
Page 1 of 23

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(16):898 | https://dx.doi.org/10.21037/atm-22-3862

Original Article

The non-coding RNA (ncRNA)-mediated high expression of 
polycomb group factor 1 (PCGF1) is a prognostic biomarker and is 
correlated with tumor immunity infiltration in liver hepatocellular 
carcinoma
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Background: Liver hepatocellular carcinoma (LIHC) has a poor prognosis worldwide. Polycomb group 
factor 1 (PCGF1) was recently reported to play a tumor suppressive role in cancers. However, the molecular 
mechanism and competitive endogenous ribonucleic acid (ceRNA) regulatory networks of PCGF1 in LIHC 
are still unclear.
Methods: We constructed a PCGF1 ceRNA regulatory network in LIHC and identified potential 
prognostic markers, especially for tumor immunity. We identified the gene expression profiles and conducted 
correlation and survival analyses of PCGF1 and the related RNAs. We also explored the clinicopathological 
features and diagnostic and prognostic values of PCGF1 and constructed a nomogram to predict 1-, 3-, 
and 5-year survival. Based on a variety of bioinformatics tools, we confirmed the PCGF1-related signaling 
pathways in LIHC. Finally, the role of PCGF1 in immune cell infiltration was also analyzed.
Results: We found that PCGF1 was overexpressed in LIHC (P<0.001) and was linked to a poor prognosis 
in terms of overall survival (OS, P=0.029), the progress-free interval (PFI, P=0.002), and disease-free 
survival (DFS, P=0.02). Hsa-miR-22-3p was highly negatively correlated with PCGF1. Further, 3 upstream 
long non-coding RNAs (lncRNAs) (i.e., AC016405.3, BX284668.6, and MIR4435-2HG) were confirmed 
to further research. PCGF1 was positively associated with pathologic tumor stages (P=0.001), histologic 
grade (P=0.030), alpha fetoprotein (AFP) level (P=0.030), and vascular invasion (P=0.022). The area under 
the curve of PCGF1 was 0.983 [confidence interval (CI): 0.972–0.994]. In the multivariate analyses, high 
PCGF1 expression remained an independent factor associated with OS [hazards ratio (HR): 1.696, P=0.027], 
DSS (HR: 2.139, P=0.024), and the PFI (HR: 1.512, P=0.034). We found that PCGF1 was involved in some 
malignancy-associated signaling pathways and plays a role in regulating the immune response.
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Introduction

Liver hepatocellular carcinoma (LIHC) is common 
worldwide and has a poor prognosis, which places a huge 
burden on the global public health system, especially in 
China (1,2). In 2018, there were about 841,300 newly 
diagnosed liver cancer cases and 782,000 deaths, accounting 
for nearly 4.7% of all new cancer patients and 8.2% of all 
cancer deaths (3). LIHC accounts for more than 75% of 
new liver cancer cases and over 50% of those cases occur in 
China (4,5).

The leading risk factors for LIHC vary and include 
hepatitis B virus (HBV), hepatitis C virus (HCV), food 
contaminated with aflatoxin, long-term smoking, alcohol 
abuse, type 2 diabetes, and obesity (3,5). The influence 
of these major risk factors varies by region. In China and 
Eastern Africa, chronic HBV infection and frequent aflatoxin 
exposure are the main causes of LIHC, while in Japan and 
Egypt, HCV infection is the main cause of LIHC (1-3).

The curative treatment regimens for LIHC include 
surgery and radiofrequency ablation (5-7), but these 
are only applicable to patients with early-stage LIHC. 
Indeed, curative surgery is not suitable for advanced 
LIHC patients, for whom the standard of care includes 
transarterial chemoembolization, radiotherapy, and systemic 
therapy, such as chemotherapy, targeted therapy, and new 
immunotherapeutic agents (8-11). In recent decades, due to 
the implementation of a comprehensive multidisciplinary 
approach, the survival rate of LIHC patients has improved. 
However, the survival rate of LIHC is still lower than 
expected, as some patients show multicentric recurrence 
after curative treatment (5,11,12). Thus, novel therapeutic 
targets and promising prognostic biomarkers need to be 
identified for LIHC.

