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Introduction

More than 90% of all cancer-associated deaths are caused 
by metastasis, a cascade of events beginning with the 
epithelial-mesenchymal transition (EMT) (1). EMT, as well 
as its reverse process, mesenchymal-epithelial transition 
(MET), play pivotal roles in organ development, tissue 
repair and cancer metastasis by endowing epithelial cells 
with enhanced migratory capacity, elevated resistance to 
apoptosis and increased production of ECM components (2). 
A subpopulation of cancer cells, which undergo an EMT/
MET stage, can detach from the primary site, invade 
through the surrounding tissue, enter and survive in the 
circulation, and proliferate in a foreign microenvironment 
(3,4). These cells are called circulating tumor cells 
(CTCs) (5). The presence of CTCs in patients with 
carcinoma is associated with a poor prognosis because 
CTCs may reach a secondary organ prior to the appearance 
of clinical symptoms. Therefore, CTCs may represent not 
only a prognostic marker but also be a promising target for 

anticancer therapies. To exploit the window of opportunity 
for clinical intervention, a better understanding of the 
biological behaviors of CTCs is required.

Thrombocytosis is frequently observed in patients 
with metastatic malignant tumors (6,7). The risk of 
venous thromboembolism (VTE), including deep venous 
thrombosis (DVT) and pulmonary embolism (PE), is 
increased up to seven-fold in these patients compared with 
non-cancer patients (8-10). These clinical data suggest 
that platelets may contribute to metastasis, in addition 
to their well-known role in hemostasis and coagulation. 
Platelets are an anucleate, discoid shaped blood cell, which 
contain three types of secretory granules, α-granules, dense 
granules, and lysosomes (11). Alpha granules, which are the 
most abundant granules in platelets, include large proteins 
contributing to adhesion and aggregation. Dense granules 
contain small, nonprotein substances, which upon secretion, 
recruit subsequent platelets. Lysosomes primarily secrete 
hydrolases involved in the elimination of platelet aggregates (7). 
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To further demonstrate the contribution of platelets to 
metastatic processes, several studies using established 
animal models reported that platelets promote metastasis 
by protecting tumor cells from host immune surveillance 
and enhancing CTCs-endotheliocyte adhesion (12-14). 
Although the underlying molecular mechanisms have not 
been completely elucidated, advances in our understanding 
of metastasis have highlighted the importance of direct or 
indirect interactions between platelets and CTCs.

Role of platelets in angiogenesis

Angiogenesis is a rate-limiting process in cancer metastasis. 
The formation of CTCs is hampered by tight vascular 
wall barriers (15). However, the neovasculature of primary 
tumors typically has weak and leaky endothelial cell 
junctions, which facilitates transendothelial migration 
(TEM) (16-20). Platelets contain angiogenic and angiostatic 

factors, and the switch to an angiogenesis phenotype can be 
triggered by metastasizing tumor cells (21,22). Tumor cells 
can function indirectly via binding to von Willebrand factor 
(vWF) to initiate platelet aggregation, resulting in the 
release of vascular endothelial growth factor (VEGF), one 
of the most powerful positive regulators of angiogenesis (23). 
Ligation of the protease-activated receptor-1 (PAR-1) can 
also promote the release of VEGF-containing α-granules 
(24,25). By contrast, PAR-4 activation up-regulates the 
secretion of endostatin, a platelet-derived angiogenesis 
inhibitor (Figure 1) (25).

Platelets also affect angiogenesis by seeding microparticles, 
which express platelet surface antigens, including CD41 
and CD42b (26,27). Metastasizing cancer cells can 
activate platelets at the primary site, increasing the local 
concentration of platelet microparticles (PMPs). After fusing 
with target cancer cells, PMPs may deliver pro-angiogenic 
factors, such as basic fibroblast growth factor (bFGF) and 
VEGF (28). Additionally, circulating PMPs may up-regulate 
the level of matrix metalloproteinase 2 (MMP2) in prostate 
cancer cells and facilitate the intravasation of metastasizing 
cancer cells (29). The increased invasive potential of tumor 
cells induced by PMPs further confirms a robust interaction 
between platelets and CTCs (30).

