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Introduction

Epithelial ovarian carcinoma (EOC) is the most common 
form of ovarian malignancies and the most lethal 
gynecologic malignancy in the United States, accounting 
for almost 90% of all ovarian malignant tumors, with 
approximately 22,000 new cases and 16,000 deaths 
occurring annually (1,2). It is diagnosed often in advanced 
stage, owing to the absence of specific signs and clinically 
significant symptoms and the lack of effective screening 
programs including appropriate tumor markers, which 
contributes to the low 5-year relative overall survival of 
ovarian cancer patients at 46%. As we know, if diagnosed 
at the localized stage, the 5-year survival rate would be up 
to 93% (2). To date, the major clinical problems associated 
with ovarian cancers remain unresolved including malignant 
progression and rapid emergence of drug resistance. Despite 

intense scientific research and improved clinical technology, 
once EOC enters into late stage, even with the extensive 
surgical debulking and chemotherapy, its prognosis remains 
dismal (3).

As an important regulatory module during development, 
the Hedgehog (Hh) signaling pathway can control a 
variety of developmental processes such as proliferation, 
differentiation and organogenesis (4). Recently, it has 
become increasingly clear that in many instances the 
signaling and molecular players that control development 
are the same, and when inappropriately regulated, drive 
tumorigenesis and cancer development (5-13). Here, we 
discuss the possible involvement of this pathway in the 
physiologic process and development of cancer in the ovaries. 
The components of the Hh signaling may provide novel drug 
targets, which could be explored as crucial combinatorial 
strategies for the treatment of ovarian cancers.
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Constitutive components and transduced 
mechanisms of Hh signaling

In comparison with Drosophila, in humans, Hh/Gli signaling 
pathway consists of three ligands, Sonic hedgehog (Shh), 
Indian hedgehog (Ihh) and Desert hedgehog (Dhh), which 
can all bind to the 12-pass transmembrane receptor Patch 
(Ptch) and are expressed at different stages of tumorigenesis in 
different tissues and may have distinct biological functions (4).  
When the processed and lipid modified Hh ligand binds to 
its receptor Ptch, the canonical Hh signal transduction is 
initiated, resulting in that the inhibitory function of Ptch 
on the 7-pass transmembrane protein Smoothened (Smo) 
is abolished and then Smo activates the final arbiter of Hh 
signaling, the Gli family of transcription factors. Ultimately, 
the Gli family of Gli1, Gli2 and Gli3, transcriptionally 
regulates Hh target genes by binding to the specific elements 
in promoter sequences (14-16). The exact mechanism 
of signal transduction within the cascade from Smo to 

Gli proteins is unclear, and the emerging data suggest 
that primary cilium serves as the processing sites for Gli 
transcription factors (17), involving a multi-protein complex 
comprising of a subset of intraflagellar transport proteins, 
protein kinase A (PKA), glycogen synthase kinase 3β (GSK 
3β), casein kinase 1 (CK1), the suppressor of fused (Sufu) and 
so on (18-21) (Figure 1). Of these, Sufu is thought to play 
a key role in negatively regulating Hh/Gli signaling, since 
targeted disruption of the murine Sufu gene leads to the 
similar phenotype caused by an excess of Hh signaling (22,23).

Gli proteins seem to have context-dependent repressor 
and activator functions. Gli1 functions as the terminal and 
thus a critical transcriptional activator of the Hh pathway and 
its function is reinforced by a positive feedback loop as its 
transcription is induced by Hh signaling (24,25). Gli2 can act 
as an activator or repressor, whereas Gli3 can serve as a weak 
activator, mainly functions as a repressor of transcription (26). 
Gli1 and Gli2 have been shown to have distinct as well as 
overlapping functions. Three Gli proteins operate together 