Polycomb group factor 1 (PCGF1), which is also known 
as nervous system polycomb1 (NSPc1), was first identified 
in 2001 (13,14). PCGF1 is a novel mammalian polycomb 
gene, belongs to the polycomb group (PcG) protein 

family, and plays a significant role in the development of 
the nervous system (15). The PcG protein family forms 
multiprotein complexes, which are classified as polycomb 
repressive complex 1 (PRC1) and polycomb repressive 
complex 2 (PRC2) (16-18). These complexes function 
by suppressing gene transcription through epigenetic 
remodeling and were originally identified in drosophila 
melanogaster (16-18). Among the various PCGF proteins, 
PRC1 is typically involved in canonical polycomb repressive 
complex 1 (cPRC1) and non-canonical polycomb repressive 
complex 1 (ncPRC1) (16,19). As one of the members of the 
PRC1, PCGF1 is a protein coding gene and is overexpressed 
in the developing nervous system (15). The RING finger 
domain of PCGF1 is 93% homologous to Bmi1 (PCGF4) 
(13,18,20). Thus, PCGF1 may have similar functions to 
Bmil, as it shares the same domain architecture (21).

Previous studies on PCGF1 have focused on the 
developing nervous system and stem cell function (22). The 
abnormal expression of PCGF1 has been implicated in 
cancer stem cell phenotypes and has been shown to promote 
tumorigenesis in various types of cancers (21,22). PCGF1 was 
shown to be overexpressed in colorectal cancer (CRC) and 
was linked to cancer progression and a poor prognosis (14).  
In CRC, PCGF1 contributes to stem cell enrichment 
and induces the activation of stem cell biomarkers (14). 
Research has shown that the downregulation of PCGF1 
in gliomas leads to the inactivation of the c-myc signaling 
pathway and reduces cell proliferation (15). PCGF1 
expression is increased in several cancer types (14) and 
regulates the ability of stem cell self-renewal by targeting 
retinol dehydrogenase 16 (RDH16) in glioma cells (21); 
however, to date, no studies have explored its prognostic 
and diagnostic value and the regulatory network of PCGF1 
in LIHC. Additionally, the expression, prognosis, and 
mechanism of PCGF1, and the role of tumor immune 
infiltration in LIHC remain unclear.

In this research, we performed PCGF1 expression and 
survival analyses in human cancer. We also investigated the 

Conclusions: We confirmed the upstream ceRNA regulatory network of PCGF1 in LIHC. PCGF1 has an 
oncogenic effect and correlates with tumor immunity.
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regulation of micro ribonucleic acids (miRNAs) and long 
non-coding RNAs (lncRNAs) related to PCGF1 in LIHC. 
Finally, we explored the value of PCGF1 in immune cells. 
In summary, we found links between non-coding RNA 
(ncRNA) and the upregulation of PCGF1, which may serve 
as a biomarker and regulate immune cell infiltration in 
LIHC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3862/rc).

Methods

RNA-seq data source availability and ethics statement

PCGF1 expression levels in 20 cancers were identified 
in The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). The RNA sequencing (RNA-seq) 
transcriptomic data [level 3 HTSeq—fragments per kilobase 
per Million (FPKM)] were converted to transcripts per 
million reads (TPM) format and log2 values for the study (23). 
Additionally, clinical information was retained, and duplicate 
samples were removed. Subsequently, we also extracted 
the PCGF1 data from the University of California Santa 
Cruz (UCSC) XEUC database (https://xenabrowser.net/
datapages/), RNA-seq data in TPM format from TCGA, and 
genotype-tissue expression (GTEx) data uniformly processed 
by the Toil process (24). The RNA-seq data in the TPM 
format of TCGA cancer samples and the corresponding 
normal tissues of the GTEX were extracted, and the 
expression levels of the samples after log2 transformation 
were compared. The miRNA data for LIHC were also 
extracted from TCGA. According to the median expression 
level of PCGF1, all the data were divided into high and low 
expression groups. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Survival analysis of PCGF1 in cancers

A Kaplan-Meier (KM) analysis was conducted to determine 
the prognostic value of the PCGF1 characteristics and 
survival. We also extracted the survival data and clinical 
information of cancer patients from an article for 
subsequent analysis (25).

