
© Chinese Journal of Cancer Research. All rights reserved. Chin J Cancer Res 2016;28(1):29-49cjcr.amegroups.com

Introduction

Renal cell carcinomas (RCCs) comprise a variety of 
distinct clinicopathologic entities, each of which displays 
different morphological, immunohistochemical and 
molecular features. Landmark consensus conferences held 
in Heidelberg (1996) and Rochester (1997) provided the 
basis for much of the last World Health Organization 
(WHO) renal tumor classification, which appeared in 
2004. In the past decade, advances in our understanding of 
basic morphology, immunohistochemistry, and molecular 
pathology have led to an expansion in the number of distinct 
tumor entities that we currently recognize. In 2012, the 
International Society of Urological Pathology (ISUP) met 
in Vancouver, BC. The member participants reviewed all 
aspects of the pathology of adult renal tumors and yielded 
recommendations relating to proposed new epithelial 

neoplasms and emerging/provisional new entities. Selected 
uncommon and recently proposed or emerging new forms 
of RCC will be discussed in this paper emphasizing on an 
update of immunohistochemistry, and molecular pathology.

Clear cell (tubulo) papillary RCC (CCP-RCC)

CCP-RCC, also known as clear cell tubulopapillary RCC, 
is a type of RCC associated with end-stage renal disease 
(ESRD). Clinically, it was initially described in ESRD by 
Tickoo et al. (1); however, most cases have been subsequently 
reported as sporadic (2-9). Indeed, tumors with several 
overlapping features of CCP-RCC, but with prominent 
smooth muscle stroma, were reported by Michal et al. 6 years 
earlier before the report of Tickoo et al. as a disease entity of 
renal angiomyoadenomatous tumor (1,9-11). Additionally, 
tumors with a morphology and immune profile similar 
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to CCP-RCC have been reported in von Hippel-Lindau 
disease (VHL) (12-14). In one study, CCP-RCC-like tumors 
arising in patients with VHL disease morphologically mimic 
true CCP-RCC, but the immunohistochemical and genetic 
features significantly resembled those of clear cell RCC (12).

CCP-RCC comprises ~1% of all renal cell neoplasms 
(1,3). The age of patients with CCP-RCC ranges from 18 
to 88 years, with a mean age of 60 years (3-5,15). Grossly, 
CCP-RCC is generally well defined and well encapsulated. 
Cystic change or cystic formation are very frequent. The 
tumors are usually small, solitary, and unilateral, but 
multifocality and bilaterality have been reported in some 
cases. The cut surface of the tumor shows a tan-white, pink-
tan, yellow, or red-brown color. Necrosis is absent, but 
focal hemorrhage can be present (1-7). Morphologically, 
CCP-RCC is composed of various proportions of 
papillary, tubular/acinar, cystic and solid sheet-like or 
nested architectures with clear cytoplasm. The papillae 
are covered by small to medium-sized cuboidal cells and 
sometimes show extensive secondary branching, which 
are often folded and densely packed, resulting in a solid 
appearance. Small blunt papillae, focal branching papillae/
acini and interconnecting ribbons are common findings. 
The nuclei of most CCP-RCCs have a horizontally linear 
arrangement apart from the basement membrane. The 
nuclei are round and uniform in shape; nucleoli were not 
prominent (Fuhrman grade 2) (Figure 1). Foci of large 
cells or eosinophilic cells can be present. Neither mitotic 
figures nor necrosis are present (1-7). In many cases, the 
stroma demonstrates smooth muscle metaplasia that usually 
connects to the tumor capsule (11). Fibrous stroma is also 

common (4). Neither foamy macrophages within papillae 
nor psammoma bodies are present in any tumor.

Immunohistochemically, CCP-RCC expresses cytokeratin 
7, hypoxia-inducible factor 1-α (HIF1A) and carbonic 
anhydrase IX (CA9), but does not express AMACR, CD10, 
or the transcription factor E3 (TFE3) (2-7). In the study of 
Leroy et al., cyclin D1 is overexpressed in 83% (35/42) of 
CCP-RCC cases, so staining for cyclin D1, in combination 
with CD10, CK7 and AMACR, might be useful in the 
differential diagnosis from conventional papillary RCC (16).

Molecularly, CCP-RCCs lack deletions of 3p25, VHL 
gene mutations, VHL promoter hypermethylation, or 
trisomies of chromosomes 7 and 17 (2,4). Although the 
mechanism is not yet clear, VHL transcripts are under 
expressed (5). In clear cell RCC, the VHL gene product 
protein is important for the regulation of HIF1A and 
vascular endothelial growth factor (VEGF) expression, 
whereas loss of function of the VHL gene ultimately leads 
to overexpression of various proteins that are targets of 
the HIF pathway, including HIF1A, glucose transporter-1 
(GLUT1), and CA9 (5). The strong expression of HIF1A 
and CA9 in CCP-RCCs provides supporting evidence 
that up regulation of the HIF pathway in CCP-RCC is 
independent of VHL gene mutations (5,7). Other events, if 
any, such as post transcriptional deregulation, translational 
control or micro-RNA (miR) deregulation, could be a 
possible explanation for the mechanism of loss-of-function 
of the VHL gene. In a study of miR expression profiling by 
Munari et al., a total of 15 cases diagnosed as CCP-RCC 
were used (17). Among the most differentially expressed 
miR in CCP-RCC, the authors found that miR-210, miR-
122, miR-34a, miR-21, miR-34b*, and miR-489 were 
upregulated, whereas miR-4284, miR-1202, miR-135a, 
miR-1973, and miR-204 were downregulated, compared 
with normal renal parenchyma (17). Furthermore, several 
studies have documented miR-210 to be overexpressed in 
clear cell RCC and CCP-RCC (18). MiR-210 is a well-
known target of HIF and a central player in the hypoxia 
pathway (19). A recent report also demonstrated that miR-
210 expression positively modulates HIF and correlates 
with CA9 expression (20). These findings of miR-210 
upregulation in CCP-RCC might implicate miR-210 in the 
activation of the hypoxia pathway in the absence of VHL; 
however, such a hypothesis would require verification.

