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Evolution of tumor immunology

The role of the immune system in the development of 
neoplastic diseases has been the subject of investigation and 
controversy for several decades. In 1891, William Coley 
offered one of the first examples of the efficacy of the 
immune system in treating cancerous lesions. His strategy 
consisted of intratumoral injections of live or inactivated 
Streptococcus pyogenes and Serratia marcenses, known 
as “Coley’s toxin”. The injected bacteria were capable 
of initiating a local inflammatory response resulting in 
activation of antibacterial phagocytes and potential killing 
of nearby tumor cells by virtue of profound inflammatory 
response (1). Data derived from Coley’s work were 
collected for over 40 years and the results of his studies 
were published in 1953 (2,3). As a result of his pioneering 
work, Coley is often credited as the father of cancer 
immunotherapy.

The current view of immune surveillance suggests that 
cancerous cells are maintained in check by the immune 
system, which recognizes and eliminates abnormal cells 
(4-7). The process of immune-surveillance depends on a 
series of events that are necessary to mount an effective 
antitumor response (1). Cancer cells express specific 
epitopes (i.e., neo-antigens) on their cell surface as a result 
of cancerous transformation (8,9). These epitopes are also 
known as tumor-associated antigens (TAAs) and are usually 
captured, processed and presented by dendritic cells (DCs) 
(10,11). DCs, which are often recognized as the most 
potent antigen-presenting cells in the human body, require 
activation and/or maturation signals to differentiate and 
eventually migrate to regional lymph nodes (12,13). Once 
in the lymph nodes, mature DCs present TAAs to naive 
T cells that then undergo expansion and differentiation to 
become activated T cells. activated T cells eventually leave 

the lymph nodes and infiltrate into the tumor site where 
they execute their cytotoxic activity to kill tumor cells (1).

Tumor cells, however, can evade immune control through 
several complex mechanisms, utilizing immunosuppressive 
and tolerogenic strategies including immunoediting (14,15). 
Immunoediting is composed primarily of three sequential 
stages known as elimination, equilibrium, and escape 
(7,14,16). During the first phase of “elimination”, cancerous 
cells are identified and appropriately destroyed by the 
immune system. During the second phase of “equilibrium,” 
the immune system prevents further tumor outgrowth but 
it fails to eliminate cancerous cells completely. The third 
phase, “escape,” is a direct consequence of the previous two 
phases, and can be seen as the product of selective pressure 
of the immune system on cancer cells. In this final phase, 
cancer cells, which evolve from the original cancerous cell, 
are now capable of evading the immune surveillance and 
continue to proliferate.

The pancreatic cancer microenvironment

Pancreatic ductal adenocarcinoma (PDAC) presents several 
challenges that set it apart from those more immunogenic 
tumors, such as melanoma and renal cell cancer (17,18). A 
dysregulation of the immune system is one of the facilitating 
factors for PDAC development, thus legitimizing the role 
of the immune network in PDAC (19-22).

One of the principal characteristics of PDAC is the 
abundance of stromal desmoplasia that constitutes the 
tumor microenvironment in which the components of the 
immune network are distributed (23,24). This extensive 
stromal desmoplasia, also known as fibrosis, has been shown 
to promote tumor development and most importantly to 
prevent the penetration and uptake of chemotherapeutic 
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agents (25,26). One of the major players in PDAC 
desmoplasia is the pancreatic stellate cell (PSC). Stimulated 
by transforming growth factor β (TGF-β) and platelet-
derived growth factor (PDGF), the PSCs initiate a process 
of synthesis and deposition of extracellular matrix (ECMs) 
proteins that eventually leads to the extensive desmoplastic 
reaction seen in PDAC (27,28). Preclinical models have 
shown that targeting the signaling cascade leading to 
ECMs protein synthesis could enhance drug penetration 
in the pancreatic neoplastic tissue (29). However, PDAC 
clinical trials have yet to show a significant benefit 
from this approach. In addition, activation of inhibitory 
T-cell checkpoints (i.e., CTLA-4, PD-1) may have a 
contributing role as does the particularly hostile tumor 
microenvironment characterized by abundant stroma that 
prevents the effector T-cell from functioning in various 
manners (30).