StarBase database analysis for candidate miRNA and 
lncRNA prediction

The StarBase database (http://starbase.sysu.edu.cn/) is 

widely used to determine target-miRNA interactions (26). 
We used it to analyze the correlations between ncRNA and 
gene expression in LIHC. We first predicted the upstream 
binding miRNAs of PCGF1 and confirmed the candidate 
miRNA-PCGF1 to predict the potential lncRNAs that 
might bind to miRNA-pcGF1. We also examined the 
correlations between lncRNA, miRNA, and PCGF1 
expression in LIHC. Additionally, TCGA data were used 
to test the relationship between the expression levels and 
clinical outcomes using the R tool (version 3.6.3).

Correlations with PCGF1 expression and its clinical value 
in LIHC

Wilcoxon rank-sum tests  and a  logis t ic  analys i s 
were conducted to analyze the correlations between 
clinicopathological features and PCGF1 expression (27). 
The receiver operating characteristic (ROC) curve showed 
that PCGF1 had a good predictive value. Cox regression 
modeling was carried out to identify prognostic factors. Using 
the “rms” package of R (version 3.6.3) and a multivariate Cox 
model, a nomogram for predicting 1-, 3- and 5-year survival 
was established. The calibration curve was established, and 
the prediction probability of the nomogram was estimated. 
The consistency index (C-index) was calculated to evaluate 
the prediction accuracy of the nomogram.

Enrichment analysis and gene set enrichment analysis 
(GSEA)

Differentially expressed genes (DEGs) with a |log 
fold change (FC)| value >1.5 were identified using R 
language-related software DESeq2 (version 1.26.0) (27), 
and an adjusted P value less than 0.05 was set as the cut-
off value for DEG identification. The “ClusterProfiler” 
software package was used to conduct the Gene Ontology 
(GO) enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses, and “ggplot2” 
software package was used to visualize the results (28). A 
GSEA (29) was conducted using R package ClusterProfiler 
(Version 3.14.3) (28) to confirm the significant functions 
and pathways (30). The terms with an adjusted P value less 
than 0.05 and a false discovery rate (FDR) value less than 
0.25 were selected.

Immune infiltration analysis in LIHC

A single-sample GSEA (ssGSEA) was performed with the 
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GSVA package (version 1.34.0) (31), and the infiltration of 
24 immune cells was estimated according to the inferred 
immune characteristics (32). The correlations between 
PCGF1 expression and these immune cells were evaluated 
by calculating the Pearson’s correlation coefficients. The 
enrichment scores of the immune cells in the related 
samples were compared using the Wilcoxon rank sum 
test. A P value less than 0.05 was considered statistically 
significant. 

Statistical analysis

R Statistics Software Package (version 3.6.3) was used for 
the statistical analysis. In the PCGF1 expression analysis, 
the Wilcoxon rank-sum test was used to compare the 
expression levels of PCGF1 in the tumor and normal 
tissues. The PCGF1 expression levels were defined as high 
or low based on the median value. The relationship between 
PCGF1 and clinicopathology was analyzed using the 
Wilcoxon rank-sum test and a logistic regression analysis. 
We conducted a Cox regression analysis to confirm the 
effects of the clinicopathology variables on survival time. A 
P value less than 0.05 was considered statistically significant.

Results

Expression levels of PCGF1 in cancers

We used TCGA data to investigate the expression levels 
of PCGF1 and its predictive value in different cancers. As 
Figure 1A shows, PCGF1 was more upregulated in tumor 
tissues than normal tissues, including LIHC, bladder 
urothelial carcinoma, kidney renal clear cell carcinoma 
(KIRC), cholangiocarcinoma, stomach adenocarcinoma 
(STAD), colon adenocarcinoma (COAD), head and neck 
squamous cell carcinoma, breast invasive carcinoma 
(BRCA), kidney renal papillary cell carcinoma (KIRC), lung 
adenocarcinoma (LUAD), thyroid carcinoma (THCA), lung 
squamous cell carcinoma (LUSC), pheochromocytoma and 
paraganglioma (PCPG), prostate adenocarcinoma (PRAD), 
rectum adenocarcinoma (READ), and uterine corpus 
endometrial carcinoma (UCEC) (P<0.05), and was only 
downregulated in kidney chromophobe (KICH). However, 
no significant difference in PCGF1 expression was observed 
in cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), and pancreatic adenocarcinoma 
(PAAD) (P>0.05; see Figure 1A). Further, we extracted the 
PCGF1 data from the UCSC XENA database (http://xena.

ucsc.edu/) and found that PCGF1 was also significantly 
more upregulated in LIHC, COAD READ, STAD, PAAD, 
UCEC, LUSC, PRAD, ESCA, KIRC, BRCA, CESC, and 
LUAD compared to TCGA and the GTEx corresponding 
normal controls (P<0.05; see Figure 1B-1M). To sum up, we 
found that PCGF1 was overexpressed in several cancers, 
and it may be a key driver of carcinogenesis in cancer.

