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Introduction

Thyroid cancer is the most pervasive malignant endocrine 
carcinoma worldwide, the incidence of which has 
significantly increased over the past decades (1-3). This 

surge is mainly due to the rising incidence of papillary 

thyroid cancer (PTC) (4), particularly papillary thyroid 

microcarcinomas (PTMC), which are defined as thyroid 

cancers of 1 cm or less in size (5). Although PTMC is 
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viewed as an indolent tumor, central lymph node metastasis 
(CLNM) is significantly detected in PTMC patients (6,7).

According to the American Association of Endocrine 
Surgeons guidelines, therapeutic central compartment 
LN dissection (CLND) is recommended during initial 
thyroidectomy for PTMC patients with a clinical or image-
detected nodal disease. However, implementing prophylactic 
CLND for low-risk PTMC remains controversial (8). The 
efficacy of preoperative neck ultrasound (US) to detect 
CLNM is limited due to the overlying thyroid gland (9). 
For PTMC, whether prophylactic CLND is performed 
during thyroidectomy often depends on the patient’s 
situation and the surgeon’s expertise. It is important to 
avoid overtreatment of prophylactic CLND because of 
surgical complications, including hypoparathyroidism and 
recurrent laryngeal nerve injury. On the other hand, simple 
thyroidectomy may contribute to disease recurrence (10), 
and second surgery is very difficult for cervical lymph node 
dissection. In recent years, some studies on the influencing 
factors of lymph node metastasis (LNM) have not excluded 
factors that have indications for lymph node resection, 
such as lateral LNM (7,11-14). Moreover, the conclusions 
of these studies are inconsistent. Therefore, it is clinically 
crucial to establish a reliable prediction model and identify 
CLNM before surgery for those patients who do not have 
strong surgical indications for lymphadenectomy.

Machine learning (ML) was created in 1959 by Arthur 
Samuel, whose main purpose was to introduce algorithms 
that take in input data, capitalize on computer analysis to 
predict output values within an acceptable range of accuracy, 
identify trends and patterns within the data, and ultimately 
learn from previous experience (15). ML in medicine 
can conduce to more accurate diagnostic algorithms and 
individual patient treatment (15-17). Hence, for better 
prediction of CLNM and individualized treatment in cN0 
PTMC patients, this study was designed to investigate 
the influencing factors of CLNM and develop promising 
prediction models using ML algorithms. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3594/rc).

Methods

Patients

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 

was approved by the ethics committee board of Xijing 
Hospital (XJLL-KY-20220428) and individual consent 
for this retrospective analysis was waived. A total of 1,209 
PTMC patients who underwent initial thyroidectomy at 
the Department of Endocrine Surgery between January 
2014 and December 2018 were enrolled. PTMC is 
diagnosed by preoperative ultrasonography and fine needle 
aspiration. Inclusion criteria were patients with preoperative 
diagnosis of PTMC. The exclusion criteria were as follows: 
Incomplete medical information, other types of thyroid 
carcinomas, absence of CLND, and evidence of central 
compartment LNM detected by preoperative US. Finally, 
1,121 patients were included in the study.

Surgical strategy

In our institution, surgical decisions are made according 
to the American Thyroid Association guidelines. 
Lobectomy plus isthmusectomy with ipsilateral CLND was 
performed for patients with unilateral lobe PTC, and total 
thyroidectomy with bilateral CLND was performed for 
patients with bilateral PTC or PTC in the isthmus. A total 
of thyroidectomy plus ipsilateral CLND was performed 
for patients with extrathyroidal extension (ETE) tumor or 
multifocal tumors limited to a unilateral lobe. 

Data collection

Clinical characteristics collected from clinical and 
pathological records included gender, age, family history 
of cancer, US characteristics, thyroid function test, and 
clinicopathological features. A family history of cancer 
was defined as any cancer occurring among the first- and 
second-degree relatives. US information included maximal 
tumor size, microcalcification, irregular shape, and ill-
defined margin, while thyroid function test results included 
free tetraiodothyronine (FT4), free triiodothyronine (FT3), 
tetraiodothyronine (T4), triiodothyronine (T3), and thyroid-
stimulating hormone (TSH). Clinicopathological features 
included Hashimoto thyroiditis (HT), bilateral lesions, 
multifocal/solitary lesions, capsule invasion, primary tumor 
ETE, and BRAFV600E mutation. Cervical US and thyroid 
function test were performed within one month before the 
surgery, and clinicopathological features were collected 
from intraoperative frozen section and postoperative 
pathological results. All patients were diagnosed with 
PTMC pre-operatively by fine-needle aspiration biopsy or 
intraoperatively using the frozen section procedure.

