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Background: Most previous studies have focused on the intrinsic carcinogenic pathways of tumors; 
however, little is known about the potential role of N6-methyladenosine (m6A) methylation in the tumor 
immune microenvironment (TIME). To better diagnose and treat acute myeloid leukemia (AML), we sought 
to examine the correlation between m6A regulatory factors and immune infiltration in cases of AML. At the 
same time, a prognostic model was constructed to predict the survival of AML.
Methods: We extracted data from The Cancer Genome Atlas (TCGA) database, including ribonucleic acid 
sequencing (RNA-seq) transcriptome data and data on the corresponding clinical characteristics of AML 
patients. We identified two m6A modification patterns with distinct clinical outcomes and found a significant 
relationship between them. Simultaneous discovery of distinct m6A clusters associated with the tumor 
immune microenvironment [immune cell types and Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) algorithm] are closely related. Next, we implemented 
Lasso (Least Absolute Shrinkage and Selection Operator) Cox regression to build a predictive model in 
the 2-m6A regulator TCGA dataset to further explore m6A prognostic features in AML, and perform 
correlation validation.
Results: We identified 2 molecular subtypes (Clusters 1 and 2) by the consistent clustering of significant 
m6A regulators in AML. Cluster 2 was associated with a higher immune score and obvious immune 
cell infiltration, and thus patients in Cluster 2 had a poorer prognosis than those in Cluster 1 (P<0.05). 
Additionally, the 2 m6A-related signatures representing the independent prognostic factors in AML were 
screened to construct a prognostic risk-score model. We found that patients with low-risk scores had higher 
immune scores than those with high-risk scores (P<0.05).
Conclusions: Our research confirmed that m6A methylation plays an important role in AML. Further 
provide new directions for the prognosis and treatment of AML.
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Introduction

Acute myeloid leukemia (AML) is a group of diseases 
derived from the malignant transformation of hematopoietic 
progenitor cells at different stages during the differentiation 
and development of myeloid cells (1). The number of cases 
of AML increased from 63.84×103 in 1990 to 119.57×103 
cases in 2017; thus, there has been an 87.3% increase in 
the incidence of AML over the past 27 years worldwide (2). 
AML can infiltrate various organs, such as the liver, spleen, 
and lymph nodes. Its clinical manifestations include anemia, 
bleeding, infection, and fever, which are critical conditions 
with poor prognosis. The survival of AML patients is 
short; AML patients have a 2-year survival rate of 32% 
and a 5-year survival rate of 24% (3). The treatment of 
AML is divided into general treatment, chemotherapy, 
targeted therapy, autologous and allogeneic hematopoietic 
stem cell transplantation, etc. (4,5). Recently, encouraging 
progress has been made due to the development of existing 
technologies; however, the treatment results of patients 
with AML are still not satisfactory, and more than half of 
the patients die from the disease (6,7). The development of 
AML is not only related to gene mutation and chromosomal 
variation, but also abnormal epigenetic regulation such 
as DNA methylation and histone modification play an 
important role in the occurrence of AML (1).

N6-methyladenosine (m6A) is the most common post-
transcriptional modification of eukaryotic messenger 
ribonucleic acid (mRNA), and accounts for 80% of RNA 
methylation modifications (8). The execution of the 
function is mainly completed by 3 types of regulators 
(i.e., writers, erasers, and readers) (9). As early as the 
1970s, m6A modifications were discovered in the mRNA 
and long non-coding RNA of eukaryotes. In most 
eukaryotes, the methylation modification that occurs in the 
3'untranslated region (UTR) of mRNA plays an important 
role in mRNA splicing, editing, stability, degradation, 
and polyadenylation (10). The modification of the 3'UTR 
methylation contributes to the nuclear transport of mRNA, 
the initiation of translation, and the maintenance of the 
structural stability of mRNA combined with the polyA 
binding protein (11). Further, research has shown that m6A 
modifiers are correlated with AML; for example, Huang et al.  
found that fat mass and obesity-associated protein (FTO) 
is a mRNA m6A demethylase that can be targeted by small 
molecule inhibitors and has the potential to treat AML (12). 

Methyltransferase-like 14 (METTL14) modulates its mRNA 
target through m6A modification to exert its carcinogenic 
effect, and METTL14 and m6A modification have key roles 
in normal and malignant hematopoiesis (13,14).