A targeted next-generation sequencing and non-coding 
RNA expression analysis of CCP-RCC by Lawrie et al. 
found that the miR-200 family is upregulated in CCP-RCC 
and associated with an unusual epithelial mesenchymal 

Figure 1 Clear cell (tubulo) papillary RCC. Delicate papillary 
structure, the nuclei line apart from the basement membrane. The 
nuclei are round and uniform in shape; nucleoli are not prominent.
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transition (EMT)-marker immunohistochemical staining 
pattern (21). In their study, all five members of the miR-
200 family (miR-200a, miR-200b, miR-200c, miR-141 and 
miR-429) were significantly upregulated in CCP-RCC 
cases compared to either clear cell RCC or papillary RCC 
cases or control tissues. As these miRNAs are intimately 
involved in the EMT, they stained tissues from CCP-RCC 
cases for E-cadherin, vimentin (VIM) and β-catenin and 
found that tumor tissues from all cases were positive for all 
three markers, a combination rarely reported in other renal 
tumors that could have diagnostic implications. These data 
suggest that EMT in CCP-RCC tumor cells is incomplete 
or blocked, consistent with the indolent clinical course 
typical of this malignancy (21).

Other studies have demonstrated a relationship between 
CCP-RCC and other RCC. The miR expression profiling 
study by Munari et al. revealed that the miR expression 
profile of CCP-RCC more closely resembled clear cell RCC 
for upregulated miRs and papillary RCC for downregulated 
miRs (17). Additionally, as expected, the CCP-RCC miRNA 
profile more closely resembled primary rather than metastatic 
clear cell RCC. In a gene expression profiling study of 
CCP-RCC by Fisher et al., compared with papillary RCC, 
CCP-RCC expressed more CA9, CP, NNMT, and VIM; 
less AMACR, BAMBI, and SLC34A2; and similar levels 
of SCHIP1. Compared with clear cell RCC, CCP-RCC 
expressed slightly less NNMT, but similar levels of the seven 
other genes (22). Although CCP-RCC exhibits a unique 
molecular signature, it expresses several genes at comparable 
levels to clear cell RCC relative to papillary RCC.

Additionally, a comparative genomic hybridization study 
of Adam et al. demonstrated no genomic imbalance in 
the seven tumors tested, whereas other scattered reports 
using various methods have shown abnormalities at 
various chromosomal loci, including trisomies 10 and 12; 
monosomies 3, 16, 17, and 20; and gains at 5p, 5q, 7pq, 
12pq, and 16pq (4,7,23-25). Understanding the molecular 
pathogenesis of CCP-RCC will play a key role in the future 
subclassification of this unique tumor.

MiTF family translocation RCC

The microphthalmia-associated transcription factor 
(MiTF) subfamily of transcription factors includes TFE3, 
TFEB, TFEC, and MiTF. All family members share a 
homologous basic helix-loop-helix DNA binding domain 
and have overlapping transcriptional targets (26). Several 
distinct tumors are associated with the overexpression 

of this gene family, including translocation-associated 
RCCs, alveolar soft part sarcoma, melanoma, clear cell 
sarcoma, angiomyolipoma, and perivascular epithelioid 
cell neoplasms (PEComas). All these tumors have been 
considered to be members of the family of tumors, owing 
to their histological, immunohistochemical and molecular 
genetic similarities (26,27).

Xp11 Translocation RCC

RCCs associated with Xp11 translocation are uncommon 
renal tumors, which were recognized as a distinct entity 
in the 2004 WHO classification system. They are 
characterized by several different translocations that involve 
chromosome Xp11, resulting in gene fusions of the TFE3 
gene (27). In these diseases, the TFE3 gene is fused via 
translocation to one of several other genes, including ASPL, 
PRCC, NONO (P54NRB), CLTC, PSF, LUC7L3, KHSRP, 
and unknown genes on chromosomes 3, 10 and 19. The 
most common translocations are ASPL-TFE3 and PRCC-
TFE3 fusions (27-29). Of interest, both ASPL-TFE3 RCC 
and alveolar soft part sarcoma (ASPS) harbor the same 
ASPL-TFE3 fusion gene. However, the translocation is 
balanced in ASPL-TFE3 RCC and is unbalanced in ASPS. 
The function of chimeric TFE3 fusion proteins can also 
vary. In the study by Tsuda et al., ASPL-TFE3, PSF-TFE3 
and NONO-TFE3 all bind to the MET promoter. However, 
ASPL-TFE3 induces a much stronger upregulation of 
downstream MET receptor tyrosine kinase than does PSF-
TFE3 or NONO-TFE3 (30). Evidence suggests that the 
chimeric PRCC-TFE3 and NONO-TFE3 are more potent as 
transcription factors than wild-type TFE3, while PSF-TFE3 
and CLTC-TFE3 can interfere with cell cycle control (30,31).

Xp11 translocation RCC is estimated to represent 33% 
to 50% of pediatric RCC and <1% to 4% of adult RCC 
(28,32-34). In children, studies have indicated that previous 
chemotherapy might be a risk factor for developing Xp11 
translocation RCC (35). Up to 15% of patients with Xp11 
translocation RCC have had a history of chemotherapy 
exposure (35). In adults, although Xp11 translocation RCC 
has been reported during pregnancy or in association with 
ESRD and hemodialysis, no studies have been carried out 
to identify particular risk factors (36,37).

From a clinical outcome perspective, outcome data 
on Xp11 translocation RCC remain at a premature stage 
because of its relatively rare incidence. Several studies 
have demonstrated that Xp11 translocation RCC have a 
relatively indolent course, despite their often advanced 
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stage at presentation (38). However, some cases of Xp11 
translocation RCC have been previously reported to follow 
an aggressive clinical course (28,39-41). Late recurrences, 
as many as 17 or 30 years after original diagnosis, have 
been interpreted to suggest the tendency of these RCCs 
to recur late (42,43). Unfortunately, Xp11 translocation 
RCCs in adults often present with advanced disease and 
distant metastases and a worse prognosis (28). Satisfactory 
long-term follow up data are necessary before any favorable 
short-term outcome can be confirmed. Targeted therapies, 
such as VEGF receptor-targeted agents and mammalian 
target of rapamycin (mTOR) inhibitors, have been 
increasingly used to treat metastatic RCC, particularly 
clear cell RCC. However, recent studies have found that 
such agents might also be beneficial in patients with Xp11 
translocation RCC (44,45). Therefore, discriminating Xp11 
translocation RCC from other subtypes of renal tumor is 
clinically important.

Morphologically, most of these tumors characteristically 
have a typical morphology, including alveolar, nested, 
or papillary architecture, with discrete cell borders, 
voluminous cytoplasm, prominent nucleoli, and psammoma 
bodies (Figure 2). However, there has been increasing 
evidence that MiTF/TFE renal translocation carcinomas 
might demonstrate unusual morphological features that 
mimic other types of RCCs, including clear cell RCC, 
multilocular cystic RCC, pleomorphic giant cells, collecting 
duct carcinoma, high-grade urothelial carcinoma and well-
developed fascicles of spindled neoplastic cells with bland 
nuclei and focal myxoid stroma (28,41,46,47).