Interactions between platelets and primary 
tumor cells

Although the mechanisms by which platelets act are poorly 
understood, there is evidence that primary tumor cells 
express thrombin to promote metastasis through platelets 
(Table 1). Thrombin enhances tumor cell-induced platelet 
aggregation (TCIPA) in vitro by fully activating specific 
membrane receptors on platelets (83). Treating mice with 
established melanoma using r-hirudin, a highly specific 
antagonist of thrombin, blocks coagulation events and 
inhibits lung metastasis (84).

Recently, the role of platelets in the progression of 
malignant tumors has gained attention (85,86). Activated 
platelets are a primary source of lysophosphatidic acid (LPA), 
a simple lipid with growth factor-like signaling properties 
(87,88). Levels of LPA increase in up to 90% of patients 
with gynecologic cancers (89). LPA is involved in the 
initiation and progression of several cancers, such as colon, 
ovarian, prostate, breast, melanoma and thyroid (90,91). 
The effects of LPA are mediated by at least six different G 
protein-coupled receptors (LPA1-6) (92). Selective blockage 
of LPA1 and LPA2 inhibit cancer cell proliferation and 

Figure 1 The generation and intravasation of CTCs. Platelets 
are activated by interactions with CTCs. They then secret 
several cytokines, such as LPA. These cytokines up-regulate 
molecular signaling pathways that facilitate the detachment of 
cancer cells from the primary site and extravasation into the 
bloodstream. Activated platelets also promote tumor angiogenesis 
via platelet-derived VEGF. CTCs, circulating tumor cells; LPA, 
lysophosphatidic acid; VEGF, vascular endothelial growth factor.
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invasion, which are essential for CTC generation (93-95). LPA 
up-regulates the activity of MMP2, MMP7 and MMP9 in 
cancer cells (96-99). MMPs are a family of zinc-dependent 
endopeptidases that are important mediators of cancer 
progression. They act via the degradation and remodulation 
of the ECM (100). The increased expression of MMPs helps 
tumor cells detach from the primary site and enter into 
the circulatory system (101). In addition, a tumor bearing 
mouse model with thrombocytopenia exhibits reduced 
tumor cell proliferation and increased tumor necrosis (102).  
Accumulating evidence indicates that the selective inhibition 
of platelet activity in patients with malignant tumors not 
only reduces the risk of embolic events but also reduces 
tumor growth (Figure 1) (103-106).

Although considerable progress has occurred in elucidating 
the interactions between platelets and tumor cells, there is no 
direct evidence that platelets affect tumor cell intravasation 
directly (12). Further experimentation is required to identify 
the mechanisms underlying this key step during metastasis.

Platelets and CTC survival

After leaving the supportive microenvironment, CTCs 

face many survival challenges in the circulation, including 
immunological attack, shear forces and apoptosis. Although 
the majority of CTCs are destroyed, less than 0.1% of 
CTCs survives and triggers TCIPA by direct contact or 
through the release of agonistic mediators, such as ADP, 
thrombin, TXA2 and tumor-associated proteinases (14,107-109). 
Platelets are activated in TCIPA and attach to the surface of 
CTCs by a GPIIb-IIIa-fibrinogen bridge and up-regulated 
P-selectin (Figure 2) (14,110).

However, the molecular mechanism by which platelets 
promote the survival of CTCs in the blood stream is 
not fully understood. Several hypotheses propose that 
the surface coating of platelets may serve as a shield 
against immune assault because the effect of anti-tumor 
attacks mediated by NK cells is primarily based on the 
direct interaction with CTCs (111,112). There is solid 
experimental evidence that thrombocytopenia caused 
by either platelet depletion with anti-platelet sera or by 
defective platelet production significantly enhances the 
ability of NK cells to lyse CTCs in vitro and in vivo (113). 
Furthermore, activated platelets can transfer the major 
histocompatibility complex (MHC) to CTCs, which in turn 
mimics host cells and escapes immune surveillance (114).  
Moreover, platelet-derived TGF-β may reduce the 
expression of the immunoreceptor NKG2D, thus 
inhibiting NK cell activity (115). In addition to NK cells, 
platelet-derived VEGF may inhibit the maturation of 
dendritic cells, the major antigen-presenting cells in the 
immune system (116).