https://atm.amegroups.com/article/view/10.21037/atm-22-3594/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3594/rc
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Statistical analyses

R software version 4.0.5 (R Foundation for Statistical 
Computing, Vienna, Austria) was used for statistical 
analyses. The Shapiro-Wilk test was used to test the normal 
distribution of quantitative data, and for non-normally 
distributed data, the median with interquartile range (IQR) 
was applied for expression. The student’s t-test was used to 
analyze quantitative parameters and the Pearson’s chi-square 
test was used to analyze discrete parameters. Multivariate 
logistic regression (LR) analysis with stepwise selection was 
used to assess the independent risk factors of CLNM. 

We randomly divided the data into the test set (70%) 
and validation set (30%), which were used for model 
establishment and evaluation, respectively. Six types of 
ML algorithms models with all variables were developed 
in our study: LR, multivariate adaptive regression splines 
(MARS), decision tree (DT), random forest (RF), extreme 
gradient boosting (XGBoost), and neural network (NNET). 
We then calculated the area under the receiver operating 
characteristic (AUROC), sensitivity, specificity, accuracy, 
positive predictive value (PPV), and negative predictive 
value (NPV) of ML algorithms in the validation set. 
Relative importance ranking list was generated for each 
ML algorithm, and for the best-performing model, we 
calculated the error of different numbers of variables by ten 
cross validation to find the optimal number of variables. 
A two-sided P value <0.05 was considered statistically 
significant.

Results

Demographics features

The clinicopathological characteristics of 1,121 PTMC 
patients are shown in Table 1. Among them, 878 were female 
(78.3%), and 243 were male (21.7%), and the patients’ age 
at the time of initial treatment ranged from 16 to 73 years 
(median age 45 years; IQR: 37–51 years). The median 
tumor size was 0.7 (IQR: 0.5–0.8) cm, and 122 patients 
(10.9%) had a family history of cancer. Microcalcification 
was observed in 543 patients (48.4%) and an irregular 
tumor shape was detected in 819 (73.1%). A total of 798 
patients (71.2%) had an ill-defined margin. 

The median of FT4, FT3, T4, T3, and TSH were 16.5 
(IQR: 15.1–18.1) pmol/L, 4.8 (IQR: 4.4–5.2) pmol/L, 104.8 
(IQR: 93.0–117.1) nmol/L, 1.8 (IQR: 1.6–2.0) nmol/L, and 
2.2 (IQR: 1.5–3.2) μIU/mL, respectively. The number of 
patients with HT was 170 (15.2%), and 310 (27.7%) had 

bilateral lesions, and 447 (39.9%) had multifocal lesions. 
Capsule invasion was present in 66 cases (5.9%), and 
primary tumor ETE was observed in 53 (4.7%). BRAFV600E 
mutation was detected in 799 patients (71.3%).

Univariate and multivariate analysis

Univariable analysis (Table 2) showed gender, age, tumor 
size, microcalcification, FT3, and multifocality were all 
significantly associated with the occurrence of CLNM in 
PTMC patients (P<0.05). In multivariate logistic regression 
analyses (Table 2), seven variables (gender, age, family 
history of cancer, tumor size, ill-defined margin, multifocal 
lesions, primary tumor ETE) were selected using stepwise 
selection. The results showed that male gender (OR =2.06, 
95% CI: 1.53–2.79, P<0.001), tumor size (OR =3.58, 95% 
CI: 1.86–6.88), multifocal lesions (OR =1.56, 95% CI: 1.19–
2.03, P=0.001), and ETE (OR =1.85, 95% CI: 1.03–3.31, 
P=0.039) were independent positive predictors of CLNM, 
while older age (OR =0.96, 95% CI: 0.94–0.97, P<0.001) 
was a negative predictor. 

Predictive performance of ML algorithms

All 18 variables were used in CLNM predictive models 
based on six ML algorithms models, whose prediction 
performance is shown in Figure 1 and Table 3. The RF 
model demonstrated the most potential for predicting 
CLNM in PTMC patients, showing the highest AUROC 
(0.794, 95% CI: 0.744–0.844) and highest accuracy (0.772). 
Threshold values of AUC in RF model is 0.423 and the 
sensitivity and specificity of this model were 0.564 and 
0.872. Consequently, the RF model was selected as the 
prediction model in this study.