Figure 1 The constitutive components and the transduced mechanisms of Hh signaling pathway. A. In the absence of Hh ligand, the latent 
Gli transcription factors Gli2/3 are bound to a multiprotein complex with the negative regulator Sufu. Phosphorylation of Gli2/3 by PKA, 
GSK3β and CK1 targets latent Gli proteins to proteasome-dependent repressor formation (Rep-Gli2/Gli3) that cannot activate target gene 
transcription upon binding to DNA in the nucleus; B. Upon binding of Hh ligand to its receptor Ptch, Ptch translocates out of the primary 
cilium, losing its ability to inhibit Smo, which moves into the cilium, thus stimulating the pathway and preventing Gli2 and Gli3 cleavage. The 
activated forms of Gli2 and Gli3 bind to Gli-promoters in the nucleus and stimulate transcription of the ubiquitous mammalian target genes
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to integrate intercellular Hh signaling and other input, and 
each can have positive or negative effects (27,28).

Different states of the Gli code can give rise to different 
or partially overlapping sets of target gene expression 
profiles, then further facilitate distinct cellular responses 
(29,30). It is not surprising that deregulation of Hh 
signaling can cause various diseases including malformations 
and tumors because of its broad range of direct or indirect 
targets in different cellular contexts.

Many feedback regulatory mechanisms are employed in 
Hh signaling pathway. Ptch, Hedgehog interacting protein 
(Hip), growth arrest specific protein1 (Gas1) and Gli1 are 
not only the components of the Hh signaling pathway, 
but also its target genes. Ptch and Hip can negatively 
regulate the Hh signal, while Gli1 can positively regulate 
it. Hh signal can downregulate the expression of Gas1, 
simultaneously, Gas1 functions as the positive regulator of 
the Hh signal. Aberrant regulations can result in abnormal 
Hh signal and the expression of specific genes that promote 
cell proliferation or differentiation.

Hh signaling pathway and carcinogenesis

The Hh signaling pathway is a morphogenesis signaling 
pathway, which is crucial for the growth and patterning of 
various tissues during embryonic development (31-36). Cancers 
occur in various organs after adolescence, suggesting that 
they are derived from cells harboring mutations that generally 
occur in genes that control embryonic morphogenesis after the 
embryonic stage. In the adult, the Hh signaling is significantly 
reduced, with the remaining activity mostly involved in tissue 
maintenance and repair, and regulating stem cell behavior in 
several instances (37,38). Hh signaling has been reported to 
be reactivated in many types of cancers in ligand-dependent 
manner (39-42) or ligand-independent manner (5-7,43-45),  
contributing to carcinogenesis and cancer progression. 
Whereas the former activation is caused by the overexpressed 
Hh ligand derived from tumor cells or stroma cells, the later 
activation is due to mutations of the components within the 
Hh signaling pathway such as Ptch, Smo and Sufu. Non-
canonical Gli activation mediated by epithelial epidermal 
growth factor receptor (EGFR) or transforming growth 
factor-β (TGF-β) signaling further activate their downstream 
targets (46,47) (Figure 2). It therefore renders cancer cells 
resistant to Smo antagonists.

Recent studies of human tumors, such as glioblastoma, 
pancreatic adenocarcinoma, chronic myeloid leukemia 
and colon cancer, suggest that Hh signaling regulates 

cancer stem cell (38,48-52). Both the clonogenicity and 
tumorigenesis of human cancer stem cells depend on 
sustained Hh-Gli signaling. It was demonstrated that the 
Hh signaling components Ptch1, Gli1 and Gli2 are highly 
expressed in normal human mammary stem/progenitor cells 
and that these genes are downregulated when differentiation 
is induced in these cells (53). Thus, the Hh signaling 
pathway might play a critical role in the continuous self-
renewal of tissues from stem cells.

The Hh signaling pathway is known to contribute to 
cancer invasiveness and metastasis. A report showed that 
Notch and Shh facilitate neovascularization, angiogenesis, 
and epithelial-mesenchymal transition (EMT), and 
contribute to the maintenance of highly-metastatic tumor 
stem cells (54). Recently, Souzaki M et al. found that the Hh 
signaling pathway mediates the progression of non-invasive 
breast cancer to invasive breast cancer (55). It is known 
that the activation of Hh signaling is involved in the cell 
cycle progression and invasion of various tumors, including 
prostate cancer, pancreatic cancer and gastric carcinoma 
and so on (56-58). Among these, the contribution of Hh 
pathway to invasiveness was first documented in prostate 
cancer. As to gastric cancer, the report suggested that 
Shh signaling promotes motility and invasiveness of it 
through TGF-β-mediated activation of the Alk5-Smad3 
pathway. Combined, these studies suggest that Hh signaling 
affirmatively contributes to cancer invasion and metastasis.

