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Introduction

For most organisms, the circadian clock regulates most 
of the body’s physiological and behavioral functions. The 
secretion of many endocrine hormones is also regulated 
by the light/dark cycle. Reciprocally, levels of circulating 
hormones influence circadian rhythm. This bidirectional 
information flow is very important for normal physiology, 
while additional research has shown that the disruption 
of the circadian rhythm is closely related with malignant 
growth of the endocrine system such as breast cancer. A 
remarkable example is that overnight-shift workers tend 
to have an increased incidence of hormone-related breast 
cancer as well as other types of malignancies (1,2). Recently, 
molecular research data has shown that cultured human 
mammary epithelial cells maintain an inner circadian 
oscillator, with key clock genes oscillating in a rhythmic 
fashion. This inner circadian clock is disrupted in both 
estrogen receptorα-positive (ERα-positive) type or ERα-
negative type breast cancer (3,4). Previous investigations 
demonstrated that the disruption of the circadian rhythm is 
closely related with breast cancer development.

Mechanism of the mammalian circadian rhythm

The body’s circadian system proficiently coordinates the 
physiology of living organisms to match environmentally 
or imposed day and night cycle. The molecular oscillator 
in both the master and peripheral clocks is thought to 
rely on a transcriptional negative feedback loop. At the 
molecular level, the circadian rhythm is composed of a set 
of interlocked clock proteins in which CLOCK (Circadian 
Locomotor Output Cycles Kaput) and BMAL1 (brain 
and muscle ARNT-like 1) are the core positive circadian 
proteins. CLOCK and BMAL1 can associate with each 
other to form a heterodimer, which then bind to E-box 
in the promoter region of the target genes to induce the 
transcription of period (Per1, 2 and 3) and cryptochrome 
(Cry1 and 2) in the positive limb (5-7) (Figure 1). Once 
the repressor proteins CRY and PER have reached a 
critical concentration, they associate with each other and 
is phosphorylated by CK1ε, which then they can attenuate 
the activity of CLOCK-BMAL1 heterodimers and 
thereby inhibit the transcription of their own genes (8,9). 
To start a new cycle, the repression of CLOCK-BMAL1  
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heterodimer has to be released by the proteolytic 
degradation of PER and CRY (10,11). In addition, 
CLOCK-BMAL1 heterodimers induce a second regulatory 
loop activating transcription of retinoic acid-related orphan 
nuclear receptors, Rer-erbα and Rorα. Both of these nuclear 
receptors regulate the expression of Bmal1 through binding 
to the Bmal1 promoter at REV-ERBα and RORα response 
elements (ROREs). REV-ERBα repress the expression of 
Bmal1, while RORα activate the transcriptional progress 
(12,13). In the third regulatory loop, DEC1 (Differentiated 
embryo-chondrocyte expressed gene 1, also known as 
SHARP-2 or Stra13) and DEC2 (also known as Sharp1) are 
induced by the CLOCK-BMAL1 complex, subsequently 
DEC1 and DEC2 repress CLOCK-BMAL1-mediated 

transcription of Per in mice, forming a weaker negative 
feedback loop compared to that of PER-CRY (14). Another 
core member of the mammalian circadian clock in positive 
feedback loop is neuronal PAS-domain protein 2 (NPAS2), 
which is a paralogue of the CLOCK protein. NPAS2 can 
heterodimerize with BMAL1 to bind with E-box motifs 
and transcriptionally activate circadian genes, such as 
Per1, Per2 and Cry1 (15). NPAS2 shares similar activities 
with CLOCK but differs in tissue distribution. CLOCK 
works as a circadian protein in almost all living organisms, 
while NPAS2 functions as a molecular clock in mammary 
forebrain (15). Further regulation is achieved by post-
translational modification and chromatin remodeling, which 
are pivotal to maintaining circadian rhythms.

Figure 1 Schematic representation of core mammalian circadian clock feedback loop.  , stands for E-box element which is present in 
promoter regions of the genes under consideration to which CLOCK-BMAL1 heterodimer binds;  , stands for ROREs which are retinoic 
acid-related orphan nuclear receptor response elements located in Bmal1 promoter for REV-ERB and ROR to bind. Casein kinase (CK) 
isoforms phosphorylate several circadian proteins, such as PER, CRY and BMAL1 reducing their stability and maintain the cycling function 
of circadian rhythm
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Effects of members of positive feedback loop in 
breast cancer