Variable importance

The relative importance of the ten most important predictors 
of the six models is summarized in Figure 2. Notably, age, 
tumor size, gender, and multifocality were ranked in the top 
10 of all six models. The errors of RF reached the lowest 
when all 18 variables were introduced (Figure 3).

Web-based calculator

An online calculator based on the RF model was established 
to predict a patient’s risk of CLNM by simply entering 
clinical variables (Figure 4).
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Table 1 Demographic and clinicopathological variables of the whole cohort grouped by lymph node status

Variables Total (n=1,121) CLNM(–) (n=745) CLNM(+) (n=376) P Statistic

Gender, n (%) <0.001 25.659

Female 878 (78.3) 617 (82.8) 261 (69.4)

Male 243 (21.7) 128 (17.2) 115 (30.6)

Age, median (IQR) 45.0 (37.0, 51.0) 46.0 (39.0, 52.0) 42.0 (34.0, 49.0) <0.001 34.821

Family history of cancer, n (%) 0.6 0.275

No 999 (89.1) 667 (89.5) 332 (88.3)

Yes 122 (10.9) 78 (10.5) 44 (11.7)

Tumor size (cm), median (IQR) 0.7 (0.5, 0.8) 0.7 (0.5, 0.8) 0.7 (0.6, 0.8) <0.001 15.388

Microcalcification, n (%) 0.007 7.317

No 578 (51.6) 406 (54.5) 172 (45.7)

Yes 543 (48.4) 339 (45.5) 204 (54.3)

Irregular shape, n (%) 0.494 0.468

No 302 (26.9) 206 (27.7) 96 (25.5)

Yes 819 (73.1) 539 (72.3) 280 (74.5)

Margin, n (%) 0.098 2.735

Smooth 323 (28.8) 227 (30.5) 96 (25.5)

Ill-defined 798 (71.2) 518 (69.5) 280 (74.5)

FT4 (pmol/L), median (IQR) 16.5 (15.1, 18.1) 16.5 (15.0, 18.0) 16.5 (15.1, 18.2) 0.39 0.739

FT3 (pmol/L), median (IQR) 4.8 (4.4, 5.2) 4.8 (4.4, 5.1) 4.8 (4.5, 5.3) <0.001 12.327

T4 (nmol/L), median (IQR) 104.8 (93.0, 117.1) 104.3 (92.8, 116.5) 105.4 (93.5, 117.7) 0.552 0.355

T3 (nmol/L), median (IQR) 1.8 (1.6, 2.0) 1.8 (1.6, 2.0) 1.8 (1.6, 2.0) 0.336 0.926

TSH (μIU/mL), median (IQR) 2.2 (1.5, 3.2) 2.2 (1.5, 3.2) 2.2 (1.6, 3.2) 0.637 0.222

Hashimoto thyroiditis, n (%) 0.662 0.191

No 951 (84.8) 635 (85.2) 316 (84.0)

Yes 170 (15.2) 110 (14.8) 60 (16.0)

Bilateral lesions, n (%) 0.103 2.655

No 811 (72.3) 551 (74.0) 260 (69.1)

Yes 310 (27.7) 194 (26.0) 116 (30.9)

Multifocal lesions, n (%) 0.005 7.766

No 674 (60.1) 470 (63.1) 204 (54.3)

Yes 447 (39.9) 275 (36.9) 172 (45.7)

Capsule invasion, n (%) 0.241 1.375

No 1,055 (94.1) 706 (94.8) 349 (92.8)

Yes 66 (5.9) 39 (5.2) 27 (7.2)

Table 1 (continued)
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Table 1 (continued)

Variables Total (n=1,121) CLNM(–) (n=745) CLNM(+) (n=376) P Statistic

ETE, n (%) 0.088 2.91

No 1,068 (95.3) 716 (96.1) 352 (93.6)

Yes 53 (4.7) 29 (3.9) 24 (6.4)

BRAF mutation, n (%) 0.442 0.592

No 322 (28.7) 220 (29.5) 102 (27.1)

Yes 799 (71.3) 525 (70.5) 274 (72.9)

IQR, interquartile range; FT4, free tetraiodothyronine; FT3, free triiodothyronine; T4, tetraiodothyronine; T3, triiodothyronine; TSH, thyroid 
stimulating hormone; ETE, extrathyroidal extension; CLNM, central lymph node metastasis.