EMT, as well as its reverse process, MET, play pivotal 
roles in cancer metastasis by endowing tumorous cells with 
migratory, invasive and anti-apoptosis properties (117). 
CTCs share many phenotypic and functional traits with 
cells undergoing EMT (118). Recent studies suggest that 
CTCs in patients with breast cancer or prostate cancer 
co-express EMT-related markers, including E-cadherin, 
cytokeratin (CK), vimentin and N-cadherin (119-121). 
Inhibition of EMT-related signaling elements, such as 
Twist, Zeb and Snail, can prevent metastatic relapse (122). 
However, the underlying molecular mechanisms by which 
CTCs maintain the EMT state have not been elucidated. 
In addition to their well-established role in protecting 
CTCs from immune assaults, platelets may also contribute 
to the EMT of CTCs (123). TCIPA promotes platelets 
to release α-granules, which contain TGF-β and platelet-
derived growth factor (PDGF) at concentrations several-
fold higher than most cell types (124). Platelet-derived 
TGF-β activates the Smad signaling pathway and promotes 

Table 1 Agents involved TCIPA

Agents Origin References

Adenosine diphosphate (ADP) Platelet (31)

Thromboxane A2 (TXA2) Tumor cell (32-36)

12-HETE Tumor cell (37)

Thrombin Tumor cell (38-44)

Cathepsin B Tumor cell (45-48)

Matrix metalloproteinase 2 

(MMP-2)

Platelet and 

tumor cell

(49-51)

GPIb-IX-V Platelet and 

tumor cell

(52)

von Willebrand factor (vWF) Tumor cell (50)

GPIIb/IIIa (αIIβIII) Tumor cell (52-61)

avb3 Platelet and 

tumor cell

(62)

P-selectin Tumor cell (63-69)

Podoplanin Tumor cell (70-72)

Prostacyclin Tumor cell (73-80)

NO Platelet and 

tumor cell

(81,82)

TCIPA, tumor cell-induced platelet aggregation.
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the transdifferentiation of CTCs into a mesenchymal-
like phenotype (123). PDGF is another important EMT 
driver that contributes to cancer invasion and angiogenesis. 
Overexpression of PDGF-D promotes the EMT of prostate 
cancer cells both in vitro and in vivo via the activation of 
rapamycin downstream targets, S6K and 4E-BP1 (125). 
The crosstalk between PDGF and EMT-related signaling 
pathways, such as the nuclear factor κ-light-chain-enhancer 
of activated B cells (NF-κB) and chemokine (C-X-C motif) 
receptor 4 (CXCR4), further indicates that PDGF plays 
an important role in EMT (126,127). Interestingly, in a 
study of hepatocellular carcinoma (HCC), PDGF was 
hypothesized to be involved in TGF-β-induced EMT 
of metastasizing cancer cells (128). Additional studies 
determined the molecular mechanism underlying this 
process, by which TGF-β enhances the expression of 
PDGF and PDGFR via activation of β-catenin and 
the signal transducer and activator of transcription 3 
(STAT3) (129,130).

Platelet-mediated tumor extravasation

After CTCs successfully escape from physical and immune 
destruction in the circulation, they localize in distant 

organs. CTCs must anchor to the luminal side of vascular 
endothelial cells and then break through the subepithelial 
extracellular matrix (ECM) (16). Although this process is 
primarily mediated by the interaction between adhesion 
receptors on CTCs and ECs, platelets may serve as a 
potent regulator of this process (Figure 3) (14). First, 
interactions between CTCs and platelets and leukocyte 
activated vascular ECs induce the expression of C-C 
chemokine ligand 5 (CCL5), which in turn leads to the 
increased recruitment of leukocytes to CTCs (131). 
Indeed, leukocytes are implicated in promoting tumor 
cell survival and metastasis to the lung (132). Inhibition of 
CCL5 by a receptor antagonist significantly inhibits this 
metastatic process (131). Second, by triggering several 
specific signaling pathways, platelet-derived TGF-β and 
PDGF induce EMT in CTCs. EMT improves the ability 
of CTCs to avoid apoptosis and pass through the vessel 
wall, as described in the previous section. Ablation of 
platelet-derived TGF-β reduces metastasis, suggesting that 
they play an important role in this process (123). Third, 
activated platelets may be involved in the establishment of 
a prometastatic microenvironment through the recruitment 
of inflammatory cells. Upregulation of CCL2 expression in 
CTCs in response to the interaction with platelets promotes 

Figure 2 The survival of CTCs in circulation. The majority of CTCs are killed by NK/T cells. Platelets activated in TCIPA can attach to 
the surface of CTCs by a GPIIb-IIIa-fibrinogen bridge and up-regulated P-selectin to protect CTCs from immune surveillance and physical 
stress. TCIPA also help CTCs to undergo EMT, which enhances the ability of CTCs to avoid apoptosis. CTCs, circulating tumor cells; 
TCIPA, tumor cell-induced platelet aggregation; EMT, epithelial-mesenchymal transition. 
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both monocyte recruitment and an increase in vascular 
permeability (133).