The survival analysis data of PCGF1 in cancer patients

To explore the predictive value of PCGF1, a KM plotter 
analysis was conducted of different cancers, mainly using 
TCGA data sets. Overall survival (OS), the progress-free 
interval (PFI), and disease-specific survival (DSS) were 
examined. As Figure 2A-2F show, the high expression of 
PCGF1 was associated with a poor prognosis in terms of 
OS, PFI, and disease-free survival (DFS) in LIHC (P<0.05; 
see Figure 2A-2C) and COAD-READ (P<0.05; see Figure 
2D-2F). Next, we divided the COAD-READ cases into 
COAD and READ and explored the relationship between 
PCGF1 expression and prognosis. The OS analysis showed 
that the high expression of PCGF1 was associated with a 
poor prognosis in COAD patients (P=0.027; see Figure 2G). 
However, PCGF1 had no significant effect on prognosis 
in READ patients (P=0.053; see Figure 2H). Similar results 
were also observed in other cancers (P>0.05; see Figure 
S1A-S1J). These data suggest that PCGF1 is related to a 
poor prognosis and can be used as a biomarker of LIHC.

Predicted upstream miRNAs of PCGF1 in LIHC

There is increasing evidence that ncRNAs are actively 
involved in gene expression regulation (33). Thus, we 
sought to determine whether PCGF1 was also regulated 
by ncRNAs. First, we used the StarBase database to predict 
the upstream miRNAs of PCGF1. A total of 16 possible 
upstream miRNAs were predicted to potentially target 
PCGF1. For better visualization, a miRNA-PCGF1 
regulatory network was created using Cytoscape software 
(see Figure 3A). As a negative regulator of gene expression, 
miRNA plays an important role in many biological 
processes. As Figure 3B shows, among all the upstream 
miRNAs, hsa-miR-22-3p was negatively correlated with 
PCGF1, and hsa-miR-23c was positively correlated 
with PCGF1 in LIHC. Subsequently, we evaluated the 
expression and prognostic value of hsa-miR-22-3p in LIHC 
using TCGA data, which was more overexpressed in normal 
tissues than LIHC tissues (P<0.05; see Figure 3C) and linked 

http://xena.ucsc.edu/
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Figure 1 PCGF1 expression levels in cancers. (A) PCGF1 expression levels in LIHC and other types of human cancers based on TCGA 
database. ns, P≥0.05; **, P<0.01; ***, P<0.001. (B-M) PCGF1 expression levels in in PRAD, STAD, COAD READ, UCEC, LIHC, LUSC, 
KIRC, CESC, ESCA, PAAD, LUAD, and BRCA based on the UCSC XENA database. *, P<0.05; ***, P<0.001. PCGF1, polycomb group 
factor 1; TPM, transcripts per million; TCGA, The Cancer Genome Atlas; ns, no significance; BLCA, bladder urothelial carcinoma; BRCA, 
breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; 
COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; KICH, kidney 
chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma 
and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid 
carcinoma; UCEC, uterine corpus endometrial carcinoma; UCSC XENA database (http://xena.ucsc.edu/).
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Figure 2 Clinical outcomes of PCGF1 expression in LIHC and COAD READ. (A-C) OS, PFI, and DSS in LIHC; (D-F) OS, PFI, and 
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to unfavorable DSS (P=0.002; see Figure 3D), the PFI 

(P=0.001; see Figure 3E), and OS (P<0.001; see Figure 3F).  

Thus, upstream hsa-miR-22-3p appears to act as tumor 

suppressive miRNA, and the hsa-miR-22-3p-PCGF1 axis 

may be the potential pathway in LIHC.