Table 2 Univariate and multivariate logistic regression analysis of variables in predicting CLNM in whole cohort

Variable
Univariate analysis Multivariate analysis

Crude OR 95% CI Crude P value Adj OR 95% CI Adj P value

Gender (Male) 2.12 (1.59–2.84) <0.001 2.06 (1.53–2.79) <0.001

Age 0.96 (0.95–0.97) <0.001 0.96 (0.94–0.97) <0.001

Family history of cancer (+/–) 1.13 (0.77–1.68) 0.532 1.45 (0.96–2.19) 0.081

Tumor size (cm) 3.4 (1.83–6.32) <0.001 3.58 (1.86–6.88) <0.001

Microcalcification (+/–) 1.42 (1.11–1.82) 0.006

Irregular shape (+/–) 1.11 (0.84–1.48) 0.45

Margin (Ill-defined/smooth) 1.28 (0.97–1.69) 0.085 1.27 (0.94–1.7) 0.115

FT4 (pmol/L) 1.03 (0.98–1.08) 0.295

FT3 (pmol/L) 1.47 (1.21–1.8) <0.001

T4 (nmol/L) 1 (0.99–1.01) 0.941

T3 (nmol/L) 1.4 (0.97–2.02) 0.07

TSH (μIU/mL) 1.02 (0.94–1.09) 0.667

Hashimoto thyroiditis (+/–) 1.1 (0.78–1.54) 0.599

Bilateral lesions (+/–) 1.27 (0.96–1.67) 0.089

Multifocal lesions (+/–) 1.44 (1.12–1.85) 0.004 1.56 (1.19–2.03) 0.001

Capsule invasion (+/–) 1.4 (0.84–2.33) 0.193

ETE (+/–) 1.68 (0.97–2.93) 0.066 1.85 (1.03–3.31) 0.039

BRAF mutation (+/–) 1.13 (0.85–1.48) 0.401

FT4, free tetraiodothyronine; FT3, free triiodothyronine; T4, tetraiodothyronine; T3, triiodothyronine; TSH, thyroid stimulating hormone; 
ETE, extrathyroidal extension; CLNM, central lymph node metastasis.
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Discussion

The incidence of PTMC has increased rapidly in the last 
few decades (5). According to previous studies, CLNM is 
an important risk factor in the recurrence of PTMC but is 
rarely identified clinically (18-20). The study conducted by 
Qu et al. demonstrated CLNM prevalence ranged between 
17.8% and 64.1% (6), while in this study, the CLNM 
incidence in cN0 PTMC was 33.5% (376/1,121). Although 
it is widely accepted that CLND should be performed in 
patients with positive clinical CLNM, for PTMC patients 
without preoperative and intraoperative suspected CLNM, 
the need for CLND remains controversial (21,22) and 
mostly relies on the surgeon’s experience. Several studies 
have aimed to recognize predictive factors associated with 
CLNM in cN0 PTMC patients, but the results were 
inconsistent (23-25). Although ML algorithms are gradually 
being used for clinical decisions, few studies utilized them 
to establish a CLNM prediction model (16,17). Therefore, 
besides univariate and multivariate analysis, we developed 
and internally validated multiple models for predicting 
CLNM in cN0 PTMC patients using ML algorithms.

Herein, a retrospective cohort of 1,121 PTMC 
patients was assessed. A total of 18 variables, including 
clinicopathological features and US characteristics, were 
collected for analysis and constructing prediction models, 

and multivariate analysis showed tumor size, male, young 
age, multifocality, and ETE were highly predictive of 
CLNM. This is similar to several previous studies (11,26), 
while it was not completely consistent with some reports. 
Siddiqui’s et al. revealed that male and tumor size were 
not related to CLNM (27), while in Yang et al.’s study, 
age had no significant correlation with CLNM (28). 
Microcalcification, FT3, and T3 correlated with CLNM 
in the univariate analysis but had no significance after 
cofounding adjustment in multivariate analysis. Recent 
research verified BRAFV600E mutation was associated with 
CLNM (23,28,29), but Kim et al. reported it was not 
an indicator of CLNM (30). In our study, no significant 
correlation was seen between BRAF mutation and CLNM. 