Unlike other types of RCC, Xp11 translocation RCCs 
are negative or only focally positive for cytokeratins and 
epithelial membrane antigen (EMA) and have variable 
VIM expression. CK7 is typically negative. These tumors 
characteristically express CD10, the RCC marker, and 
racemase (AMACR; P504S), and most express PAX2 and 
PAX8. Some Xp11 translocation RCCs with a typical 
morphology express melanocytic markers, such as Melan-A 
and HMB-45 (28,41,46,47).

Cathepsin K is a cysteine protease of the papain family, 
which plays an important role in osteoclast function. 
Expression of cathepsin K in osteoclasts is regulated by 
MITF. As recent studies have demonstrated cathepsin 
K to be a transcriptional target of the MITF family, an 
immunohistochemistry antibody to cathepsin K has been 
utilized in the diagnosis of MiTF family translocation 
RCC (48). Cathepsin K is overexpressed in a subset of Xp11 
translocation RCCs and in almost all t(6;11) RCCs, but not 
in other types of RCCs. Martignoni et al. found cathepsin K 
to be differentially expressed in a manner dependent upon 
the fusion partner of the TFE3 gene. In that study, 12 of 
14 Xp11 RCCs with PRCC-TFE3 gene fusion showed a 
positive reaction with antibody to cathepsin K, whereas all 
8 carcinomas with ASPSCR1-TFE3 gene fusion showed 
negative staining, suggesting that there are functional 
differences between the resulting fusion proteins (49).

The most sensitive and specific marker for the 
Xp11 translocation RCC is  strong nuclear TFE3 
immunoreactivity, using an antibody to the C-terminal 
portion of TFE3. However, results can vary between 

Figure 2 Xp11 Translocation RCC. (A) The tumor has nested and papillary architecture, psammoma bodies, and cells with voluminous, 
clear to lightly eosinophilic cytoplasm, and high Fuhrman nuclear grade, typical of an ASPL-TFE3-associated neoplasm; (B) the tumor is 
composed of compactly arranged, lightly eosinophilic cells with less abundant cytoplasm and prominent nucleoli, typical of a PRCC-TFE3-
associated neoplasm.
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laboratories because of technical factors, such as tissue 
preservation, fixation time, antigen retrieval methodology, 
sensitivity and specificity of the antibody used, cutoff point, 
and data interpretation. There has been increasing evidence 
that TFE3 immunohistochemistry can yield false-positive, 
false-negative, or equivocal results (46,50-53). Cytogenetic 
karyotypic analysis and reverse transcriptase polymerase 
chain reaction are both common molecular methodologies 
for identifying this translocation. Unfortunately, these 
methods can be limited by the availability of viable tumor 
cells, unfixed tissue, or other special handling techniques, 
which are not always incorporated into routine surgical 
pathology practices. Recently, several TFE3 break-
apart FISH assays have been developed to detect TFE3 
gene rearrangements. The TFE3 break-apart FISH 
assay is a useful complementary method for confirming 
a diagnosis of Xp11 translocation RCC, especially when 
the morphological or clinical suspicion is high, but TFE3 
immunostaining is negative or equivocal (46,47).

Xp11 neoplasm with melanocytic differentiation

Recently, an increasing number of TFE3 rearrangement-
associated tumors with melanocytic differentiation have 
been reported, such as TFE3 rearrangement-associated 
perivascular epithelioid cell tumors (PEComas), melanotic 
Xp11 translocation renal cancers, and melanotic Xp11 
neoplasms (54). These tumors displayed purely nested 
or sheet-like architectures separated by delicate vascular 
networks and were predominantly composed of purely 
epithelioid cells containing a clear or granular eosinophilic 

cytoplasm (Figure 3). By immunohistochemistry, the tumor 
cells were immunoreactive for the melanocytic markers 
HMB45 and Melan A but not for cytokeratins, muscle 
markers, S100, and the renal tubule markers CD10, PAX2, 
and PAX8 (54). Argani et al. suggested that these tumors 
have a phenotype that most closely resembles PEComa (27). 
However, PSF/SFPQ has been found to be a very common 
gene fusion partner in TFE3 rearrangement-associated 
PEComas, melanotic Xp11 translocation renal cancers, 
and melanotic Xp11 neoplasms (54-56). Considering the 
shared clinicopathologic characteristics (young adult and 
female predominance), morphology, immunophenotypic 
characteristics, genetic alterations (TFE3 gene fusion) 
and uncertain clinical behavior that sometimes follows 
an aggressive course, we and others have suggested that 
they belong to a single clinicopathologic spectrum. “Xp11 
neoplasm with melanocytic differentiation” or “melanotic 
Xp11 neoplasm” has been proposed to designate this unique 
neoplasm (54,57).

t(6;11) RCC

Another rare subset of renal translocation tumors is 
associated with t(6;11)(p21;q12), which results in an 
Alpha-TFEB gene fusion. The distinctive morphological, 
immunohistochemical, ultrastructural, and cytogenetic 
features of this neoplasm were first described by Argani 
et al. in 2001 (58). To the best of our knowledge, fewer 
than 60 cases have been described in the literature (58-71). 
These tumors mainly affect children and young adults. 
Information regarding the clinical behavior of TFEB 

Figure 3 Xp11 neoplasm with melanocytic differentiation. (A) The tumor exhibites a purely nested or sheet-like architecture separated by 
a delicate vascular network; (B) the tumor is predominantly composed of purely epithelioid cells containing clear or eosinophilic cytoplasm, 
finely granular dark-brown pigmentation.
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RCCs has remained uncertain because of their rare 
incidence. TFEB RCCs seems to have a relatively indolent 
course, despite recurrence in 17% of patients, some cases 
presenting with metastasis, and the occasional selection of 
an aggressive clinical course that causes death (50,62,66).

Morphologically, the tumors characteristically have 
nests or sheets of epithelioid cell morphology with clear 
cytoplasm, mimicking a typical clear cell RCC, and 
clusters of small cells that are usually clustered around 
hyaline material (Figure 4A). In some tumors, pigment 
and psammoma bodies can be observed. However, there 
has been increasing evidence that the t(6;11) RCC might 
demonstrate unusual morphological features, such as 
epithelioid angiomyolipoma structures (Figure 4B), papillary 
(Figure 4C), tubular, chromophobe cell RCC, and clear cell 
RCC (Figure 4D) (68-71).