Conclusion and future directions

In conclusion, it is clear that platelets have many roles in 
tumor metastasis. Platelet-derived cytokines and receptors 
are important for protecting CTCs from host immune 
attack and physical stress. Because platelet-tumor cell 
interactions induce platelet activation and aggregation, it 
is reasonable to interfere with this process as a therapeutic 
intervention. Blockade of GPIIb/IIIa with the monoclonal 
antibody 10E5 reduces lung metastatic events (134). 
Hirudin, a specific thrombin inhibitor, inhibits metastasis 
in experimental models (84). Several studies suggest that 
heparin, a powerful P-selectin inhibitor, can attenuate 

tumor metastasis in mice (135). Recently, evidence has 
shown that the chemotherapeutic effects of aspirin on 
the metastatic process may depend on the inhibition of 
platelet function (136). Therefore, platelets are a promising 
therapeutic target for the attenuation of metastatic events. 
However, whether patients with cancer will benefit from 
prophylactic dose of platelet inhibitors has yet to be 
determined. Although prostacyclin, one of the most potent 
platelet inhibitors, reduces the metastasis of osteogenic 
sarcoma, it fails to reduce pulmonary metastasis induced by 
many types of tumors (137,138). Clinical studies suggest 
that the daily administration of semuloparin, an ultra-low-
molecular-weight heparin, has no significant effect on the 
mortality of patients with metastatic or locally advanced 
solid tumors (139,140). These contradictory results 
suggest that the mechanism underlying platelet-involved 
metastasis has been only partially elucidated and is likely to 
be multifactorial, and several issues remain for anti-platelet 
therapy.

Unfortunately, although many studies have focused on 
this field during the last decades, significant challenges 
remain to be overcome before a platelet-targeted 
therapeutic strategy can be used in humans. Despite 
technical advances in the detection of CTCs, our ability 
to explore platelet-CTCs interactions in vivo is limited 
because of the shortage of materials. The majority of cancer 
patients have fewer than ten CTCs per milliliter of blood, 
and these CTCs are difficult to purify (141). Therefore, 
in vivo experiments are always performed in established 
rodent models by injecting human cancer cells into the tail 
vein. However, it would be ideal to study platelet-CTCs 
interactions from the initiation of metastasis, rather than 
after intravascular injection. Moreover, the CTC-associated 
recruitment of inflammatory cells is not established in 
these immunocompromised mice (16). The process of 
TCIPA likely involves several important platelet receptors. 
Experimental blockage of these receptors results in the 
inhibition of cancer metastasis (142). However, several 
studies provided contradictory results, suggesting that the 
number of metastatic foci increased significantly in vWF-
null mice. One hypothesis proposes that the blockade of 
a given receptor on a platelet may be compensated for by 
other signaling pathways (142). Physiologically, platelets are 
best known for maintaining hemostasis. However, several 
platelet receptors, such as P-selectin, are also expressed on 
other normal cells. Therefore, the potential side effects of 
platelet-targeted compounds must be carefully evaluated. 
Furthermore, a better molecular understanding of 

Figure 3 The extravasation of CTCs. At metastatic sites, 
interactions between CTCs, platelets and leukocytes help CTCs to 
anchor to the luminal surface of endothelial cells. Platelet-derived 
TGF-β and PDGF induce EMT in CTCs and endow CTCs with 
migratory and invasive properties to break through the ECM of 
blood vessels. CTCs, circulating tumor cells; PDGF, platelet-
derived growth factor; EMT, epithelial-mesenchymal transition.
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platelet-CTC interactions is needed to identify individual 
therapeutic strategies for patients in high-risk situations for 
cancer metastasis.
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