Immune checkpoints refer to interactions that inhibit 
cytotoxic T lymphocyte (CTL) activation. These 
checkpoints act as a “brake” for CTL, allowing CTL to 
activate for a while but not allowing the reaction to proceed 
indefinitely. This mechanism is one of many regulatory 
mechanisms of the immune response. Programmed death-
ligand 1 (PD-L1) is one of the most important immune 
checkpoints (15-17). Yang et al. showed that programmed 
death-1 (PD-1)/PD-L1 signaling might be involved in the 
pathogenesis of myelodysplastic syndromes and resistance to 
hypomethylation drugs, which provide potential treatments 
for myelodysplastic syndromes and AML (18). PD-1(−/−) 
mice challenged with C1498 cells produced enhanced anti-
tumor T cell responses, had a reduced burden of AML 
in the blood and other organs, and survived significantly 
longer than wild-type mice, which shows the importance 
of the PD-1/PD-L1 pathway in the immune evasion of 
hematological malignancies (19,20). PD-L1 is closely 
related to the tumor immune microenvironment (TIME). 
However, very few studies have examined the relationship 
between the m6A-related signatures and TIME. There is also 
a study that enhances the understanding of the heterogeneity 
and complexity of TIME through a comprehensive analysis of 
specific m6A modulators to guide related immunotherapy (14). 
Unfortunately, these studies did not extend to AML.

Although current gene-targeted mutation testing and 
minimal residual disease (MRD) testing can provide 
preliminary prognostic stratification for AML. However, 
according to the clinical application results, it is far from 
enough to accurately predict the prognosis. Therefore, 
it is critical to uncover the genomic properties of AML, 
construct prognostic models for developing effective 
treatments and predicting individual survival and risk of 
relapse. This study explored the genes related to m6A in 
AML, examined the correlation between cluster typing and 
immune cell infiltration, and performed clinical modeling 
to evaluate the survival prognosis of AML patients. Our 
findings provide a basis for the molecular diagnosis and 
targeted therapy of AML in the future. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3858/rc).

https://atm.amegroups.com/article/view/10.21037/atm-22-3858/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3858/rc
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Methods

Data selection

We extracted all data, including the ribonucleic acid 
sequencing (RNA-seq) transcriptome data and data on the 
corresponding clinical characteristics of AML patients, 
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). A total of 151 specimens and 
relevant clinicopathological information embodying sex 
and age were downloaded for further analysis. From all 
samples, 129 AML patient samples with complete prognosis 
and relevant clinical data were selected. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

M6A signatures

Previous studies have identified 23 m6A-related regulators 
(21-23). We evaluated the differential expression of m6A 
signatures between the normal samples and AML samples.

Cancer clustering

The “ConsensusClusterPlus” package in R software was 
used for the consistent clustering analysis in the 1,000 
repeat iterations to determine the optimal number of 
clusters, K, and sort the AML patients into subgroups. This 
method was used to verify the rationality of clustering by 
resampling. A gene set enrichment analysis (GSEA) was 
conducted to evaluate the distribution trends of genes in the 
gene table ranked by phenotype correlation and to examine 
their contribution to the phenotype. We also identified the 
enrichment pathways of 2 subtypes with a false discovery 
rate <0.05 and calculated the normalized enrichment score 
(NES).

Immune score analysis

The “estimate” R package was used to calculate the stromal 
scores, estimate scores, and immune scores of the AML 
patients using the Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) algorithm. CIBERSORT is a tool used to 
deconvolute the expression matrix of immune cell subtypes 
based on the principle of linear support vector regression. 
The RNA-seq data was used to estimate immune cell 
infiltration.

Construction of a prognosis model

A univariate Cox regression analysis was conducted to select 
5 m6A signatures. All the AML specimens were categorized 
into the modeling group and the verification group at a ratio 
of 1:1 by applying the caret package. Next, a least absolute 
shrinkage and selection operator (LASSO) regression was 
conducted to filter out 2 candidate m6A-related variables, 
while fitting a generalized linear model in TCGA modeling 
set. The following formula was used to calculate the 
risk score: Risk score = (−0.0397) × YTHDF3 + 0.0222 × 
ALKBH5. Using the above formula, patients were divided 
into low-risk and high-risk groups based on the mean value 
of the risk scores. To improve the predictive accuracy and 
interpretability of statistical models, Lasso Cox regression 
analysis was performed to examine the relationship between 
m6A prognostic features and AML risk. Cox proportional 
hazards regression models included age, sex, and risk score. 
The hazard ratio (HR) from Cox regression analyses was 
used to distinguish between positive and negative prognostic 
factors. Genes with HR >1 were considered risk genes, 
and genes with HR <1 were considered protection genes. 
Subsequently, the availability of prognostic models was 
assessed using the Kaplan-Meier survival method, and the 
prognostic accuracy of signature construction was assessed 
using the sensitivity and specificity of receiver operating 
characteristic (ROC) curves.