Immunohistochemically, the tumors express melanocytic 
immunohistochemistry markers, such as HMB-45 and 

Melan-A, but are either negative or only focally positive 
for epithelial markers, such as cytokeratins. Cathepsin K is 
overexpressed in almost all t(6;11) RCCs (48). Most cases 
express PAX8, supporting renal tubular differentiation 
(68-71). As a result of a promoter substitution, the Alpha-
TFEB gene fusion results in the overexpression of native 
TFEB in t(6;11) RCC. A recently developed antibody that 
recognizes TFEB has been shown to be a surrogate marker 
for t(6;11) RCC (61). However, these results can vary or 
be equivocal between laboratories because of different 
technical differences (68). Additionally, the Alpha-TFEB 
fusion point seems to vary from case to case (68). Thus, the 
reverse transcriptase polymerase chain reaction to detect 
fusion genes is not always easy to apply in routine diagnostic 
practice. Recently, a break-apart FISH assay for TFEB gene 
fusions has been developed for archival material and has 
allowed for the expansion of the clinical and morphological 
spectrum of t(6;11) RCC (68,69).

Figure 4 t(6;11) RCC. (A) The tumor has the typical morphologic features of t(6;11) RCCs. Some tumors demonstrate unusual 
morphological features that mimic perivascular epithelioid cell tumor (PEComa) (B), papillary RCC, (C) and clear cell RCC (D). RCC, 
renal cell carcinoma.

A

C

B

D

100 μm 100 μm
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Succinate dehydrogenase (SDH)-deficient RCC

The SDH enzyme complex is located in the inner mitochondrial 
membrane, and it is a mitochondrial enzyme complex that 
participates in the electron transport chain (complex II) 
and tricarboxylic acid cycle (Krebs cycle) by catalyzing 
the oxidative dehydrogenation of succinate to fumarate. 
The complex consists of four different subunit proteins 
(SDHA, SDHB, SDHC, and SDHD), as well as assembly 
factors (SDHAF1 and SDHAF2), iron-sulphur centers, 
and ubiquinone (72,73). Germline mutations of the genes 
that encode the SDH subunits can result in hereditary 
paraganglioma pheochromocytoma syndromes, as well 
as gastrointestinal stromal tumors (GISTs) that can be 
recognized by a distinctive multinodular architecture, and 
predominantly exhibit an epithelioid morphology and a 
predilection for lymph node metastasis (72-74). In addition 
to paraganglioma and GIST, increasing evidence suggests 
that patients with germline mutations of SDH subunit 
genes also develop renal tumors (75). The first SDHB-
related RCCs were described in two families with a history 
of paraganglioma, RCC, germline SDHB mutations, and 
loss of heterozygosity for the region encoding SDHB in 
their tumors tissue in 2004 (76). Subsequently, less than 78 
cases having been described in detail (76-81).

SDH-deficient RCCs are commonly multifocal; with 
prolonged follow-up, bilateral tumors can be identified 
in up to 26% of patients (80). To date, nearly all reported 
cases have been associated with germline mutations of the 

SDH genes (80,81). Histologically, most of them exhibit 
a distinctive morphology that can be distinguished from 
other subtypes of renal tumors. These tumors have been 
observed to be formed by a uniform population of cells with 
an eosinophilic cytoplasm and cytoplasmic inclusions of 
flocculent or eosinophilic material (previously reported to be 
abnormal mitochondria), and they exhibit a predominantly 
solid or nested architecture (Figure 5). Intratumoral 
mast cells, entrapped nonneoplastic renal tubules, and 
a variable tumor pseudocapsule are other characteristic 
features (78,80,81). However, RCCs with other histological 
appearances, including tumors resembling clear cell RCC, 
papillary RCC, sarcomatoid and unclassified RCCs, have 
been reported in patients with germline mutations of SDH 
subunit genes, and a few RCCs of other histological types 
have been found to be SDH-deficient in the absence of a 
known germline gene mutation (78-82). The significance of 
this finding remains incompletely understood.

By immunohistochemistry, the tumors are consistently 
negative for SDHB, CD117, RCC antigen and CA9. Most 
tumors are positive for PAX-8, and kidney-specific cadherin. 
Immunohistochemical labeling for CD10, cytokeratin AE1/
AE3, CAM5.2, CK7, AMACR, and EMA vary widely (80,81). 
Loss of SDHB in tumors cells reflects dysfunction of the 
SDH complex, which might be caused by mutations in the 
genes that encode any of the four subunit proteins, or by 
deficient complex activity that is secondary to other, as yet 
unknown, mechanisms. By contrast, loss of SDHA expression 
can only be observed in tumors with mutations in SDHA (74).

It is likely that most SDH-deficient RCCs will be 
associated with a SDHB germline mutation, and small 
subsets have been reported to arise in the settings of SDHA, 
SDHC or SDHD genes (80,81,83). The extremely high 
rate of SDHB germline mutations in the SDH subunits 
in SDH-deficient RCC differs from that found in SDH-
deficient GIST, in which ~30% of cases are associated 
with a SDHA mutation, and 10% to 20% of cases are 
associated with mutations in other SDH subunits (SDHB, 
SDHC, or SDHD), and the rest cases without mutations 
may be correlated with aberrant DNA hypermethylation of 
SDHC as recently reported (74,80,84,85). Additionally, the 
targeted next-generation sequencing panel utilized in the 
study of Williamson et al. did not reveal alterations in other 
key genes involved in RCC pathogenesis, such as VHL, 
PIK3CA, AKT, MTOR, MET, or TP53 (81).

The precise mechanisms whereby SDH complex 
dysfunction leads to tumor formation have not yet been 
fully elucidated. Based largely on data from in vitro 

Figure 5 SDH-deficient RCC. The tumor exhibits a predominantly 
solid or nested architecture, formed by a uniform population of 
cells with an eosinophilic cytoplasm and cytoplasmic inclusions 
of flocculent or eosinophilic material. RCC, renal cell carcinoma; 
SDH, succinate dehydrogenase.

50 μm
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biochemical studies, it was suggested that increased levels of 
succinate can result in the stabilization of HIF1A, leading to 
the transcription of target genes, such as the gene encoding 
VEGF (74,86). However, Fleming et al. investigated 
three cellular signaling pathways that could be involved 
in tumorigenesis in SDH-deficient RCCs (87). They 
found no evidence supporting a role for either the mTOR 
[p-mTOR (Ser2448), p-S6 riboprotein (Ser235/236)] 
or hypoxia-inducible (carbonic anhydrase 9 and EGFR) 
pathways. However, they did detect immunohistochemical 
reactivity for phosphorylated AMP-dependent kinase 
(p-AMPK Thr172), glycogen synthase kinase 3 (GSK3) 
phosphorylation (p-GSK3 Ser12) and nuclear expression 
of cyclin D1. These findings suggest that failure of ATP 
generation and activation of AMPK are important steps in 
the pathogenesis of SDH-deficient RCCs and that these 
tumors might arise through a mechanism that involves 
ATP depletion, activation of AMPK, and induction of 
cyclin D1. This could represent a unique pathway for 
tumor development that has the potential for therapeutic 
interventions in these rare tumors.