Cancer therapy targeting hedgehog signaling

Because of the widespread involvement of the Hh pathway 
in cancers that controls fundamental cellular processes 
such as cell growth and death, the promising therapeutic 
strategies against cancers may be developed through the 
modulation of the Hh pathway in the near future. Several 
approaches to block this pathway are under development. 
Sustained application of specific Hh pathway inhibitors has 
been proven effective in preventing growth of many tumors 
in vitro (49,59) and in xenografts (60,61).

Small molecular modulators of Hh signaling have been 
an intense interest in recent years, and the last few years 
have brought a significant increase in the identification of 
related inhibitors (62-66). The natural product alkaloid 
cyclopamine was one of the first small-molecule inhibitors 
of the Hh pathway to be reported (67). To date, the majority 
of reported Hh pathway inhibitors target Smo including 
cyclopamine, IPI-926, GDC-0449, BMS-833923 and so 
on, and several have advanced to human clinical trials, 
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which have different molecular mechanisms respectively. 
The impact of terminating Hh signaling at the level of Gli 
genes on the tumorigenesis is little known. Few agents are 
available that target Gli genes, which constitute the final 
step in the Hh pathway, whereas, GANT61 was identified 
as a more effective small molecular inhibitor of Gli in 
comparison with Smo, which induced extensive cell death 
or apoptosis in cancer cell lines in vitro and prohibited 
additional tumor growth in the xenograft assays through 
inhibiting the expression of the target genes downstream 
of Gli (10,60). More recently, as the first reported 
inhibitor of Shh, robotnikinin was identified to bind to the 

transmembrane receptor Ptch, reversing its inhibitory effect 
on Smo (68,69). Collectively, these Hh signaling inhibitors 
have brought about the expectation that the Hh signaling 
pathway could provide effective approaches for cancer 
therapy. In order to implement the individualized therapy 
with all Hh pathway-dependent cancers, we must select 
the appropriate inhibitors corresponding to the molecular 
mechanism of altered Hh pathway.

Hh signaling pathway and ovarian cancer

Hh signaling has not been found in the mature vertebrate 

Figure 2 The different models of Hh signaling pathway activation in cancer. A. Hh-dependent Gli activation. Prostate, lung and pancreatic 
cancer have been shown to depend on the presence of Hh ligand. These tumors display constitutively elevated activity that is likely to be 
due to increased ligand (Hhhigh) and Smo (Smohigh) expression; B. Hh-independent Gli activation. Ligand-independent tumor growth has 
been shown to arise from loss of Ptch or Sufu repressor function (Ptchloss, Sufuloss) or activating mutations in the Hh-effector Smo (Smoact); 
C. Non-canonical activation. In epithelial tumor cells, TGF-β signaling has been shown to activate the transcription of Gli, whereas 
epidermal growth factor (EGF) and/or Ras signaling promotes GliA function through the kinase cascade. In these models, ligand-dependent, 
ligend-independent and non-canonical activation are characterized by an increase in GliA activity and Gli target gene expression. Possible 
oncogenic routes activated downstream of Hh/Gli such as proliferation, and survival, metastasis and stem cell activation are driven by (direct) 
transcriptional stimulation of key regulators of these processes
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ovary (70), while it was identified to act specifically on 
the stem cells in Drosophila ovary (71). These stem cells 
are responsible for the regulated repair of the surface 
epithelium after the ovulatory rupture (72). Under abnormal 
conditions that lead to enhanced Hh signaling, these stem 
cells might ultimately transform into cancer stem cells and 
lead to malignant progression (73,74).