Several cytokines appear to be dysregulated and contribute 
to cancer progression in PDAC. In particular, higher levels 
of circulating interleukin-6 (IL-6) are identified in patients 
with PDAC and appear to promote cancer progression 
through enhancement of protumorigenic Stat3 signaling 
(20,31). Furthermore, members of the IL-1 family [e.g., IL-α, 
IL-β and IL-1 receptor antagonist (IL-1ra)] seem to play a 
role in PDAC development (32-34). Immunosuppressive 
cytokine IL-10 is up regulated in PDAC, which leads 
to a reduction in effector cell function in the PDAC 
microenvironment and indicates a worse prognosis (35,36).

Tumor-inf i l trat ing lymphocytes  (TILs)  have a 
paramount role in tumor specific cellular adaptive 
immunity. The main components of this population are 
CD8+ cytotoxic T cells, CD4+ helper T cells (e.g., Th1, 
Th2, and Th17), and regulatory T-cells (Tregs) (18). CD8+ 
T-lymphocytes are the dominant subset of T-lymphocytes 
in the PDAC microenvironment and their presence is 
associated with prolonged survival (37-39). CD8+ cytotoxic 
T-cells recognize TAA peptides associated with major 
histocompatibility complex class I on tumor cells, resulting 
in cancer cell destruction. In addition to their direct 
cytotoxic effect on tumor cells, CD8+ T cells are capable of 
mobilizing and triggering macrophage tumoricidal activity 
(18,40,41). The presence of Th1 and Th2 lymphocytes 
in the tumor microenvironment appears to have opposite 
prognostic significance in the setting of PDAC progression 
(42,43). In fact, the presence of Th1 is associated with 
favorable prognosis while a predominant infiltration of 
Th2 and its related cytokines (IL-4, IL-5 or IL-13) often 
correlates with disease progression (18). Of interest is the 

role of IL-5 and IL-13, these cytokines likely stimulate 
the desmoplastic reaction increasing ECM deposition 
and collagen synthesis (44). Furthermore, IL-13 appears 
to downregulate proinflammatory cytokines (IL-1, IL-6, 
TNF-α) and chemokines, and effectively inhibits antibody-
dependent cellular toxicity (45,46). Nevertheless, IL-13 acts 
as an autocrine growth factor for PDAC (47,48). Regulatory 
T-cells (Tregs), which are positive for CD4+, CD25+, and 
Foxp3, are enriched in the tumor microenvironment (49,50). 
Tregs effectively suppress the adaptive immune response and 
their presence in the tumor microenvironment leads to a 
decreased presence of CD8+ T-cells and often correlates 
with poor prognosis (50,51). Other cell types, like myeloid-
derived suppressive cells (MDSCs) and neutrophils, also 
participate in the immune reaction during the development 
and progression of PDAC resulting in dynamic interactions 
between the tumor cells, and the immune system.

Strategies of cancer immunotherapy

Different strategies for cancer immunotherapy have been 
proposed and investigated. These therapeutic strategies can 
be grouped into active or passive, based on the involvement 
of the host immune system. Active immunotherapy aims 
to stimulate the host immune response to recognize TAAs 
and eventually destroy tumor cells. This often requires 
administration of cytokines, immunomodulatory agents, or 
therapeutic vaccines that eventually lead to the expansion 
of tumor-specific T cells. Passive immunotherapy requires 
the exogenous administration of activated lymphocytes (e.g., 
tumor-specific immune effector cells) or antibodies that 
mediate an immune response (52).

Overview of clinical trials in PDAC immunotherapy

 Results from recent clinical trials conducted between 2005 
and 2015 are summarized in Table 1. In addition, trials 
conducted between 2010 and 2015 are discussed in the 
following sections.

Adoptive therapy

In one of the most recent phase II trials, Chung et al. 
evaluated the use of adoptive immunotherapy in patients 
with advanced pancreatic cancer who experienced disease 
progression during gemcitabine-based chemotherapy (73). 
In this study, the authors utilized ex vivo expanded, cytokine-
induced killer (CIK) cells (i.e., heterogenous cell population 
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containing >20% of CD3+ CD56+ cells) previously shown to 
have cytolytic activity in a major histocompatibility complex 
(MHC)-unrestricted manner (77). Patients enrolled in this 
study received CIK as the sole cancer therapy. The authors 
reported a median estimated progression free survival (PFS) 
of 11.0 weeks and a median estimated overall survival (OS) 
of 26.6 weeks, which were similar to prior studies using 
conventional cytotoxic chemotherapy (73,78-80).