Upstream lncRNAs of hsa-miR-22-3p in LIHC

LncRNAs act as competitive endogenous RNAs (ceRNAs) 
and interact with messenger RNAs (mRNAs) via the 
miRNA binding sites. Next, to ascertain whether hsa-
miR-22-3p was modulated by some lncRNAs, we used the 
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StarBase database to examine the upstream lncRNAs of 
hsa-miR-22-3p. The regulatory network of lncRNA and 
hsa-miR-22-3p is shown in Figure 4. We used TCGA data 

sets to examine the expression levels and predictive values 
of selected lncRNAs. Only 4 lncRNAs (i.e., LINC01184, 
AC016405.3, BX284668., and MIR4435-2HG) were 
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significantly higher in LIHC (P<0.001; see Figure 5A) 
and were correlated with a poorer OS (P<0.05; see  
Figure 5B-5E). Additionally, overexpressed MIR4435-
2HG indicated poor DSS (P=0.011; see Figure 5F), and 
high levels of LINC01184 (P=0.02; see Figure 5G) and 
AC016405.3 (P=0.035; see Figure 5H) were linked to a poor 
PFI in LIHC. Taken together, based on the classical sponge 
theory/competitive ceRNA hypothesis, these results indicate 
that lncRNA levels are inversely linked to miRNA levels 
and positively linked to mRNA levels. We used the StarBase 
database to examine the correlation between 4 lncRNAs 
and hsa-miR-22-3p or PCGF1 expression in LIHC (see 
Table 1). We found that AC016405.3, BX284668.6 and 
MIR4435-2HG downregulate hsa-miR-22-3p, and increase 
the expression of PCGF1 in LIHC.

Correlation between PCGF1 expression and clinical 
characteristics in LIHC patients

To investigate the relationship between PCGF1 expression 
and the clinical features of LIHC, we compared the clinical 
features of 371 patients with LIHC and divided them into 
high and low PCGF1 expression groups (see Table 2). As 
Table 2 and Figure 6A-6E show, the high expression of 
PCGF1 is closely related to tumor (T) stage (T1 vs. T2, 
T3, & T4, P<0.001), pathologic stage (Stage I vs. Stages II, 

III, & IV, P=0.001), vascular invasion (no vs. yes, P=0.012), 
histologic grade (G1 & G2 vs. G3 & G4, P=0.002), and 
alpha fetoprotein (AFP) level (≤400 vs. >400 ng/mL, 
P=0.045). Additionally, a statistically significant correlation 
was found with node (N) stage, metastasis (M) stage, 
Child-Pugh grade, age, gender, residual tumor, and race 
in PCGF1-high (P>0.05, see Figure S2A-2G). To further 
confirm that the expression of PCGF1 was associated 
with the poor prognosis of LIHC patients, we performed 
a logistic regression analysis (see Table 3). High PCGF1 
expression levels were positively correlated with pathologic 
stage [Stages I, II, & IV vs. Stage I, OR: 2.239, 95% 
confidence interval (CI): 1.461–3.451, P=0.001], histologic 
grade (G3 & G4 vs. G1 & G2, OR: 1.606, 95% CI: 
1.047–2.473, P=0.030), AFP level (>400 vs. ≤400 ng/mL, 
OR: 1.878, 95% CI: 1.070–3.345, P=0.030), and vascular 
invasion (yes vs. no, OR: 1.731, 95% CI: 1.085–2.777, 
P=0.022).

The diagnostic and prognostic value of PCGF1 expression 
in LIHC

To better understand the clinical benefits of PCGF1 
evaluations, a ROC curve analysis was performed to 
determine its prognostic value. The area under the curve 
(AUC) of PCGF1 for identifying tumors from normal 
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Figure 5 The expression and clinical outcomes of predicted lncRNA in TCGA-LIHC. (A) The expression of predicted lncRNA in TCGA-
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lncRNA, long non-coding RNA; OS, overall survival; PFI, progress-free interval; DSS, disease-specific survival.

tissues was 0.983 (95% CI: 0.972–0.994). Thus, PCGF1 
has a high value in terms of its diagnostic sensitivity and 
specificity (see Figure 6F). Additionally, the univariate Cox 
analysis showed that the high expression of PCGF1 was 
related to a decrease in OS [hazards ratio (HR): 1.692, 
P=0.006], DSS (HR: 1.756, P=0.022), and the PFI (HR: 