Statistics

R version 4.1.0 software was mainly used in the statistical 
analysis and to generate images. We used the Kaplan-Meier 
(K-M) method to account for differences in the survival 
rates of the 2 groups. A subgroup analysis was conducted 
to evaluate the stability of risk characteristics, and patients 
were divided into 2 subtypes according to their age (≤65 or 
>65 years) and sex (female or male). The ROC curve image 
and the corresponding area under the ROC curve was used 
to assess the predicted value of the risk model. The value of 
area under the curve (AUC) ranges between 0.5 and 1. The 
closer the AUC is to 1.0, the higher the authenticity of the 
detection method; when it is equal to 0.5, the authenticity 
is the lowest and has no application value. The differences 
between the two groups were analyzed using the Student’s 
t-test and the one-way analysis of variance test was used for 
the comparison of multiple conditions. The “Spearman” 
method was used to calculate the gene expression 
correlations. In this study, a bilateral P value <0.05 was 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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considered statistically significant.

Results

Expression of m6A-related signatures in AML patients

A total of 8 writer regulators (i.e., METTL3, METTL14, 
METTL16 ,  WTAP,  VIRMA ,  ZC3H13 ,  RBM15 ,  and 
RBM15B), 13 reader regulators [i.e., YTHDC1, YTHDC2, 
YTHDF1, YTHDF2, YTH M6A RNA binding protein 3 
(YTHDF3), HNRNPC, FMR1, LRPPRC, HNRNPA2B1, 
IGFBP1, IGFBP2, IGFBP3, and RBMX], and 2 eraser 
regulators [i.e., FTO and alkB homolog 5 (ALKBH5)] 
were identified between the tumor samples and the normal 
samples. Additionally, a total of 5 m6A-related signatures 
were examined based on the univariate Cox regression 
analysis (applying the cutoff criteria of a P value <0.1), 
and their expression levels in AML were determined (see 
Figure 1). Higher expression levels of METTL14, YTHDC2, 

YTHDF, and HNRNPA2B1 were significantly correlated 
with better survival. Conversely, higher expression levels 
of ALKBH5 were significantly correlated with a worse 
prognosis (see Table 1).

Association between m6A-related genes and consensus 
clustering analysis

A consensus clustering analysis was performed on all AML 
patient samples using the combination of the identified 
probes. Following 1,000 clustering iterations at cluster 
counts (k) ranging from 2 to 8, k=2 was found to be the best 
k with the lowest proportion of ambiguous clustering (PAC) 
measures. This framework generated 2 distinct clusters, 
both with consensuses >0.99 (see Figure 2). A total of 129 
specimens with AML were divided into Cluster 1 (n=59) 
and Cluster 2 (n=70). To further explore the relationship 
between the 5 m6A-related genes and clinical features, 
including age, sex, and cluster, we generated a heatmap 
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Figure 1 The 5 M6A-related markers of differentially expressed genes between AML patients and normal individuals. (A) Single-factor Cox 
regression analysis. (B) Expression of related differentially expressed genes in AML. (C) Heatmap of related genes in AML. AML, acute 
myeloid leukemia.
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showing the expression of these signatures (see Figure 3A).  
The K-M curve analysis showed that there was no 
significant difference between the 2 clusters (see Figure 3B). 
Additionally, as Figure 3C shows, the 5 m6A genes were 
correlated to each other. PD-L1 was positively correlated 
with YTHDC2, while PD-L1 was negatively correlated with 
HNRNPA2B1 and ALKBH5. The expression of PD-L1 was 
differentially increased in Cluster 2 compared to Cluster 1 
(see Figure 3D). 