Compared with previous studies predicting the risk 
of CLNM in PTMC (7,11), our work focused on cN0 
PTMC patients. Although ML in medicine has gradually 
become a hot topic in recent years (31), to the best of our 
knowledge, this is the first study to develop a prediction 
model based on ML algorithms for real-time risk evaluation 
of CLNM in cN0 PTMC patients. Herein, we used six 
different ML algorithms to establish CLNM prediction 
models and show the importance of variables in them. 
Although the importance of variables in different models 
was not completely consistent, age, tumor size gender, 
and multifocal lesions were always highly ranked. Some 
variables, such as FT4, T3, and T4, showed no significance 
in univariate or multivariate analysis but occupied important 
positions in some ML models. According to AUROC 
values (0.794) and the accuracy (0.772) of the models, RF 
was selected as the best predictive model, and has achieved 
better performance than traditional methods used by 
previous studies (23,32,33). Furthermore, to make this ML-
based model easier to use, we built an online application 
based on it, and clinicians can now promote personalized 
surgical treatment by calculating the risks for each patient.

There are several limitations to this study. Firstly, our 
work is a single-center retrospective observational study. 
Hence the effectiveness of the models has only been verified 
internally, and a potential selection bias exists. Secondly, 
some variables in the models are based on frozen biopsy 
and postoperative pathological diagnosis, which might 
restrict the ability to detect CLNM before surgery. From 
our point of view, pathological results are more stable and 
consistent than US results. The clinicopathology features 
in our model may be collected by fine-needle aspiration 
and frozen sections before or during surgery in the future. 
Thirdly, our study lacks long follow-up data to verify the 
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Figure 1 ROC curve analysis of machine learning algorithms for 
prediction of CLNM patients with cN0 PTMC in the validation 
set. LR, logistic regression; MARS, multivariate adaptive 
regression splines; DT, decision tree; RF, random forest; XGBoost, 
extreme gradient boosting; NNET neural network; ROC, receiver 
operating characteristic; CLNM, central lymph node metastasis; 
PTMC, papillary thyroid microcarcinoma.
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Table 3 Predictive performance comparison of the six types of machine learning algorithms in the validation sets

Methods AUROC (95% CI) Sensitivity Specificity Accuracy PPV NPV

LR 0.709 (0.650–0.765) 0.664 0.674 0.671 0.497 0.805

MARS 0.668 (0.608–0.728) 0.773 0.520 0.602 0.438 0.825

DT 0.664 (0.601–0.728) 0.664 0.643 0.650 0.474 0.798

RF 0.794 (0.744–0.844) 0.564 0.872 0.772 0.681 0.805

XGBoost 0.699 (0.642–0.756) 0.700 0.595 0.629 0.456 0.804

NNET 0.678 (0.619–0.736) 0.791 0.515 0.605 0.442 0.836

LR, logistic regression; MARS, multivariate adaptive regression splines; DT, decision tree; RF, random forest; XGBoost, extreme gradient 
boosting; NNET, neural network; AUROC, area under the receiver operating characteristic; PPV, positive predictive value; NPV, negative 
predictive value.
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prognosis of the patients. Finally, calculated according to 
the cut-off value we gave, the RF model has high accuracy 
but low sensitivity. However, this model still has high 
potential clinical application value. Obviously, when the 

accuracy is certain, the sensitivity and accuracy cannot reach 
a high level at the same time. Although this model has low 
sensitivity, it has a high PPV. Therefore, considering that 
surgery may cause damage to nerves or the thoracic duct, 
for surgical teams lacking nerve detectors, after evaluated by 
this predictive model, patients with higher predictive values 
were offered prophylactic lymphadenectomy. In patients 
with low levels, the surgeon can make an intraoperative 
decision whether to prophylactically remove the lymph 
nodes. Despite these shortcomings, our study is the first to 
apply ML algorithms to CLNM prediction in cN0 PTMC 
patients and may offer a basis for future clinical treatment. 

Conclusions

This study developed and validated ML algorithms for 
individualized risk prediction of CLNM in cN0 PTMC 
patients.  Our ML-based prediction model and its 
accompanying online risk calculator can provide clinicians 
and researchers with a simple tool to make precise surgical 
decisions. In the future, we aim to incorporate multiple 
biological variables, including imaging, molecular, genetic, 
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Figure 3 Cross validation errors of the random forest model with 
different numbers of variables. The error was the lowest (0.304) 
with 18 variables.

Figure 4 Online calculator for predicting central lymph node metastasis in cN0 PTMC. FT4, free tetraiodothyronine; FT3, free 
triiodothyronine; T4, tetraiodothyronine; T3, triiodothyronine; TSH, thyroid stimulating hormone; ETE, extrathyroidal extension; HT,  
hashimoto thyroiditis; CLNM, central lymph node metastasis; PTMC, papillary thyroid microcarcinoma.
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and immune microenvironment data, to further improve 
the model’s performance.
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