Cancer vaccines

Cancer vaccines aim to stimulate the immune system 
to produce tumor-specific T cells and B cells (81). The 
primary mechanism of action of therapeutic cancer vaccines 
is their capacity to increase the presentation of TAAs to 
the immune system. Generally vaccines can be classified in 
three major approaches: cell-based vaccines, protein/peptide 
vaccines, and genetic vaccines. Each strategy has been well-
investigated, and each seems to have its own advantages and 
disadvantages (Figure 1).

Table 2 summarizes the most common cellular targets 
utilized in recent clinical trials of PDAC cancer vaccines, 
including: telomerase, Wilms tumor gene, KIF20A, alpha-
galactosyl (α-Gal), survivin, mutated Ras protein, human 
mucin MUC1 protein, and vascular endothelial growth 
factor receptor 2 (VEGFR2).

The TeloVac study is one of the largest randomized, 
phase III clinical trials to evaluate the efficacy of cancer 
vaccine in PDAC (30). This trial was conducted in 51 
hospitals in the United Kingdom and enrolled 1,062 

subjects. It aimed to assess the efficacy and safety of 
sequential or simultaneous telomerase vaccination (GV1001) 
in combination with chemotherapy in patients with locally 
advanced or metastatic pancreatic cancer. Results showed 
that adding GV1001 vaccine either simultaneously or 
sequentially to a standard treatment regimen of gemcitabine 
and capecitabine did not improve OS. The authors suggest 
that the lack of response seen in this trial may be due to 
the characteristic rapid progression of pancreatic cancer to 
metastatic disease, which could prevent an active immune 
response from developing.

Active peptide-based immunotherapy utilizing Wilms 
tumor (WT1) protein has been investigated in combination 
with gemcitabine for patients with advanced pancreatic 
cancer (53). In this phase I clinical trial, vaccination with 
WT1 in combination with gemcitabine was found to be 
safe. Furthermore, although the trial was not designed 
to evaluate survival benefit, it appears that the patients in 
whom a WT1 specific immunity was induced had better 
clinical outcomes translating to a 12-month or longer 
survival time and an improved quality of life (QOL).

Suzuki et al. conducted the first phase I trial aimed to 
investigate the use of a vaccine composed of an epitope 
peptide KIF20A in combination with gemcitabine in 
patients with advanced pancreatic cancer (unresectable 
and/or metastatic) who had already received prior 
conventional chemotherapy and/or radiotherapy (54). The 
authors reported no adverse events directly attributable 
to the vaccine and demonstrated enhancement of INF-γ-
producing cells in 8 out of the 9 patients enrolled (54).

Therapeutic 
cancer vaccines

Cell-based 
vaccines

Autologus  
(patient-specific 

tumor cells)

Allogenic
(derived from human 

tumor cell lines)

Derived from TAAs 
(need adjuvant or 

immune modulator)

DNA-based 
RNA-based 
Viral-based

Protein/peptide 
vaccines

Genetic  
vaccines

Figure 1 Therapeutic cancer vaccine categories. TAA, tumor associated antigen.
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The enthusiasm that followed two trials conducted by 
Yanagimoto et al., aimed at the evaluation of personalized 
peptide vaccination (PPV) in combination with gemcitabine 
(62,68), prompted Yutani et al. to test this vaccination 
strategy in a phase II trial in patients with chemotherapy–
resistant advanced pancreatic cancer (55). Patients enrolled 
in this trial had a median survival time (MST) of 7.9 months 
with a 1-year survival rate of 26.8%. However the authors 

noted that patients who were treated solely with PPV 
(n=8) had a MST of 3.1 months compared to patients who 
received PPV vaccination combined with chemotherapy 
(9.6 months; P=0.0013). Therefore, Yutani et al. concluded 
that PPV offers no advantages as a single therapy in patients 
with advanced PDAC, although its use combined with 
chemotherapy could positively influence OS.