The relationship between CLOCK and estrogen signaling 
pathway

Clinical data shows that breast tissue from a healthy body 
has significantly lower CLOCK gene expression than breast 
tissue from patients diagnosed with breast cancer, including 
adjacent normal tissue, as well as invasive carcinoma and 
cystic change (16). These data suggest that the aberrant 
over-expression of the CLOCK protein may be an early 
event in cancer development. In addition, patients with 
ER-negative tumors have higher levels of CLOCK gene 
expression than patients with ER-positive tumors (16). 
Estrogen receptor (ER)-positive breast cancers generally 
have a better prognosis and are often responsive to anti-
estrogen therapy, which is the first example of a successful 
therapy that targets a nuclear receptor (17). Unfortunately 
ER-negative breast cancers are more aggressive and are 
unresponsive to anti-estrogens (18). It appears that the 
expression of CLOCK is positively correlated with the 
malignancy of breast cancer. Our previous finding reveals 
that CLOCK promoted the proliferation of MCF-7 and 
T47D cell which are all ER-positive breast cancer cells by 
activating the transcriptional activity of ERα in the presence 
of estrogen (19). This may suggest that stimulation of ERα 
by CLOCK may represent an important mechanism for 
the growth of ER-positive breast cancer. As for the higher 
level of CLOCK observed in ERα negative tumors found 
in previous research (16), there may exist another unknown 
pathway participated by CLOCK, which has yet to be 
determined.

Cell-cycle genes are regulated by CLOCK-BMAL1 complex

CLOCK can not only participate in ER-related signaling 
pathway to regulate the proliferation of MCF-7 cells, but also 
activate the expression of various cell-cycle genes which contain 
the E-box that is the binding site for CLOCK-BMAL1.  
It is worth noting that a number of cell-cycle genes involved 
in either G2-M or G1-S transition contain E boxes in their 
promoter regions. It has been shown that CLOCK-BMAL1 
directly regulates cell-cycle genes involved in either G2-M 
or G0-G1 transition. Wee-1 is one of the cell-cycle genes 
working as a G2-M transition checkpoint, which is directly 
regulated by CLOCK-BMAL1 (20,21). Wee-1 encodes a 
cell-cycle protein kinase that phosphorylates the CDC2/
Cyclin B1 complex, causing its inactivation and delay of 

mitosis or arrest of the cell cycle at the G2-M interface 
when ongoing DNA replication contains DNA damage (21).  
Strikingly, elevated levels of Wee-1 in Cry mutant mice, 
which lack inhibition of CLOCK-BMAL1 by CRY, causes 
phosphorylation of CDC2/CYCB1 complex at an increased 
rate even in non-stressed cells, thus slowing down the 
G2-M transition and the overall growth rate (21,22). In 
addition to regulating the expression of Wee1, CLOCK/
BMAL1 also regulates other cell cycle genes, including 
c-myc. The expression of c-myc plays a crucial role in both 
cell proliferation and apoptosis while the dyregulation 
of this gene causes genomic instability, uncontrolled 
cell proliferation and immortalization (23). Normally, 
the binding of CLOCK-BMAL1 to the E-box of c-Myc 
promoter represses the transcription of the c-Myc gene. 
However in Per2 mutants, since PER2 promotes the 
transcription of Bmal1 gene in addition to repressing the 
activity of CLOCK-BMAL1, the reduced level of BMAL1 
causes upregulation of c-Myc expression, (10,24). Thus this 
over-expression of c-Myc leads to genomic DNA damage 
and as a result causes hyperplasia and tumorigenesis (25).

The possible effect of HAT activity of CLOCK in the 
regulation of cell functions

CLOCK is considered to be an enzyme with intrinsic 
histone acetylase (HAT) activity, which can acetylate 
histones leading to chromatin remodeling or non-histone 
targets such as its heterodimer BMAL1, which play crucial 
roles in maintaining circadian rhythm (26,27). Several 
cell proliferation proteins, including p53 and c-Myc, 
and transcription factors such as ERα, NF-κB and c-Jun 
are acetylated by HATs (28-32). All these data show that 
HATs can influence cell proliferation, apoptosis, and gene 
transcription in multi-signal pathways different from its 
roles in chromatin remodeling. In addition to our previous 
finding that CLOCK can associate with ERα, CLOCK 
also works as a positive regulator of NF-κB transcription 
by mutual interaction (33). Thus, CLOCK can cause a 
significant effect in the regulation of cell functions by direct 
association with regulation proteins, resulting in acetylation 
of these proteins and possibly in influencing their activities.