SDH-deficient RCC represents a distinct and rare renal 
neoplasm, which is defined by loss of immunohistochemistry 
staining for SDHB and has been accepted as a provisional 
entity in the 2013 ISUP Vancouver Classification (33).

ALK Translocation RCC

Chromosomal rearrangements involving the anaplastic 
lymphoma kinase (ALK) gene at 2p23 were first recognized 
in anaplastic large cell lymphoma (88). The characteristic 
translocation was shown to result in fusion of the 3’-portion 
of ALK with the 5’-portion of NPM1 at 5q35 to produce a 
chimeric oncogene (89). Subsequently, ALK rearrangements 
have been found in diffuse large B-cell lymphoma, 
plasmacytoma, inflammatory myofibroblastic tumors, 
esophageal squamous cell carcinoma, breast carcinoma, 
colonic adenocarcinoma, non-small cell lung cancer and, 
recently, RCC (90-96).

To date, only ~8 cases of ALK translocation RCC have 
been described by 6 independent research groups (97-103). 
A total of three of the ALK translocation RCCs occurred 
in young patients (ages 6, 16, and 6 years old) who were 
African American males with the sickle-cell trait, and in 
all cases, the ALK gene was fused to the vinculin (VCL) 
gene, which functions as an adhesion protein that couples 
the extracellular matrix to the actin-myosin cytoskeleton 
(97,98,103). A review of these cases separately reported 

that VCL-ALK RCCs have many similar and distinctive 
features, including their occurrence in young patients with 
the sickle-cell trait, medullary epicenter, solid architecture, 
distinctive polygonal to spindle-shaped cells with vesicular 
nuclei and abundant eosinophilic cytoplasm with prominent 
intracytoplasmic lumina, prominent lymphoplasmacytic 
infiltrate, intact INI1 protein, and a low Ki-67 index 
(97,98,103).

Given the shared clinicopathological characterizations 
with renal medullary carcinoma (RMC), it has been 
proposed that VCL-ALK RCC might represent a subtype 
of RMC. However, several features distinguish VCL-
ALK RCC from classic RMC. Similar to rhabdoid 
tumors and a subset of collecting duct carcinomas, 
RMC typically demonstrates loss of the INI1 protein by 
immunohistochemistry, a finding almost never observed in 
the more common RCC subtypes, whereas INI1 protein in 
VCL-ALK RCC remains intact. Furthermore, RMCs are 
high-grade cancers that are characterized by an extremely 
high mitotic rate and Ki-67 proliferation index, whereas the 
proliferative activity of VCL-ALK RCC is relatively low. 
Given the very small number of these RCCs that have been 
reported, the relationship between RMC and VCL-ALK 
RCC is not yet understood.

Subsequently, 5 cases of RCC associated with ALK 
rearrangements have been reported in older adults (ages 
36, 53, 61, 59, and 44 years old) (99-102). Among those 
patients, two Japanese cases described by Sugawara et al. 
were in adults with different translocations: TPM3-ALK 
(found in anaplastic large cell lymphoma and inflammatory 
myofibroblastic tumor) and EML4-ALK (reported to be 
identified in lung, breast and colon adenocarcinomas) (99). 
VCL was not the partner in the two cases described by 
Sukov et al. (100). Fusion partners of ALK were not 
detected in one Korean case (102). Their morphology 
has not been distinctive: four of the neoplasms have been 
classified as variants of papillary RCC, whereas the other 
was considered RCC unclassified. Such findings are in 
contrast to those reported for three cases with VCL/ALK 
fusion. In two cases described by Sukov et al., both patients 
with ALK rearrangement had a poor clinical course, surviving 
less than 5 years post-diagnosis (4 years and 1.4 years to death 
from RCC) (100). Hodge et al. therefore proposed that 
ALK rearrangement in papillary RCC cases in older adults 
could represent a distinct pathological entity with poorer 
outcome (101).

The ALK protein is a membrane-associated tyrosine 
kinase that belongs to the insulin receptor superfamily. 
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Outside of the embryonic state, ALK expression is normally 
confined to the central nervous system (89). Chromosomal 
rearrangements resulting in ALK gene fusion lead to 
aberrant ALK activation by the formation of chimeric 
protein products, which exhibit a cytoplasmic and/or 
membranous distribution, depending on the fusion partner. 
The ALK fusion products have significant oncogenic 
activity (104). Because of their expression pattern, ALK 
fusion products have become an enticing chemotherapeutic 
target. Recently, the ALK inhibitor crizotinib has been used 
in patients with lung cancer, inflammatory myofibroblastic 
tumors (IMTs), or anaplastic large cell lymphomas (ALCLs), 
which can harbor various ALK fusions (99,105,106). Such 
distinctions for ALK-rearranged RCCs are of particular 
importance and should be recognized because of the 
potential benefit of ALK inhibitor therapy in these patients.

Carcinoma associated with ESRD

Acquired cystic disease–associated RCC

The relationship between ESRD and the development of 
renal neoplasia has been increasingly recognized in the 
past decade. The spectrum of renal tumors associated 
with ESRD is quite varied. In single cases and small 
series of clear cell RCCs, papillary RCCs, chromophobe 
RCC, collecting-duct carcinoma, tubulocystic carcinoma, 
angiomyolipoma, oncocytoma and mixed epithelial and 
stromal tumor have been reported (107-111). In addition 
to recognized forms of renal neoplasia, recent studies have 
identified two distinct renal-cell neoplasms with unusual 
histological patterns that do not fit into the categories 
recognized in the current classification system (1,111).

One group of these RCCs by definition is associated 
with features of end-stage kidney disease with acquired 
renal cysts in the background kidney, which is designated 
acquired cystic disease-associated RCC. Acquired cystic 
disease–associated RCC is the most common subtype of 
RCC that is present in end-stage kidneys, accounts for 
36% of RCCs present in end-stage kidneys, and is present 
in 46% of kidneys with acquired cystic disease (1). Because 
most tumors are diagnosed incidentally and early on for 
long-term radiologic follow-up for chronic renal disease, 
acquired cystic disease–associated RCC has a relatively good 
prognosis (1); these tumors are usually well circumscribed, 
and they can be surrounded by a thick fibrous capsule that 
shows dystrophic calcification. However, some rare typical 
cases, as well as tumors with sarcomatoid or rhabdoid 
features, can metastasize (1,112).