Figure 4A shows the results of the differential analysis in 
immune cell infiltration between the two clusters. These 
boxplots also show that the expression levels of memory-
activated cluster of differentiation (CD)4 T cells, naive 
CD4 T cells, and eosinophils in Cluster 1 were higher than 
those in Cluster 2. Conversely, the expression levels of 
CD8 T cells and regulatory T cells in Cluster 1 were lower 
than those in Cluster 2 (see Figure 4B-4F). Additionally, 
the ESTIMATE score of Cluster 2 was higher than that of 
Cluster 1 (P<0.05; see Figure 4G) when grouped by stromal 
score and immune score, respectively, and differences 
were observed between Cluster 1 and Cluster 2 (see  
Figure 4H,4I).

To clarify the underlying regulatory mechanism causing 
the difference between the 2 subtypes, we described 
the top pathways in the different clusters based on the 
GSEA. The outcome illustrated that spliceosome (NES 
=−1.85, normalized P=0.01), protein export (NES =−1.71, 
normalized P=0.02), and basal transcription (NES =−1.69, 
normalized P=0.025) factors were significantly correlated 
with Cluster 1 (see Figure 5A-5C). Additionally, Cluster 
2 was enriched in cell adhesion molecules (CAMs) 
(NES =2.03, normalized P<0.001), arrhythmogenic 
right ventricular cardiomyopathy (ARVC) (NES =1.94, 
normalized P<0.001) and the notch signaling pathway (NES 
=1.91, normalized P<0.001) (see Figure 5D-5F).

Construction of the prognostic model of the m6A signatures

A total of 129 patients with AML were categorized into a 
training set (n=65) and a validation set (n=64) at a rough 
ratio of 1:1. Next, 2 m6A signatures (i.e., YTHDF3 and 
ALKBH5) were selected to build a prognostic model 
according to the LASSO regression analysis of the training 
set (see Figure 6A,6B). The patients were then divided into 
a high-risk score group and a low-risk score group based on 
the median risk scores. To further examine the stability and 
effectiveness of the established model, we used K-M plots 
to analyze both the training and validation sets and found 
that the low-risk score cohort had a better survival rate than 
the high-rick score cohort (both P<0.05; see Figure 6C,6D). 
The AUC of the training set reached 0.774, and that of the 
validation set was 0.665 (see Figure 6E,6F). These results 
suggest that the risk model can be used as an important 
indicator for evaluating the prognosis of AML, but it is 
not the only criterion, and we can increase the sample size 
and repeat the validation in future clinical data analysis. 
We also evaluated the relationship between the risk score 
subgroups, overall survival (OS), OS status, and the level of 
expression, and the 2 m6A signatures. We found that the 
expression of YTHDF3 in the training cohort was lower in 
the high-risk group and higher in the low-risk group, while 
the expression of ALKBH5 showed the opposite trend. The 
same conclusion was drawn in relation to YTHDF3 in the 
validation cohort, but the expression of ALKBH5 did not 
change significantly (see Figure 7).

Clinical characteristics, such as age and sex, were 
examined in the subgroup analysis. From the univariate 
and multivariate Cox regression analyses, we found that 
age [hazard ratio (HR) 2.187 (1.155−4.142); P=0.016] 
and risk scores [HR 6.253 (1.097−35.634); P=0.039] 
were independent risk factors in the training cohort (see  

Table 1 Univariate Cox regression analyses of the 5 m6A-related signatures associated with the OS of the AML patients

Gene HR HR.95L HR.95H P value

METTL14 0.851978 0.705265 1.029209 0.096638

YTHDC2 0.88141 0.774514 1.00306 0.055665

YTHDF3 0.94964 0.913381 0.987338 0.009281

HNRNPA2B1 0.99129 0.982991 0.99966 0.041424

ALKBH5 1.050996 1.011429 1.09211 0.011073

OS, overall survival; AML, acute myeloid leukemia; HR, hazard ratio.
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Figure 8A-8D). Notably, in relation to OS, the low-risk 
score group had a longer prognosis than the high-risk score 
group in AML patients aged ≤65 years and males or females 
(all P<0.05) (see Figure 8E-8H). The heatmap shows the 
expression of YTHDF3 and ALKBH5 in the different clinical 
subgroups of AML. YTHDF3 was more lowly expressed in 
the AML high-risk group, while ALKBH5 was more highly 
expressed in the AML high-risk group (see Figure 9A).  
Additionally, patients aged >65 years had a higher risk 
score than those aged ≤65 years (P=0.042; see Figure 9B). 
The results of the differential analysis revealed that Cluster 
1 had a lower risk score than Cluster 2 (P=0.00029) (see  
Figure 9C). Notably, a higher immune score was associated 
with an increased risk score (P=0.026) (see Figure 9D). 
There was no statistically significant difference in PD-L1 
between the low-risk and high-risk score groups (P=0.29; 
see Figure 9E).