Algenpantucel-L (NewLink Genetics Corporation, 

Table 2 Common cellular targets utilized in recent clinical trials for PDAC cancer vaccine

Cellular targets Rationale References

Telomerase Enzyme that is reactivated during oncogenic transformation
Prevents the naturally occurring shortening of the telomeric ends of DNA during 
replication, which would lead to cell senescence and eventually cell death

(82-84)

Wilms tumor gene 
(WT1)

Identified on the cell surface of several cancerous cells including pancreatic cancer cells
Highly immunogenic, eliciting both humoral and cellular responses

(53,85-91)

KIF20A (RAB6KIFL) Member of the kinesin superfamily of motor proteins, that has a paramount role in the 
intracellular trafficking of molecules and organelles during the growth of pancreatic 
cancer

(54)

Alpha-galactosyl 
(α-Gal) epitope

Human cells do not present the α-Gal epitope and on the contrary the anti-Gal antibody 
is abundant in human serum (about 1% of circulating human antibody)
Genetically modified tumor cells that express α-Gal in addition to TAAs, in an attempt to 
induce a complement and antibody-dependent cell-mediated hyperacute rejection that 
would favor the processing and presentation of TAAs

(76,92-95)

Survivin (also known 
as baculoviral inhibitor 
of apoptosis repeat-
containing 5; BIRC5)

Member of the inhibitor apoptosis protein (IAP) that is highly expressed in neoplastic 
tissues but absent in non-neoplastic human cells

(75,96-98)

Mutated Ras protein Derives from the Ki-Ras p21 oncogene and is expressed in cancer derived from different 
histologies and in approximately 90% of PDAC cases
A point mutation at codon 12 results in specific substitution of a normal glycine (Gly) 
amino acidswith an aspartic acid (Asp), valine (Val), cysteine (Cys), or arginine (Arg) 
which can easily be targeted by a formulation of four different vaccines

(58,99)

Human mucin MUC1 
protein

This protein is specifically expressed on the surface of pancreatic cancer cells and can 
be used as a specific tumor associated antigen (TAA)

(48,59,71,100)

Vascular endothelial 
growth factor receptor 
2 (VEGFR2)

VEGFR2 is highly expressed on endothelial cells of tissues undergoing a process of 
tumor-induced neovascularization but it is absent in normal blood vessels
VEGFR2 has been identified on PDAC cancer cells
Vaccination leads to the generation of CTL able to interfere with the processes 
associated with PDAC neovascularization. In addition, specific-CTLs have the potential 
to target PDAC cancer cells directly

(61,101-103)

Mesothelin Overexpressed in most PDAC
Participate in cell adhesion and has a potential role in metastatic progression

(104)

Personalized peptide 
vaccination (PPV)

Relatively new strategy of peptide-based vaccination
The peptide utilized is chosen from a number of different pooled peptides and selected 
based on the patient’s HLA-class IA types and levels of peptide-specific IgG responses 
prior to vaccination

(55,62,68)
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Ames, IA, USA) is an allogenic cancer vaccine composed of 
two human PDAC cell lines (HAPa-1 and HAPa-2) (57). 
These cells express the α[1,3]-galactosyl epitopes (α-Gal) 
as a result of genetic engineering processes. Injection of 
algenpantucel-L generates a hyperacute rejection that 
ultimately stimulates the patient’s immune system to 
target the existing PDAC lesions (57,105). In the phase II 
trial conducted by Hardacre et al., algenpantucel-L was 
administered in combination with standard chemotherapy 
and chemoradiotherapy (gemcitabine + 5-fluorouracile-
based chemoradiotherapy) as adjuvant treatment following 
surgical resection of a primary PDAC lesion. Results from 
this trial were encouraging; with a reported 12-month 
disease free-survival of 62% and 12-month OS of 86% 
with a median follow-up of 21 months. The authors 
remarked that the percentage of patients surviving at 
12-month was higher than survival predicted by the widely 
accepted prognostic nomogram described by Brennan et al. 
(86% vs. 55-63%) (57). Another positive note was that 
patients treated with algenpantucel-L experienced minimal 
side effects, mainly consisting of injection site pain and 
induration. Although several interesting findings emerged 
from this study, its results should be interpreted carefully 
as no definitive conclusion was achieved on the advantage 
provided by the addition of algenpantucel-L to standard 
chemotherapy regimens.

Asahara et al. conducted a non-randomized, open-label, 
phase I/II clinical trial utilizing the KIF20A-66 epitope 
restricted to the HLA-A2402 (the most common HLA-A 
allele in the Japanese population enrolled in the study). 
The KIF20A-66 is a member of the kinase superfamily 
protein (see above) that is highly expressed in pancreatic 
cancer cells. Patients with advanced PDAC who failed 
gemcitabine-based therapy comprised the cohort selected 
for this trial. Median survival time was compared to a 
historic cohort and patients treated with cancer vaccine 
therapy showed an overall median survival time of 142 days 
compared to 83 days (P=0.0468) of the historic cohort. 
Interestingly, the authors reported the case of one patient 
who experienced complete response with resolution of liver 
metastatic lesion. This patient was noted to have a strong 
cytotoxic T-cell (CTL) response to KIF20A-66 epitope 
that remained detectable even 2 years from the last dose of 
vaccine administration (56).