1.683, P=0.001) (see Table 4).
To further examine the survival-related factors, we used a 

Cox proportional-risk regression model for the multivariate 
analysis. High PCGF1 expression remained an independent 
factor associated with poor OS (HR: 1.696, P=0.027), DSS 
(HR: 2.139, P=0.024), and the PFI (HR: 1.512, P=0.034). 
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Table 1 The correlations between lncRNA and miRNA or lncRNA and PCGF1 in LIHC was analyzed using the StarBase database

miRNA/PCGF1 LncRNA R value P value

miRNA

hsa-miR-22-3p LINC01184 0.003 9.55E–01

hsa-miR-22-3p AC016405.3 −0.323 1.89E–10

hsa-miR-22-3p BX284668.6 −0.186 3.26E–04

hsa-miR-22-3p MIR4435-2HG −0.168 1.16E–03

Gene

PCGF1 LINC01184 0.073 1.57E–01

PCGF1 AC016405.3 0.291 9.59E–09

PCGF1 BX284668.6 0.224 1.20E–05

PCGF1 MIR4435-2HG 0.3 3.08E–09

lncRNA, long non-coding RNA; miRNA, micro ribonucleic acid; PCGF1, polycomb group factor 1; LIHC, liver hepatocellular carcinoma.

Table 2 Relationship between PCGF1 expression and clinicopathological features in patients with LIHC 

Characteristics Low expression of PCGF1 (N=185) High expression of PCGF1 (N=186) P value

Age, median (IQR) 61.5 (51, 69) 61 (52, 68) 0.759

Age, n (%) 0.914

≤60 87 (23.5) 90 (24.3)

>60 97 (26.2) 96 (25.9)

Gender, n (%) 0.130

Female 53 (14.3) 68 (18.3)

Male 132 (35.6) 118 (31.8)

Race, n (%) 0.204

Asian 73 (20.3) 85 (23.7)

Black or African American 7 (1.9) 10 (2.8)

White 101 (28.1) 83 (23.1)

T stage, n (%) 0.001

T1 109 (29.6) 72 (19.6)

T2 35 (9.5) 59 (16.0)

T3 34 (9.2) 46 (12.5)

T4 5 (1.4) 8 (2.2)

N stage, n (%) 0.622

N0 125 (48.8) 127 (49.6)

N1 1 (0.4) 3 (1.2)

Table 2 (continued)
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Table 2 (continued)

Characteristics Low expression of PCGF1 High expression of PCGF1 P value

M stage, n (%) 1.000

M0 133 (49.3) 133 (49.3)

M1 2 (0.7) 2 (0.7)

Pathologic stage, n (%) 0.001

Stage I 102 (29.4) 69 (19.9)

Stage II 34 (9.8) 52 (15)

Stage III 33 (9.5) 52 (15.0)

Stage IV 3 (0.9) 2 (0.6)

Residual tumor, n (%) 0.044

R0 166 (48.5) 158 (46.2)

R1 4 (1.2) 13 (3.8)

R2 1 (0.3) 0 (0)

Histologic grade, n (%) 0.057

G1 35 (9.6) 20 (5.5)

G2 91 (24.9) 86 (23.5)

G3 51 (13.9) 71 (19.4)

G4 6 (1.6) 6 (1.6)

AFP (ng/mL), n (%) 0.040

≤400 115 (41.4) 98 (35.3)

>400 25 (9.0) 40 (14.4)

Child-Pugh grade, n (%) 0.497

A 112 (46.9) 105 (43.9)

B 9 (3.8) 12 (5.0)

C 1 (0.4) 0 (0)

Vascular invasion, n (%) 0.029

No 115 (36.5) 91 (28.9)

Yes 46 (14.6) 63 (20.0) 

PCGF1, polycomb group factor 1; LIHC, liver hepatocellular carcinoma; IQR, interquartile range; AFP, alpha fetoprotein. 

The analysis also showed that pathologic stage (Stage I vs. 
Stages II, III, & IV) had predictive advantages for OS (HR: 
2.154, P=0.002), and the PFI (HR: 1.775, P=0.002) in LIHC 
patients. T stage (T1, T2, & T3 vs. T4) (HR: 3.656, P=0.038) 
and pathologic stage (Stage I vs. Stages II, III, & IV) (HR: 
2.705, P=0.003) also showed the similar trend in DSS. 