Microscopically, there are a variety of architectural 
patterns, with solid, acinar, cystic and papillary patterns 
being present (Figure 6A). Most tumor cells have abundant 
granular eosinophilic cytoplasm, with round to oval nuclei 
that exhibit vesicular chromatin and prominent nucleoli 
(Figure 6B). Foci with a clear to vacuolated cytoplasm 
can also be present. In 67% of reported cases, the tumor 
appeared to arise in a cyst (111). A cribriform/sieve-like 
appearance, prominent nucleoli (high-grade nuclei), and 
intratumoral oxalate crystal (Figure 6C) deposits are its 
characteristic features (1,113).

Acquired cystic disease–associated RCCs are diffusely 
positive for AMACR and, in a proportion of cases, show 
variable and predominantly focal staining for CK7. Positivity 
for CD10, RCC, CD57, GST-α, PTEN (phosphatase and 
tensin homolog deleted on chromosome 10) and c-met have 

Figure 6 Acquired cystic disease–associated RCC. (A) The tumor exhibits intratumoral oxalate crystal deposits as its characteristic feature; 
(B) a cribriform/sieve-like appearance, prominent nucleoli (high-grade nuclei), and abundant granular eosinophilic cytoplasm are frequently 
seen in ACD-RCC; (C) prominent intratumoral oxalate crystals were observed under polarized light. RCC, renal cell carcinoma.
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also been described. Staining for EMA, high-molecular-
weight cytokeratin, CA-9, CD57, CD68, c-kit, Pax-2, 
platelet-derived growth factor receptor (PDGFR)-α, and 
VEGF receptor (VEGFR)-2 are negative (111,114-119).

Genetic studies on acquired cystic disease–associated 
RCCs are limited. Comparative genomic hybridization 
(CGH) and fluorescence in situ hybridization (FISH) analyses 
have revealed gains and losses of multiple chromosomes. 
Although gains of chromosomes 1, 2, 3, 6, 7, 16, 17, X, and Y 
were frequently observed, losses of chromosomes 3, 9, and 16 
have also been reported (112,115,117,120,121). In addition, 
gains of chromosome 3 have been among the more consistent 
findings (115,117,120-122). Mutations of the VHL gene have 
not yet been identified in these tumors (114).

Hereditary leiomyomatosis RCC syndrome-associated RCC

Hereditary leiomyomatosis RCC is an autosomal-dominant 
hereditary syndrome that was initially reported in 2001 by 
Kiuru et al. (123). Individuals affected with this syndrome 
are at risk of developing cutaneous leiomyomas, multiple 
symptomatic uterine fibroids in young women, and early 
onset renal tumors with a type 2 papillary morphology that 
can progress and metastasize, even when they are small 
(124,125). Additionally, there have also been case reports of 
associations with other malignancies, including bladder cancer, 
adrenocortical tumors, Leydig-cell tumors of the testis, ovarian 
cystadenomas and gastrointestinal stromal tumors, although the 
significance is yet to be determined (126). Indeed, hereditary 
leiomyomatosis RCC-associated RCC has been classified 
in the 2004 WHO classification of renal neoplasms in 
the section related to hereditary RCC as a hereditary 

counterpart of type 2 papillary RCC. However, it is now 
known that hereditary leiomyomatosis RCC-associated 
RCC (although usually having a papillary pattern) is very 
aggressive, prone to metastasis, and lethal if allowed to 
progress compared with renal tumors in other hereditary 
renal cancer syndromes and, as such, should be recognized 
as a distinctive tumor subtype (125,127,128).

Unlike other familial RCC syndromes that can typically 
develop multiple and bilateral tumors, RCCs in the 
hereditary leiomyomatosis RCC setting can be solitary 
and unilateral, and not much is known with regards to 
their hereditary nature. Morphologically, hereditary 
leiomyomatosis RCC-associated RCC can have a type 2 
papillary morphology or a solid architecture. However, 
the histopathological spectrum of these tumors has 
recently expanded and includes architectural patterns 
that have papillary, tubulopapillary, tubular, solid, and 
cystic sarcomatoid rhabdoid elements (129,130). Some 
cases histologically resemble collecting duct carcinoma, 
tubulocystic carcinoma or clear cell RCC (131-133). 
The seminal work by Merino et al. proposed that the 
morphologic hallmarks of hereditary leiomyomatosis RCC-
associated RCC are the following characteristic nuclear 
features: large nuclei, prominent inclusion-like eosinophilic 
nucleoli, and perinucleolar clearing (Figure 7). This broad 
morphological spectrum leads to a difficult diagnostic 
challenge (129). Immunohistochemistry for CK7 and CK20 
and high-molecular-weight cytokeratins (i.e., CK1, CK5, 
CK10, and CK14) is routinely negative (130).

The gene responsible for hereditary leiomyomatosis 
RCC was identified by Tomlinson et al. on chromosome  
1 (1q42-44), which is known as fumarate hydratase (FH) (124). 
This gene acts as a tumor suppressor, and both alleles are 
inactivated in tumor tissue caused by germline mutations 
in one allele. Frequent loss of heterozygosity occurs for 
chromosome 1q that harbors the second allele (124). FH 
encodes an essential enzyme in the Krebs (citric acid) cycle that 
catalyzes the conversion of fumarate to malate (125). Alteration 
to FH up regulates HIF and creates a pseudohypoxic 
environment, which is similarly seen in VHL. When FH 
is inactivated, fumarate levels build up and competitively 
inhibit HIF prolyl hydroxylase (HPH). HPH is a key 
enzymatic regulator of intracellular HIF levels (134). When 
HPH is inactivated, HIF levels increase, and transcription 
of downstream genes occurs (125,134). Potential areas of 
systematic therapy for hereditary leiomyomatosis RCC 
will likely be designed to prevent increases in HIF levels or 
target the transcription products of VHL-independent HIF 

Figure 7 Hereditary leiomyomatosis RCC syndrome-associated 
RCC. Solid architecture, large nuclei, and prominent inclusion-
like eosinophilic nucleoli. RCC, renal cell carcinoma.
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accumulation, such as VEGF and TGFA/EGFR.
On the other hand, the functional loss of FH also leads 

to the abnormal intracellular accumulation of fumarate. 
Interestingly, increased levels of fumarate in cells can 
cause aberrant succination of cellular proteins by forming 
a stable chemical modification, S-(2-succino)-cysteine 
(2SC), which can be detected by immunohistochemistry 
(135-138). In contrast to typical immunohistochemistry 
assays in which a peptide or protein is the specific 
antigen, 2SC immunohistochemistry stains all of the 
proteins with a stable 2SC modification (succination). 
Therefore, in different cellular contexts, the staining 
pattern can vary broadly for nuclear, cytoplasmic, and 
mitochondrial proteins (139,140). Based on this finding, 
Bardella et al. showed that detecting 2SC positivity by 
immunohistochemistry can predict the mutational status 
of the FH gene, and this immunoreactivity was absent in a 
diverse group of nonhereditary leiomyomatosis RCC-related 
tumors (139). In another series, Chen demonstrated that 
immunohistochemical detection of 2SC is a useful ancillary 
tool in the differentiation of hereditary leiomyomatosis 
RCC-associated RCC from other high-grade RCCs, and 
nuclear protein succination could be a feature of hereditary 
leiomyomatosis RCC tumors (140).