The repressive role of NPAS2 in breast cancer

NPAS2, a core circadian gene and transcription regulator, is 
significantly associated with decreased risk of breast cancer. 
Mutagen (methyl methanesulfonate, MMS)-treated MCF-7  
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cells with normal NPAS2 expression are more likely to be 
in G1 or G2 phase, corresponding to the major cell cycle 
checkpoints for DNA damage repair, while the number of 
cells in S phase is significantly reduced. However, among 
cells with reduced NPAS2 expression by siRNA, there 
is no significant difference between cells treated with or 
without MMS, suggesting an aberrant response to DNA 
damage (34). Moreover, the reduced expression of NPAS2 
significantly represses the expression of several cell cycle 
and DNA repair genes such as MAPK12 and EXO1 (34). In 
addition, NPAS2-BMAL1 complex has been considered to 
mediate the binding to the promoter of the oncogene c-myc 
and inhibit its transcription (25). Thus, NPAS2 may play a 
role in tumorigenesis by affecting expression of oncogenes 
and could be considered a novel putative tumor suppressor. 
In addition, some previous genetic epidemiological studies 
have shown that significant associations between a missense 
polymorphism (Ala394Thr) in NPAS2 and an increased risk 
of cancer development such as breast cancer and prostate 
cancer (35,36).

Therefore, although CLOCK and NPAS2 play similar 
roles in regulation of circadian rhythm, they cause different 
effects in the generation and development of breast cancer. 
Hypermethylation in CLOCK promoter reduce the risk 
of breast cancer showing that upregulation of CLOCK 
may promote the generation of breast cancer, while 
downregulation of NPAS2 decrease the sensitivity of cells 
to mutagen induction cell cycle arrest (34). The decrease 
in sensitivity contributes to cells exceeding the cell cycle 
checkpoint and entering into mitosis stage with DNA 
damage, thus leading to tumorigenesis of the breast cells.

Implication of PERs family in breast cancer

Clinical studies have shown that the expression of all three 
Per genes is deregulated in breast cancer patients and 95% 
of breast tumors display nearly absent or dyregulated levels 
of PER1 and PER2 in tumor cells compared with adjacent 
normal cells (37). Moreover, a structural variation of the 
Per3 gene has been identified as a potential biomarker 
for breast cancer in pre-menopausal women (1). More 
importantly, PER1 and PER2 appear to act as tumor 
suppressors in mice (25,38). Therefore, all three PER 
proteins are proposed to function as tumor suppressors.

PER1 and repair of DNA damage

PER1 can work as a tumor suppressor by regulating 

cell cycle genes and associating with key DNA damage 
activated checkpoint proteins. Over-expression of Per1 
in cancer cells increases ionizing radiation-induced  
apoptosis (38). ATM kinase and its downstream effector 
Chk2 are activated by DNA double-strand break (DBS) 
and in turn phosphorylate a network of proteins that 
initiate DNA repair, cell cycle arrest and apoptosis. In 
addition to regulating cell cycle genes, PER1 directly 
associate with DBS-activated kinases CHK2 and ATM 
and this interaction is necessary for efficient activation of 
Chk2 in response to DBS (38). Collectively, PER1 play a 
key role in the DNA damage response by interacting with 
and activating the ATM checkpoint pathway. Thus, PER1 
can work as a tumor suppressor through multiple signaling 
activations.

Relationship between PER2 and cell cycle

The transcript pattern of c-myc, which plays crucial roles in 
both cell proliferation and apoptosis, shows a low-amplitude 
circadian oscillation in all mouse tissues; however, the 
expression is significantly increased throughout the 24-hour 
period in Per2 mutants (39). In contrast, the transcription 
of p53, which plays a critical role in the G1-S checkpoint, is 
decreased in Per2 mutants. Following γ radiation, cells over-
expressed with c-myc are less efficient in G1 arrest compared 
with normal cells, revealing that over-expression of c-MYC 
could contribute cells to overcome cell cycle in the presence 
of genomic DNA damage (39,40). On the contrary, the 
loss of Per2 partially impairs p53-mediated apoptosis, 
resulting in accumulation of damaged cells following γ 
radiation. A mutation (S662G) in PER2 is responsible for 
familial advanced sleep phase syndrome (41), while recent 
data shows that this mutation site (S662G) is also linked to 
cell cycle progression and tumorigenesis. PER2 (S662G) 
mutation leads to enhanced resistance to X-ray-induced 
apoptosis and increased E1A and RAS related oncogenic 
transformation (42). At the same time, over-expressed 
PER2 in mice mammary carcinoma cell line (EMT6) led 
to reduced cellular proliferation and rapid apoptosis, but 
not in non-tumorigenic NIH3T3 cells (43). The temporal 
expression of genes involved in cell cycle regulation and 
tumor suppression, including c-Myc, cyclin A, Mdm-2, 
and Gadd45α, is deregulated in Per2 mutant mice (44).  
Down-regulation of PER2 increases the cell cycle protein 
level of cyclin D1 and cyclin E and promoted the growth 
of cultured mice mammary tumor cells as well as tumors in 
mice (45).
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PER2 participates in estrogen signaling directly