The relationship between the immune microenvironment 
and disease prognosis

To further explore the relationship between the risk scores 
and immune cell infiltration, we conducted a correlation 
analysis, and found that the expression levels of the resting 
CD4 memory T cells (R=−0.18, P=0.046) and eosinophils 
(R=−0.21, P=0.02) were positively correlated to the risk 
scores, while the expression levels of the M2 macrophages 
(R=0.42, P=2.3e−06) and memory B cells (R=0.26, 
P=0.0041) were positively correlated to the risk scores (see 
Figure 10).

Discussion

M6A methylase is heavily involved in mammalian 
development, immunity, tumor generation and metastasis, 
stem cell renewal, fat differentiation, and other life 
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Figure 5 Enrichment plots from the GSEA. Gene set enrichment plots of (A) spliceosome; (B) protein export; (C) basal transcription 
factors; (D) CAMs; (E) ARVC; and (F) the notch signaling pathway. GSEA, gene set enrichment analysis; CAM, cell adhesion molecule; 
ARVC, arrhythmogenic right ventricular cardiomyopathy; NES, normalized enrichment score; NOM, nominal; FDR, false discovery rate.

processes (12,24-26). Li et al. showed that FTO, which is a 
m6A demethylase, has a key carcinogenic effect in AML (27).  
AML is an aggressive clonal disease of hematopoietic stem 
cells and primitive progenitor cells that can prevent bone 
marrow differentiation and produce self-renewing leukemia 
stem cells (LSCs) (28). Paris et al. revealed that the mRNA 
m6A reader YTHDF2 was overexpressed in a broad 
spectrum of human AML and was a unique therapeutic 
target that inhibited the selective targeting of LSCs and 
promoted hematopoietic stem cell amplification (29,30). 
To date, previous studies have mostly focused on the 
internal mechanisms of tumors, and little has been done to 
investigate the potential regulatory relationship between 
m6A methylation and TIME, including the unclear role of 
m6A regulators in AML prognosis. Based on the TCGA 
dataset, we identified two clusters according to optimal 
k-means clustering, and observed two clusters with significant 

differences, suggesting that m6A-related expression 
regulators are closely related to the prognosis of AML.

The present study showed the expression pattern, 
prognostic value, and effect of m6A regulatory factors in 
AML. The expression level of YTHDF3 was lower in the 
high-risk AML samples than the low-risk AML samples, 
while the expression level of ALKBH5 did not change 
significantly between the AML samples. An analysis of the 
difference between the m6A regulators and PD-L1 in the 
AML patient samples revealed their close relationship. 
We identified 2 subtypes of AML through the consistent 
clustering of m6A regulatory factors (i.e., Cluster 1 and 
Cluster 2). The Cluster 1 and Cluster 2 subtypes were found 
to affect the prognosis and different clinicopathological 
characteristics of AML and to be closely related to PD-L1,  
immune score, and immune cell infiltration level. We 
also identified 2 prognostic risk characteristics related 
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Figure 6 Prognostic value of the m6A-based prognostic model in patients stratified by AML subgroup. (A) LASSO regression analysis of the 
training set. (B) Cross-validation plot for the penalty term. (C) K-M curves for the training set of the AML patients. (D) K-M curves for the 
validation set of the AML patients. (E) Time-dependent ROC curves showed the predictive efficiency of the m6A-based prognostic model in 
the training set of the AML patients. (F) Time-dependent ROC curves showing the predictive efficacy of the m6A-based prognostic model 
in the validation set of the AML patients. AML, acute myeloid leukemia; LASSO, least absolute shrinkage and selection operator; K-M, 
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6
5
4
3
2
1
0

S
ur

vi
va

l t
im

e,
 y

ea
rs

0       10      20      30      40      50      60
Patients (increasing risk score)