Thyroid-like follicular RCC

Thyroid-like follicular RCC is an unusual histological 
variant of RCC that was not included in the current WHO 
classification of renal tumors. Thyroid-like follicular RCC 

was first described in abstract format by Amin et al. in 
2004. To date, 20 cases have been reported in the English 
literature (141-153). However, because of the limited 
number of cases and the uncertainty about the maximum 
allowable papillary component in this tumor, it was only 
recognized as an emerging entity in the 2013 Vancouver 
classification of renal neoplasms (33).

Thyroid-like follicular RCC are usually detected in 
middle-aged patients (mean: 44 years; range, 19–83 years), 
with 11 women and 9 men affected. The primary tumor 
sizes range from 1.9 to 11.8 cm with a tan color and are 
solitary in all cases to date (141-153).

Most thyroid-like follicular RCC followed an indolent 
course with metastatic disease observed in four patients 
(142-144,152). One patient developed a lung metastasis 
2 months after initial diagnosis (142); a second patient 
presented with metastatic extension to the renal hilar lymph 
nodes, and another two patients presented with metastases to 
the lungs and lymph nodes (143,144,152). These latter cases 
provide evidence that this rare variant of RCC has a low, but 
distinct, malignant potential and can be clinically aggressive.

Microscopically, tumors showed a circumscribed 
nonencapsulated neoplasm with a diffuse follicular growth 
pattern. The follicles were variable in size, and some were 
cystically dilated and filled with a pink colloid-like material 
(Figure 8). They were lined by cells with a moderate amount 
of amphophilic to eosinophilic cytoplasm. The nuclei are 
generally round and regular and contain enlarged nucleoli 
(nucleolar grade 2 or 3). A solitary case without a papillary 
architecture exhibited a striking resemblance to the nuclear 
features of papillary thyroid carcinoma, including nuclear 
membrane irregularities, nuclear grooves, and nuclear 
clearing that resembles the follicular variant of papillary 
thyroid carcinoma (141-153). Another special case consisted 
of two components; the papillary RCC-like and thyroid 
follicular-like carcinoma areas, accounting for 70% and 
30%, respectively. Both areas were intimately intermingled 
with each other (154).

Before making a definitive diagnosis of thyroid-like 
follicular RCC, a detailed work-up is needed to exclude the 
possibility of metastatic follicular carcinoma or a follicular 
variant of papillary thyroid carcinoma. These neoplasms 
stain negatively for thyroid transcription factor-1 (TTF1) 
and thyroglobulin, allowing their distinction from follicular 
carcinoma or a follicular variant of papillary thyroid carcinoma. 
Immunohistochemically, the tumors are consistently negative 
for TTF1 and thyroglobulin, which are markers of thyroid 
carcinoma. Most tumors are positive for AE1/AE3, CAM5.2, 

Figure 8 Thyroid-like follicular RCC. Nonencapsulated neoplasm 
with a diffuse follicular growth pattern. The follicles were variable 
in size, and some were cystically dilated and filled with a pink 
colloid-like material. RCC, renal cell carcinoma.

100 μm



Rao et al. An update of recently described RCCs

© Chinese Journal of Cancer Research. All rights reserved. Chin J Cancer Res 2016;28(1):29-49cjcr.amegroups.com

40

PAX-8, EMA, CK19, CK7, and VIM. Variable expression in 
thyroid-like follicular RCC can be observed for CK34βE12, 
PAX-2, CD10, CK20, and AMACR (141-153).

Various genetic abnormalities have been identified in 
thyroid-like follicular RCC, without any distinctive pattern 
emerging. Using comparative genomic hybridization analysis, 
Jung et al. identified losses of chromosomes 1p36, 3 and 
9q21-33 and gains of 7q36, 8q24, 12, 16, 17p11-q11, 17q24, 
19q, 20q13, 21q22.3, and Xp in one tumor (141). Another 
tumor demonstrated chromosomal losses of chromosomes 
1, 3, 7, 9p21, 12, 17, and X by FISH. These genetic 
abnormalities are distinct from the ones observed in clear cell 
or chromophobe RCC. By contrast, no genetic alterations 
were observed in the third case analyzed using comparative 
genomic hybridization. In the study of Amin et al., gene 
expression profiling in 3 tumors showed 135 overexpressed 
genes and 46 underexpressed genes in thyroid-like follicular 
RCC compared to clear cell and chromophobe RCC (143). 
In particular, the expression of the mixed lineage leukemia 
(MLL) gene was increased 2.5-fold in thyroid-like follicular 
RCC. The MLL gene encodes a transcriptional factor 
that is involved in the oncogenesis of some hematologic 
malignancies, including lymphoblastic lymphomas and 
leukemias and 8% of T-ALL (155). Notably, three previous 
thyroid-like follicular RCC patients also had history of 
hematologic disorders, including Hodgkin lymphoma, acute 
myeloid leukemia, and T-ALL (145,148,153). Based on these 
findings, the genes involved in lymphoma and leukemia 
pathogenesis might play a role in the development of thyroid-
like follicular RCC, although additional study is needed.

Tubulocystic TCC

Tubulocystic RCC is an uncommon and recently described 
variant of RCC, which was not listed in the 2004 WHO 
classification. The first detailed description of tubulocystic 
RCC came in 1997 when MacLennan et al. described 13, 
cases which they classified as low-grade mucinous tubulocystic 
renal cancer likely of collecting duct origin because of 
mucin production within a tumor (156). In contrast to the 
highly aggressive collecting duct carcinomas, these had less 
aggressive behavior, and only one patient died of metastatic 
disease (156). Three large series of tubulocystic RCC by 
Azoulayet al, Yang et al., and Amin et al. adequately confirmed 
the histological features and documented gene profiling data 
in these tubulocystic RCC (157-159). Less than 70 cases of 
renal tubulocystic carcinoma have now been reported, and 
they occur in men approximately 7 times more often than in 
women at a mean age of 60 years (range, 18 to 94 years). Most 
cases are discovered incidentally and are typically small when 
discovered (nearly 40% are 2 cm or smaller) (157-160).