Besides CLOCK, which directly participates in the breast 
cancer related estrogen-signaling pathway, PER2 is another 
circadian rhythm regulating protein. Per2 expression is now 
known to be induced by estrogen, and PER2 can bind to 
ERα and enhance its degradation, resulting in significant 
growth inhibition, loss of clonogenic ability and cellular 
apoptosis (46). PER2 can be induced by E2, and it in turn 
is shown to promote the expression of BMAL1 by forming 
regulatory complexes with RORα and Rev-erbα via binding 
with ROREs in BMAL1 promoter, forming a PER2-BMAL1 
loop (47). An abnormal PER2-BMAL1 loop can impair 
estrogen-regulated morphogenetic processes due to lack 
of proper circadian availability of ERα in HME1 cells (3). 
All these data links the circadian rhythm to ERα signaling 
pathway. 

The roles of DEC family in the proliferation and 
metastasis of breast cancer cells

DEC1 and DEC2 are basic helix-loop-helix transcriptional 
factors, reportedly involved in maintaining circadian rhythm 
of cells, cellular growth, cellular differentiation, cellular 
apoptosis and cellular tumorigenesis (48). The expression 
of DEC1 is considered to be correlated with increased 
malignant potential and invasiveness of tumor cells. 
The expression of DEC1 increases on progression from 
normal to in situ and invasive breast carcinoma, showing a 
significant positive correlation between DEC1 and tumor 
grade. DEC1 expression is strongly induced by hypoxia, 
the hypoxically induced protein angiogenin and tumor 
grade, revealing there is an effect of the level of DEC1 in 
suppression of tumor differentiation and potential apoptosis 
(49,50). The reduced level of DEC1 results in the increasing 
expression of claudin-1 which functions as a tumor invasion 
suppressor in MCF-7 and MDA-MB-231 breast cancer 
cell line. Thus, DEC1 may promote the invasive ability of 
breast cancer cells by the downregulation of claudin-1 (51). 
DEC1 itself can be induced by TGF-β, which facilitates 
tumor growth and metastasis in advanced cancer stages and 
represses apoptosis of mice mammary carcinoma cells (52).  
Additionally, a dominant-negative mutant of DEC1 
(dnDEC1) prevents lung and liver metastasis of breast 
cancer cells in vivo (52). However, other researchers show 
that DEC1 is a SUMOylated protein, and its SUMOylation 
enhances its ability to inhibit the transcription level of cyclin 
D1, which promotes the proliferation of breast cancer cells 

and mediate cell cycle arrest in G1 phase in fibroblast cells 
(53,54). In conclusion, there is a wide range of consensus 
on the role of overexpressed DEC1 in promoting the 
metastasis ability of breast cancer cells, whereas there is 
still the ongoing debate on the effect of DEC1 on the 
proliferation of cells. It is possible that DEC1 have different 
functions in different environments. DEC1 is abundantly 
expressed in tumors and protects these diseased cells against 
induced apoptosis with serum starvation by upregulating 
the expression of antiapoptotic protein surviving (55). Since 
tumor cells, especially malignant tumors can usually survive 
in hypoxia and low nutrition environment. Overexpressed 
DEC1 may repress cell proliferation in normal conditions, 
but in a hostile environment, such as hypoxia or low 
nutrition, DEC1 starts a distinct anti-pressure pathway 
to inhibit cell apoptosis via upregulating antiapoptotic 
proteins.

Overexpression of  cyc l in  D1  induces mammary 
tumorigenesis, and higher levels of cyclin D1 in ER-positive 
breast cancer patients are associated with poorer prognoses. 
Unlike DEC1, overexpression of DEC2 dramatically 
inhibits cell proliferation and represses the expression 
of cyclin D1 in human mammary epithelial cells (56). In 
addition to playing roles in cell proliferation, DEC2 also 
takes effect in breast cancer metastasis. DEC2 suppresses 
breast cancer metastasis by promoting degradation of 
hypoxia-inducible factors-1α (HIF-1α). DEC2 is a crucial 
regulator of the invasive and metastatic phenotype in triple-
negative breast cancer (TNBC), which is one of the most 
aggressive types of breast cancer. The cell migration in 
vitro, invasive, or metastatic behaviours is dependent on 
HIF-1α protein. Thus, DEC2 suppresses TNBC metastasis 
by associating with HIF-1α and promoting the HIF 
proteasomal degradation (57).