Dead
Alive

8

6

4

2

0

S
ur

vi
va

l t
im

e,
 y

ea
rs

0       10      20      30      40      50      60
Patients (increasing risk score)

Dead
Alive

1.4
1.2
1.0
0.8
0.6
0.4

R
is

k 
sc

or
e

0       10      20      30      40      50      60
Patients (increasing risk score)

High risk 
Low risk

1.4
1.2
1.0
0.8
0.6
0.4
0.2

R
is

k 
sc

or
e

0       10      20      30      40      50      60
Patients (increasing risk score)

High risk 
Low risk

Type

YTHDF3

ALKBH5

2

1

0

−1

−2

Type
High
Low

Type

YTHDF3

ALKBH5

4

2

0

−2

−4

Type
High
Low

A

B

C

D

E

F

Figure 7 The signature-based risk score was a promising marker in the training and validation cohorts. (A) Survival overview of the training 
set. (B) Risk score distribution of the training set. (C) Heatmap of the training set showing the expression profiles of the signature in the 
low- and high-risk groups. (D) Survival overview of the validation set. (E) Risk score distribution of the validation set. (F) Heatmap of the 
validation set showing the expression profiles of the signature in the low-risk and high-risk groups.



Annals of Translational Medicine, Vol 10, No 16 August 2022 Page 11 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(16):902 | https://dx.doi.org/10.21037/atm-22-3858

P value Hazard ratio

Age 

Gender 

Risk score

<0.001

0.560

0.001

5.257 (2.515–10.989) 

0.823 (0.428–1.583) 

7.578 (2.198–26.122)

0      5     10    15     20    25   30
Hazard ratio

A P value Hazard ratio

Age 

Gender 

Risk score

0.016

0.638

0.039

2.187 (1.155–4.142) 

1.159 (0.627–2.144) 

6.253 (1.097–35.634)

0    5  10  15  20  25  30  35  40
Hazard ratio

B

P value Hazard ratio

Age 

Gender 

Risk score

<0.001

0.977

0.003

4.960 (2.353–10.455) 

1.010 (0.520–1.963) 

8.264 (2.038–33.506)

0    5   10  15   20  25  30  35
Hazard ratio

C P value Hazard ratio

Age 

Gender 

Risk score

0.038

0.958

0.083

1.995 (1.039–3.832) 

1.017 (0.546–1.895) 

4.834 (0.813–28.751)

0     5    10   15    20   25   30
Hazard ratio

D

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

P<0.001

0       1       2       3       4       5       6       7       8
Time, years

High 
Low

46     18     10       6       4       1       1       0       0 
50     37     28      18     11       6       3       1       0    

Risk High Low
E

R
is

k

0       1       2       3       4       5       6       7       8
Time, years

Patients with age ≤65

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

P=0.519

0        1        2        3        4
Time, years

High 
Low

22                 6                   1                  1                  1 
12                 7                   2                  1                  0

Risk High Low
F

R
is

k
Patients with age >65

0        1        2        3        4
Time, years

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

P=0.009

0       1       2       3       4       5       6       7       8
Time, years

High 
Low

37     12      6       4       3       0       0       0       0 
33     23     16      11      8       4       3       1       0    

Risk High Low
G

R
is

k

0       1       2       3       4       5       6       7       8
Time, years

Patients with male

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

P=0.005

0       1       2       3       4       5       6
Time, years

High 
Low

31     12      5       3       2       1       1 
29     21     14      8       3       2       0