Kubuschol et al. investigated the use of an autologous 
lymphoblastoid cell line (LCL)-based vaccine. LCLs are 
“professional” antigen presenting cells (APCs) characterized 
by a very high immunostimulatory capacity that are easily 

obtained from EBV-positive patients. These cells are a 
particularly attractive source of APCs because they are 
characterized by a rapid growth in vitro providing an easily 
accessible cell pool (58). In this trial LCLs where engineered 
to express a mutated Ras-protein on the cell surface (muRas-
LCL). Patients enrolled in the study, received weekly 
subcutaneous injections with muRac-LCL vaccine. Tumor 
specific T-cell response (muRas-specific) was observed in six 
of the seven patients enrolled in the trial (85%). However, 
despite an initial clinical response observed in 57% of cases, 
after 4 months from initial vaccination, all patients showed 
disease progression. One of the most important findings of 
this study was that the use of tumor antigen-transfected LCL 
proved to be an efficient alternative to DCs to serve in the 
role of APCs for future vaccine trials (58).

Rong et al. investigated the immunological response 
induced by the administration of MUC1-peptide-pulsed DCs-
based vaccine in a cohort of advanced PDAC patients (59).  
Patients were selected based on tumor expression of MUC1. 
Patients’ autologous DCs were collected, pulsed with 
MUC1-peptide and injected intradermally for three to four 
administrations. Although the vaccination regimen was safe, 
evidence of a significant immune response was observed in 
only two of the seven patients enrolled.

Lutz et al. conducted a phase II clinical trial enrolling 
60 patients with resected pancreatic adenocarcinoma (60). 
In their trial, the authors utilized an allogenic granulocyte-
macrophage colony stimulating factor-secreting tumor 
vaccine (GM-CSF), based on cancer cell lines PANC 
10.05 and PANC 6.03, injected directly into lymph node 
regions. The initial vaccine dose was followed by 5-FU 
based chemoradiotherapy and additional vaccine doses 
were given after chemotherapy completion in patients that 
remained disease free. Patients that completed all 4 doses 
of the vaccine therapy received a final vaccine booster 
6 months after the administration of the fourth dose. The 
first observation from the study was that the regimen of 
vaccination with GM-CSF-secreting tumor cells following 
adjuvant chemoradiotherapy was well tolerated. In fact, no 
local or dose-limiting toxicities were observed. Additionally, 
when the study cohort was compared to a historical cohort 
treated at the same institution, the authors found no 
significant difference in the median OS (HR: 0.96, 95% CI, 
0.68-1.35, P=0.8).

Miyazawa et al. investigated the use of a peptide vaccine 
for human vascular endothelial growth factor receptor 2 
(VEGFR-2) in combination with gemcitabine adjuvant 
therapy (61). In this phase I clinical trial, 21 patients with 
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advanced pancreatic cancer were enrolled and 18 patients 
were able to complete the vaccination schedule and were 
evaluated in their final analysis. Although the treatment 
was well tolerated, and specific CTL response against the 
vaccinated peptide was observed in the majority of the 
treated patients (61%), no correlation of CTL response 
and overall clinical outcome was appreciated. Following 
the results of this study a new double-blind, placebo-
controlled trial was designed to investigate the role of an 
oral VEGFR-2 vaccine in patients with stage IV and locally 
advanced pancreatic cancer. The study is currently ongoing 
(NCT01486329) (106).

The use of GVAX, a whole-cell vaccine composed of two 
irradiated cancer cell lines (PANC 6.03 and PANC 10.05) 
engineered to express GM-CSF has been investigated in 
multiple phase I and II studies. Early studies showed that 
vaccination with GVAX leads to induction of CD8+ T-cell 
responses against multiple mesothelin-specific epitopes that 
has been shown to correlate with improved survival (60,65,107).