Therefore, although DEC1 and DEC2 are members of 
the same family, they have different effects on the regulation 
of cell functions. Depending on the situation, DEC1 plays 
distinct roles in cell proliferation. As for the effect on cell 
metastasis, DEC1 promotes its progression, while DEC2 
represses this progress. Previous studies show that DEC1 
was expressed markedly higher in carcinomas, whereas 
DEC2 was expressed markedly higher in the adjacent 
normal tissues (58). At the same time, DEC1 negatively 
regulates the expression of DEC2 by direct DNA binding 
to the E-box in the proximal promoter of DEC2 (58). Thus, 
we speculate that homeostatic levels of these two circadian 
proteins are disrupted in some breast cancers, especially in 
high grade invasive tumors.
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Chronotherapy

Chronotherapy against cancers are dependent on the 
effect that the circadian rhythm exerts on multiple cellular 
processes, such as cell cycle, DNA repair, proliferation 
and apoptosis, and drug metabolism, which are crucial 
molecular determinants of cellular pharmacokinetics and 
pharmacodynamics of cytotoxia/cytostatic drugs (59). 
Chronotherapy is a treatment strategy that searches for the 
optimal time for drug administration in accordance with the 
body biological clock, in order to promote the therapeutic 
effect of anti-cancer drugs.

Research has shown that the growth rate of breast cancer 
is regulated by the circadian clock with two daily peaks, 
coupled to the daily expression patterns of clock-controlled 
genes that regulate cell proliferation, while down-expression 
of PER1 promote growth of tumors via enhancing the 
amplitude of the two daily growth peaks (60). These data 
shows that PER1 represses tumor growth only at specific 
times of a day. 

In malignant tumors, vascular endothelial growth factor 
(VEGF) is expressed at substantially increased levels, 
and its expression is often related with poor prognosis in 
several types of tumors. The transcription of VEGF gene is 
controlled by the circadian molecular clockwork in hypoxic 
tumor cells and showing a circadian oscillation in the cancer 
cells implanted in mice. It is notable that the circadian 
variation of VEGF influences the pharmacological efficacy of 
antiangiogenic agents, since angiogenesis inhibitors exhibit 
the most repressive effect on the growth of tumors when the 
drug is administered at the expression peak of VEGF (61). 
Damaging the circadian rhythm also influences response 
to anticancer drugs in mice. The sensitivity of wild-type 
mice varies largely depending on the time of anticancer 
drug cyclophosphamide (CY) treatment, while Clock 
mutant and Bmal1 knockout mice show a high sensitivity 
to administration at all times tested. Contrastingly, 
mice with Cry1-/-Cry2-/- double knockouts exhibit more 
resistance to CY compared with wild type mice (62).  
This resistance reveals that response to anticancer drug 
CY is directly related with functional module of the major 
circadian clock.

A recent study suggests a molecular relationship between 
circadian rhythm and oral drug absorption. The expression 
of BCRP (breast cancer resistance protein) limits systemic 
exposure to xenobiotics. Alterations in the function and 
expression of this protein could account for part of the 
variation in oral drug absorption and is regulated under 

control of circadian clock-ATF4 pathway. This data shows 
that the circadian clock-ATF4 pathway causes the oscillation 
of BCRP function and induces the circadian change in 
intestinal drug absorption (63). Anticancer drugs generally 
produce their cytotoxic effect in both normal and malignant 
tissues. If we could identify the difference of circadian 
rhythm of intestine absorption capacity between normal and 
cancer tissues, we can prognosticate the most favorable time 
for drug administration, which is when intestine absorption 
ability is low in normal tissues, and when the ability is high 
in cancer tissues.

Conclusions

Over past few decades, hormone therapy has been the most 
effective treatment for women with ER-positive breast 
cancer (64,65). However, the appearance of resistance to 
hormone therapy has promoted the search for a different 
strategy, including focusing on the relationship between the 
disruption of circadian rhythm and breast tumorgenesis. 
Circadian regulation is pivotal to maintaining normal 
cellular physiology, and the disruption of circadian rhythm 
is closely related with multiple diseases, such as diabetes, 
obesity, dyssomnias, and cancer. Most living organisms 
exhibit behavioural and physiological circadian oscillations. 
According to previous research, when compared to those of 
normal breast cells, these oscillations are usually damaged 
in breast cancer cells. Exploring the difference in the 
circadian rhythm between normal tissues and malignant 
tissues not only contribute to investigating the mechanism 
behind the generation and development of cancers, but also 
this disparity in the circadian rhythm between normal and 
tumor cells is crucial to maximizing the effect of anticancer 
drugs and supports the academic foundation for tumor 
chronotherapy.
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