It is generally accepted that ovarian epithelial cancer 
derives from ovarian surface epithelium (OSE) that covers 
the ovary. As we know, by comparison with mesothelia 
elsewhere, OSE is a simple, rather primitive mesothelium 
with both epithelial and mesenchymal characteristics, 
which retains the properties of relatively uncommitted 
pluripotent cells and has the ability to differentiate 
diversely in response to different stimuli (75). Apart 
from other cancers, OSE becomes more committed to 
an epithelial phenotype in association with increased 
E-cadherin expression (75,76) when it progresses to 
malignancy, through adherens junction mediated by 
E-cadherin, tumor cells can often aggregate and form 
spheroid-like structures that followed by implanting and 
invading into intra-abdominal tissues (76-78). Ray A et al. 
demonstrated that Hh signaling pathway can regulate the 
growth of ovarian cancer spheroid forming cells, which 
have the properties of cancer stem cells of self-renewal, 
differentiation, and chemoresistance (79).

Recently, aberrant activation of Hh signaling pathway 
has been reported in ovarian cancers (80). In this report, the 
authors indicated that Hh signaling pathway is activated in 
ovarian carcinomas, concerning cell proliferation, while, its 
inhibition precipitates growth suppression and cancer cells 
apoptosis. They found that Dhh expression was correlated 
with poor prognosis of patients with ovarian carcinoma. 
Bhattacharya R et al. found that the upregulation of the Hh 
pathway was present in primary ovarian tumors and all of 
the human ovarian cancer cell lines tested. They proposed 
that the Hh pathway can help maintain the clonal growth 
of human ovarian carcinoma-derived cell lines (81). Liao X 
et al. showed for the first time that overexpression of Gli1 
and Patched was correlated with poor clinical outcome in 
ovarian cancers, which provided a molecular basis for the 
role of Hh pathway in ovarian cancers (82). In contrast 
to previous reports, Yang L et al. documented that they 
only detected a small proportion of ovarian cancers with 
Hh signaling target gene expression. They suggested that 
activation of the Hh pathway would not be frequent in 
ovarian cancers (83). Schmid S et al. found that a subset 
of patients with ovarian cancer (25%) in their study had 

increased expression of the Hh signaling and transcription 
factors Gli2 (84). The published data concerning the Hh 
signaling pathway in ovarian cancer are contradictory, 
which is probably resulted from the cross talk between Hh 
and other signaling pathways. 

As mentioned above, abnormal Hh signaling plays 
important roles in the development and progression of 
ovarian cancers, which has been further verified through 
some in vitro and in vivo studies. Accordingly, the inhibition 
of Hh pathway might be a valid therapeutic strategy for 
ovarian cancers. Treatment with a monoclonal antibody 
against Shh resulted in a dose-dependent decrease in cell 
proliferation (81). Similarly, treatment of cultured ovarian 
cancer cells with the Smo inhibitor cyclopamine has 
been found to induce cell cycle arrest in G1 and promote 
apoptosis (80). McCann CK et al. showed that inhibition 
of Hh signaling by the inhibitor IPI-926, a derivative 
of cyclopamine with increased oral bioavailability and a 
longer half-life, antagonized serous ovarian cancer growth 
in a primary xenograft model (85). In addition, ovarian 
carcinoma cell lines-derived xenografts are also susceptible 
to Hh pathway inhibition as their growth is markedly 
impaired following treatment with cyclopamine (81). 
To date, all studies that determine the effect of the Hh 
inhibitors on growth and progression of ovarian cancer 
were targeted to Smo. Less is known about whether the 
therapeutic approaches targeted to downstream genes of 
Smo might be more promising.

Prospect

Significant progress has been made in understanding 
the pathogenesis and targeted therapy of ovarian cancer, 
especially in last 5 years. Cognition on the genetics and Hh 
pathways in both epithelial cells and stromal cells at the 
molecular levels allows us to interfere with ovarian cancers 
using defined pathway inhibitor through the in vitro and in 
vivo assays. Further dissection of the role of Hh pathway 
in the initiation and progression of ovarian carcinoma will 
create new drug targets for its therapeutic intervention.
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