Although designed to evaluate a mixed cohort with 
advanced solid tumor, the study conducted by Le and 
colleagues offered interesting results on the use of Listeria-
based vaccines (108). Live-Attenuated Listeria vaccines are 
used based on the ability of Listeria monocytogenes (Lm) 
to stimulate both innate and adaptive immunity. After 
administration, Lm is phagocytized in the liver and generates 
a local inflammatory response leading to the activation 
and recruitment of natural killer (NK) and T cells. Le and 
colleagues, investigated the use of live-attenuated Lm-based 
vaccines in two cohort of patients with liver metastasis 
originated from PDAC (108). In the first phase of their 
study, the safety and efficacy of the use of Lm-based vaccine 
(ANZ-100) was tested and found to be acceptable. Following 
these initial findings, Lm was modified to express human 
mesothelin (CRS-207), a tumor associated antigen (TAA) 
known to be expressed by PDAC. The ultimate goal was 
to induce an immune response that would produce tumor 
antigen-specific T cells directed toward PDAC expressing 
human mesothelin protein. Three of the seven patients 
treated with (CRS-207) survived more than 15 months  
and showed specific T-cell response to the vaccine 
component listeriolysin O (LLO), although all three patients 
had received prior immunotherapy with GM-CSF-based 
whole-cell vaccine (GVAX) which confounds the overall 
results. Unfortunately, LLO-response was not evaluated in 
the remaining patients who survived less than 15 months.

Taken together these results suggest that cancer vaccines 
are in general well tolerated and able to generate an immune 

response directed toward specific cancer targets. However, 
with the exception of some isolated but remarkable clinical 
responses, the impact of cancer vaccines on OS in PDAC 
appears to be minimal for the majority of patients. Several 
explanations for this lack of efficacy have been proposed. It is 
worth noting that advanced stages of PDAC are characterized 
by rapid disease progression that might not allow enough 
time for the immune system to mount an effective response 
that often requires weeks to months to develop.

Immune checkpoint blockade

T cell response can be controlled by a few cosignaling 
receptors with inhibitory functions, now known as immune 
checkpoints, which include CTLA-4, PD-1 and BTLA. 
Agents blocking these molecules are able to unleash 
endogenous anti-tumor T cell responses, so as to limit 
tumor growth (109). Royal et al. investigated the role 
of single agent Ipilimumab, an anti-CTLA-4 antibody, 
in a cohort of locally advanced or metastatic pancreatic 
adenocarcinoma (72). Ipilimumab has been previously 
effective in the treatment of melanoma, renal cell carcinoma, 
and prostate cancer (110-112). CTLA-4 is transiently 
expressed on the T-cell surface following activation and 
leads to a decrease in T-cell response following its binding 
to B7-1 or B7-2 on APCs or target tissue (113). In this phase 
2 trial, the authors observed a significant delayed regression 
of metastatic pancreatic cancer in one out of the twenty-
seven patients enrolled in the study. The findings of this 
phase 2 trial were particularly interesting as they underlined 
the mechanism of action of Ipilimumab represented by 
immunomodulation rather than direct tumoricidal activity. 
In fact, the patient who showed a response to Ipilimumab 
treatment had initially experienced marked progression of 
the disease. The authors concluded that Ipilimumab alone 
might not be a valuable treatment for advanced pancreatic 
cancer, however they laid the basis for future trials of 
combination therapy with immune checkpoint blockade 
combined with vaccine or chemotherapy (72).

Combination immunotherapy trials

Cancer vaccine and immune checkpoint blockade
Although the study conducted by Royal et al. (phase II trial) 
showed minimal efficacy of anti-CTLA-4 (Ipilimumab) 
therapy on advanced pancreatic cancer, one patient enrolled 
in this initial trial showed a significant delayed response 
suggesting a possible role for immune checkpoint blockade 
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in PDAC (72). Several preclinical studies suggest a possible 
synergistic role of cancer vaccine therapy that stimulates the 
immune system and the use of immune checkpoint blockade 
to allow for the unopposed effector function of cytotoxic 
T-cells (114,115). On this premise, Le et al. conducted a 
phase Ib, open-label, randomized study to the determine 
the safety profile of ipilimumab alone or in combination 
with GVAX in patients with previously treated PDAC (74). 
This study showed that the use of Ipulimumab in PDAC 
patients, with or without GM-CSF-based cell therapy, 
has an acceptable side effect profile. Induction of immune 
response was observed as a result of the treatment regimen 
and correlated with clinical activity, although prolonged 
treatment appears to be required to obtain a clinical 
response in the setting of advanced PDAC disease (74). 
One of the most interesting aspects of this study was the 
difference in 12-month OS of 27% vs. 7% and the median 
OS of 5.7 vs. 3.6 months (HR =0.51; P=0.072) respectively 
for combination therapy vs. monotherapy. Although 
the trial was not designed to show significant survival 
differences, the results obtained point to a superiority of the 
combination therapy over monotherapy (74).

