactive GDP state and an active GTP-bound state by interacting with Ran-binding protein 1 (RanBP1) and regulator of chromosome 
condensation (RCC1), respectively. In its GTP-bound state, Ran can interact with importin receptors α and β to promote the transport 
of proteins containing nuclear localization signals (NLS) from the cytoplasm to the nucleus. The transport of certain NLS-containing 
proteins, such as the nuclear mitotic apparatus protein (NuMA) and target protein for XKIP2 (TPX2), can promote microtubule nucleation. 
Ran-GTP can also interact with CRM1, which binds to proteins containing NES. LMB interacts with and inactivates CRM1 through 
its NES, leading to centrosome overduplication and multipolar spindles. Other NES-containing substrates that bind to CRM1, such as 
nucleophosmin (NPM), may have tumor-suppressing effects and function as licensing factors to regulate centrosome duplication during the 
cell cycle
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of apparent efficacy within the tolerable dose range (115). 
Mutka et al. (116) noted that LMB has off-target effects 
against proteins other than CRM1 that might contribute to 
its toxicity. The finding that the inhibition of CRM1 itself 
was not the cause of LMB toxicity is promising in terms of 
the development of CRM1-targeted anticancer drugs. 

In order to efficiently discover novel small-molecule 
selective inhibitors of nuclear export (SINEs; also known 
as KPT-SINE compounds) that block CRM1-dependent 
nuclear export, Karyopharm Therapeutics applied a virtual 
screening workflow based on a combination of protein 
modeling and simulations, physicochemical filters, and 
high-throughput molecular docking (117,118). These 

CRM1-specific inhibitors are similar to the N-azolylacrylate 
structures developed by Daelemans et al. (119). KPT-
SINE compounds are water-soluble, irreversible inhibitors 
of CRM1 that bind to the reactive site of the Cys528 
residue. Azmi et al. (120) demonstrated that KPT-SINE 
compounds can induce apoptosis in resistant NHL cell lines 
and corresponding xenograft models. Their study verifies 
CRM1 as a potential therapeutic target in NHL irrespective 
of the functional status of P53. We found that using KPT-
SINE compounds to inhibit CRM1 in MCL cell lines and 
primary MCL cells could significantly inhibit MCL cell 
growth and induce apoptosis. The oral administration of 
KPT-276, a KPT-SINE compound, significantly suppressed 

Figure 6 CRM1/survivin axis supports the dual activity of survivin. A. At the beginning of mitosis, the CRM1-survivin interaction is 
critically involved in the tethering of the chromosomal passenger complex (CPC) to the centromere; B. At the end of mitosis, upon 
reassembly of the nuclear envelope, CRM1 mediates the removal of survivin from the nucleus, which may facilitate proteasome degradation 
in the cytoplasm. In interphase cells, nuclear export promotes a high cytoplasmic and mitochondrial concentration of survivin to counteract 
pro-apoptotic stimuli

A B
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tumor growth in an MCL-bearing severe combined 
immunodeficient mouse model without severe toxicity (112). 
These findings suggest that CRM1 inhibitors are a potential 
novel therapy for MCL patients.

Conclusions

In conclusion, CRM1 can regulate MCL cell proliferation, 
cell cycle progression, DNA damage response, and 
chromosomal stability, making it a potential therapeutic 
target in MCL treatment. We found that CRM1 is 
overexpressed in MCL cells and that CRM1 inhibition 
using small interfering RNA or CRM1 inhibitors, such 
as KPT-SINE compounds, significantly inhibits MCL 
cell growth both in vitro and in vivo, making these agents 
potential novel treatments for MCL. Clinical studies to 
evaluate the therapeutic effects of KPT-SINE compounds 
in MCL patients are warranted.
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