Risk High Low

H

R
is

k

0       1       2       3       4       5       6
Time, years

Patients with female

Figure 8 Analysis of the clinical parameters of the AML patients and the prognosis of OS. (A) Univariate regression analysis of the training 
set of the AML patients. (B) Multivariate regression analysis of the training set of the AML patients. (C) Univariate regression analysis of the 
validation set of the AML patients. (D) Multivariate regression analysis of the validation set of the AML patients. (E) K-M curve showing 
the OS of the AML patients aged ≤65 years at high or low risk. (F) K-M curve showing the OS of the AML patients aged >65 years at high 
or low risk. (G) K-M showing the OS of the male AML patients at high or low risk. (H) K-M curve showing the OS of the female AML 
patients at high or low risk. AML, acute myeloid leukemia; OS, overall survival; K-M, Kaplan-Meier.
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Figure 9 Analysis of the difference between the risk score of the AML patients and PD-L1. (A) Heatmap showing the expression of YTHDF3 
and ALKBH5 in different clinical subgroups. (B) Box plot assessing the risk of the AML patients according to age. (C) Box plot assessing the risk 
of the AML patients in different groups. (D) Box plot assessing the risk of the AML patients based on the immune score. (E) Box plot assessing 
PD-L1 expression of the AML patients based on the risk score. **, P<0.01. AML, acute myeloid leukemia; PD-L1, programmed death-ligand 1.
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Figure 10 Associations of the risk score with immune cell infiltration in AML. (A) Correlation between the risk score and resting CD4 memory 
cells. (B) Correlation between the risk score and CD8 T cells. (C) Correlation between the risk score and the M2 macrophages. (D) Correlation 
between the risk score and the B cell memory. (E) Correlation between the risk score and the eosinophils. AML, acute myeloid leukemia.

to m6A, and divided the AML patients into high-risk 
and low-risk groups. The high-risk and low-risk groups 
were also associated with different cluster subtypes and 
immune scores. The AML prognostic risk assessment 

model constructed in this study includes treatment-naive, 
secondary, or treatment-related AML. The AML patients 
were divided into high-risk and low-risk groups. The 
survival time of the high-risk group was significantly shorter 
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than that of the low-risk group; the survival time of patients 
aged ≤65 years was significantly longer. Compared with the 
prognostic predictive ability of other clinical features, this 
model showed better predictive performance. In conclusion, 
the risk signature we constructed may be regarded as a new 
biomarker with special potential and even more effective in 
clinical treatment. However, due to the limited number of 
databases, the model needs to be repeatedly confirmed in 
more clinical data.

The expression of the m6A demethylase ALKBH5 is 
regulated by changes in the chromatin state during the 
development of human AML, and ALKBH5 is necessary 
to maintain the function of LSCs. The dynamics of the 
chromatin state are correlated with the expression regulation 
of m6A-related modifiers, revealing the selective and key 
role of ALKBH5 in AML, which can be used as a specific 
therapeutic target for LSC (31). Shen et al. also found that 
ALKBH5 plays a key role in the occurrence of leukemia and 
LSC/(leukemia initiating cells) LIC self-renewal/maintenance 
and highlighted the therapeutic potential of targeting 
the ALKBH5/m6A axis (32). However, YTHDF3 had not 
previously been examined. These 2 m6A-related genes were 
used to construct a prognostic model that may provide a 
foundation for the future diagnosis and treatment of AML. 

The TIME is mainly composed of tumor cells , 
surrounding immune and inflammatory cells, tumor-
related fibroblasts, and nearby interstitial tissues, capillaries, 
and various cytokines and chemokines. Its synthesis 
is complex. The system can be divided into an immune 
microenvironment dominated by immune cells and a non-
immune microenvironment dominated by fibroblasts (33).  
We found that resting memory CD4 T cells, CD8 T 
cells, M2 macrophages, memory B cells, and eosinophils 
were positively correlated to the risk scores of patients. 
Additionally, compared to the patients with high-risk scores, 
those with low-risk scores had higher immune scores. 
These results suggest that a comprehensive analysis of m6A 
is useful for understanding and facilitating the exploration 
of the relationship between cellular infiltration and disease 
risk associated with the tumor immune microenvironment, 
ultimately leading to individual immunotherapy. In this 
study, it is unclear whether the risk score is influenced by 
the biological characteristics of AMLs. In other words, 
what effect does genetic mutation or (World Health 
Organization/European LeukemiaNet) WHO/ELN disease 
risk score have on 6A-related modifications? This still needs 
further research.

It is undeniable that our research has some limitations. 
First, the extrapolation of our results was based on an internal 
cohort from TCGA. Due to the lack of sufficient data 
available in our cohort, our risk-score model was not externally 
validated. Thus, further external verification is required with 
a multicenter cohort to test the results. Additionally, it is 
necessary to conduct further experimental research.

Conclusions

Our study clarified the important role of m6A methylation 
in the TIME of AML. We also constructed a prognostic 
model using the m6A-related signatures associated with 
TIME to predict the survival of the AML patients. 
Changes in m6A-related signatures associated with TIME 
not only reflect disease progression, but may also be 
promising therapeutic targets for improving the efficacy of 
immunotherapy in AML.
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