Active immune therapy combined with passive immune 
therapy
Qiu et al. investigated the use of a combination of DC-
based and CIK-based therapy (76). In this study, DCs were 
initially pulsed with patients’ primary pancreatic carcinoma 
cells previously transfected in vitro to express α-Gal epitope 
and opsonized with anti-Gal IgG. This approach enhances 
the antigenicity of TAAs and facilitates phagocytosis by 
DCs (76). Subsequently, DCs were co-cultured with CIKs 
derived from bone marrow stem cells, ultimately generating 
tumor specific immune responders cells ex vivo (76). The 
generated CIKs and the mature DCs were then injected 
in 14 patients with inoperable stage III/IV pancreatic 
adenocarcinoma. The authors reported a significant increase 
in patients’ cellular immunity, especially in the percentage 
of cytotoxic T cells (CD3+CD8+), activated and memory 
T cells (CD3+CD45RO+), and activated T and NK cells 
(CD3+CD56+). Furthermore, no serious side effects were 
experienced during treatment and the reported median OS 
was 24.7 months (108.1±35.1 weeks), higher than the usual 
survival reported in the literature for unresectable stage 
III/IV PDAC.

Kameshima et al. investigated the use of a vaccination 
protocol of survivin-2B80-88 plus incomplete Freud’s 
adjuvant (IFA) and α-interferon (INFα) based on favorable 

results previously obtained in the treatment of colon 
cancer (75,116,117). The authors reported that more than 
50% of the treated patients showed positive clinical and 
immunological response.

Immunotherapy combined with chemotherapy
Algenpantucel-L is currently being investigated in an 
open label, phase III, randomized trial in combination 
with FOLFIRINOX (oxaliplatin, 5-FU, irinotecan, and 
leucovorin) in patients with borderline resectable or 
locally advanced pancreatic cancer (NCT01836432). The 
estimated primary completion date is September 2015. This 
is currently the first study that is using a FOLFIRINOX 
based chemotherapy.

Conclusions and prospective

Traditional treatments for PDAC are l imited and 
ineffective, and novel therapeutic strategies are greatly 
needed. Despite recent advancements in systemic 
chemotherapeutic regimens, the median survival time 
of advanced pancreatic cancer patients remains 4-11 
months (118-121). The identification and development 
of more efficacious therapies is of paramount importance. 
Immunotherapy offers encouraging results in preclinical 
models but often fails to show clear benefits in clinical 
trials for PDAC. Immunotherapy, as a single treatment 
strategy, might not be sufficient to effectively treat PDAC. 
For example, evidence suggests that active immunotherapy 
should  be  used  in  combinat ion  wi th  t rad i t iona l 
chemotherapy and/or radiotherapy or even in combination 
with other forms of immune therapy (e.g., immune 
checkpoint blockade or passive immune therapy) (122). 
This strategy could take advantage of the various effects 
traditional chemotherapeutic agents and/or radiotherapy 
exert on the immune system (123,124). Acting through 
direct killing of cancerous cells, chemotherapeutic agents 
indirectly lead to the release of pro-inflammatory molecules 
and TAAs (85). In addition, chemotherapy can suppress the 
inhibitory mechanism in the tumor microenvironment. 
In fact, reduction of the number of Tregs cells and myeloid 
derived suppressor cells (MDSC) and their related cytokines  
(IL-17 and IL-15) are one of the recognized positive effects 
of chemotherapy on tumor microenvironment. This change 
in the composition of cells in the tumor microenvironment 
could facilitate the development of a more efficacious 
effector immune response against cancer cells (52,122,125). 
However, the potential synergistic effects of chemotherapy 
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have to be balanced with its potential immunosuppressive 
effects. Future studies should focus on identifying 
appropriate dosing and timing of synergistic chemotherapy 
administration in order to mitigate its immunosuppressive 
effects and maximize the effect of immunotherapeutic 
cancer treatments. Several aspects remain to be clarified in 
PDAC cancer immunotherapy, including optimal cellular 
targets, delivery vectors for cancer vaccines, combination 
with existing treatment strategies, and patient selection. 
Future clinical trials should be designed to address these 
unresolved aspects of PDAC immunotherapy.
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