Tubulocystic RCC is a well-circumscribed tumor that 
ranges in size from 0.5 to 17 cm, is usually grossly cystic 
and lacks hemorrhage or necrosis (157-160). Histologically, 
the tumor is composed of tubules and cystic structures 
of markedly variable size, separated by septa that are 
commonly delicate like a spider web or by fibrotic septa of 
variable thickness. Tubules are lined by a single layer of low 
cuboidal epithelial cells with modest to abundant amounts 
of eosinophilic cytoplasm, and they often have, at least 
focally, a hobnail configuration. (Figure 9) Nuclei are round, 
with evenly dispersed chromatin, and they have prominent 
nucleoli (nucleolar grade 3) in most cases. No necrosis is 
present, and mitoses are inconspicuous (157-160).

By immunohistochemistry, the tumors are positive for 
cytokeratins CK8, CK18, and CK19 and nearly always 
negative for high-molecular-weight cytokeratin (34βE12). 
CD10 and AMACR (racemase) are positive in greater than 
90% of tumors. CK7 is commonly expressed, although 
the pattern can be weak and focal. Less than half of the 
cases will be positive for PAX2 and carbonic anhydrase IX 
(CA-IX). Staining for kidney-specific cadherin can also be 
investigated (111,157-159).

There is a limited number of molecular studies on 
tubulocystic RCC because of its rarity. Genetic studies 
indicate that tubulocystic RCC has a distinct molecular 
signature (161). A recent study by Amin et al. found that 
the gene expression profile of 5 tubulocystic RCC cases 
did not overlap with that of papillary RCC, as determined 

Figure 9 Tubulocystic RCC. The tumor is composed of tubules 
and cystic structures of markedly variable size. Tubules are lined by 
a single layer of tumor cells frequently accompanied by a hobnail 
configuration. RCC, renal cell carcinoma.
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in the investigators’ earlier studies (159). A comparative 
study of the gene expression profiles of tubulocystic 
RCC and collecting-duct carcinoma showed significant 
differences, indicating that these two tumor types are 
unrelated (162). However, in some studies, it has been 
suggested that tubulocystic RCC and papillary RCC show 
some similarities to each other in both genetic changes 
and immunoexpression. A gene expression study of 1 case 
showed molecular clustering with papillary RCC (158). 
In one study, tubulocystic RCC was commonly associated 
with papillary RCC, with both tumors showing gains in 
chromosomes 7 and 17 and loss of the Y chromosome (160). 
Furthermore, sometimes, separate tubulocystic RCC and 
papillary RCC tumors can be found in the same kidney, and 
at other times, they are closely admixed (163,164). These 
observations between tubulocystic RCC and papillary RCC, 
along with the overlapping immunohistochemical and 
molecular patterns, suggest a close relationship and raise the 
possibility that some tubulocystic RCCs could be a variant 
of papillary RCC. Some authors argued that tubulocystic 
RCC is a subset of papillary RCC, just as multiloculated 
clear cell RCC is considered to be a variant of clear cell 
RCC (111,160). More studies are needed to confirm the 
genetic relationship between the two types of tumor.

Hybrid oncocytic/chromophobe tumors (HOCT)

Hybrid oncocytic/chromophobe tumor (HOCT) is a rare 
tumor of the kidney, which is defined as a tumor having a 

mixture of cells with the morphological features of those 
seen in chromophobe RCC and renal oncocytoma. HOCTs 
have three clinicopathologic types: (I) sporadic; (II) those 
in association with renal oncocytosis/oncocytomatosis; and 
(III) those seen in patients with Birt-Hogg-Dubé syndrome 
(BHD) (165).

HOCT occur in adults without a sex predilection. There 
are no specific clinical signs and/or symptoms in patients 
with sporadic or HOCT associated with oncocytosis/
oncocytomatosis. By contrast, HOCT in patients with BHD 
can present with a spontaneous pneumothorax associated 
with pulmonary cysts, and patients most often have multiple 
facial fibrofolliculomas or trichodiscoma (166-168). HOCTs 
(all three groups) seem to behave indolently, as no evidence 
of aggressive behavior has been documented (166-171).

From the data published to date, it appears that tumors 
from all three groups share similar morphological features—
tumors were always composed of neoplastic cells with 
abundant granular eosinophilic “oncocytic” cytoplasm. An 
admixture of typical renal oncocytoma and chromophobe 
RCC areas is usually observed. Sometimes, the two areas 
were separated from each other (Figure 10), while at other 
times they mixed closely; i.e., scattered chromophobe cells 
in the background of a typical renal oncocytoma. The 
tumors were usually arranged in a solid-alveolar pattern. 
Some neoplastic cells can have a perinuclear halo with the 
presence of occasionally binucleate cells. These nuclear 
changes should only be found focally, and no raisinoid nuclei 
(as seen in classic chromophobe RCC) should be present 
(168-170,172,173). The immunohistochemical profiles of 
HOCTs in the three different groups differ slightly. All 
tumors tested were positive for cytokeratins AE1/AE3, 
EMA, and antimitochondrial antigen (AMA). CD117 was 
invariably positive in all three groups. Most tumors were 
positive for CK7, E-cadherin, and parvalbumin, whereas 
there was a lack of reactivity for racemase, CK20, CD10 
and CA-IX. The tumors were frequently focally positive for 
VIM (165,169,171).

HOCT show significant molecular genetic heterogeneity. 
A useful and important diagnostic molecular genetic feature 
of HOCTs in patients with BHD is the presence of FLCN 
gene mutations, which are absent in the other groups. 
HOCTs in BHD also display multiple abnormalities that 
affect chromosomes 2, 3, 4, 5, 6, 13 and 18 (167,168). 
Sporadic HOCTs are characterized by multiple numerical 
aberrations (both mono- and polysomes), affecting 
chromosomes 1, 2, 6, 9, 10, 13, 17, 20, 21, and 22. No 
mutation in the VHL gene, KIT, or PDGFRA and no loss 

Figure 10 Hybrid oncocytic/chromophobe tumors (HOCT). A 
sporadic case exhibits an admixture of typical renal oncocytoma 
(right) and chromophobe RCC (left) areas. Sharp border between 
both neoplastic components is clearly visible. RCC, renal cell 
carcinoma.
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of heterozygosity for the small arm of chromosome 3 (3p) 
was detected (171). HOCTs associated with oncocytosis/
oncocytomatosis usually show no chromosomal losses 
of chromosomes 1, 2, 6, 10, or 17. However, losses of 
chromosomes 1, 14, 21 and Y have been documented (173).
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