Next ,  as  Figure  7A-7F  show,  a  nomogram was 

constructed to predict the 1-, 3-, and 5-year OS, PFI, and 
DSS in TCGA-LIHC. Pathological stage and PCGF1 were 
incorporated into the nomogram to predict OS (C-index: 
0.624) and the PFI (C-index: 0.656). A DSS predictive 
nomogram was established by T stage, pathological stage 
and PCGF1, and the C-index was 0.714. A calibration curve 
was drawn to verify the effectiveness of the nomogram.
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Figure 6 Correlation of PCGF1 expression with clinical pathological characteristics in LIHC patients and ROC curve of PCGF1. (A) T 
stage; (B) pathologic stage; (C) vascular invasion; (D) histologic grade; and (E) AFP (ng/mL). (F) The ROC curve of PCGF1 had an AUC 
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Table 3 Logistic regression models estimated the association between PCGF1 and clinical pathologic characteristics

Characteristics Total (N) OR P value

T stage (T3 & T4 vs. T1 & T2) 368 1.522 (0.949–2.459) 0.083

N stage (N1 vs. N0) 256 2.953 (0.372–60.132) 0.351

M stage (M1 vs. M0) 270 1.000 (0.119–8.434) 1.000

Pathologic stage (Stages II, III, & IV vs. Stage I) 347 2.239 (1.461–3.451) <0.001

Gender (male vs. female) 371 0.697 (0.449–1.077) 0.105

Race (Black or African American & White vs. Asian) 359 0.740 (0.486–1.122) 0.157

Age (>60 vs. ≤60) 370 0.957 (0.636–1.439) 0.832

Residual tumor (R1 & R2 vs. R0) 342 2.732 (1.005–8.675) 0.062

Histologic grade (G3 & G4 vs. G1 & G2) 366 1.606 (1.047–2.473) 0.030

AFP (ng/mL) (>400 vs. ≤400) 278 1.878 (1.070–3.345) 0.030

Child-Pugh grade (B & C vs. A) 239 1.280 (0.530–3.152) 0.583

Vascular invasion (yes vs. no) 315 1.731 (1.085–2.777) 0.022

PCGF1, polycomb group factor 1; OR, odds ratio; AFP, alpha fetoprotein.
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Figure 7 Construction and validation of nomograms based on PCGF1 expression and other clinical factors. A nomogram for predicting the 
probability of with 1-, 3- and 5-year OS (A), DSS (C) and PFI (E). Calibration plots of the nomogram for predicting the OS (B), DSS (D) 
and PFI (F) likelihood. PCGF1, polycomb group factor 1; LIHC, liver hepatocellular carcinoma; OS, overall survival; PFI, progress-free 
interval; DSS, disease-specific survival. 
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Identification of the high and low PCGF1-related DEGs  
in LIHC

To study the differential expression of PCGF1 between 
the high and low expression groups, we first identified  
532 DEGs based on a |log2 FC| value >1.5 and an adjusted 
P value <0.05. Of the 532 DEGs, 422 were upregulated and 
120 were downregulated (see Figure 8A). The top 20 genes 
correlated with PCGF1 are presented in a heatmap (see 
Figure 8B).

Functional annotation and predicted signaling pathways of 
PCGF1-associated DEGs

To predict the functional enrichment implications of 
PCGF1 in LIHC, the ClusterProfile software package 
was used to analyze the enrichment of GO and KEGG 
pathways. GO analysis was performed based on an adjusted 

P value less than 0.05 and Q value less than 0.2 to divide 
them into a biological process (BP) group (229 items), 
cellular composition (CC) group (44 items), and a molecular 
function (MF) group (49 items) (see Figure 8C). The KEGG 
pathways were mainly involved in some oncogenic signaling 
pathways, such as the Ras and PI3K-AKT signaling 
pathways (see Figure 8C).

Related signaling pathways of PXGF1 based on GSEA

To further quantify the role of PCGF1 in tumorigenesis and 
progression, a GSEA was performed based on a p adjusted 
value <0.05 and a FDR <0.25 in the Molecular Signatures 
Database (MSigDB) [c2.all.v7.0.symbols.gmt (Curated)]. 
The GSEA analysis showed that the PCGF1-associated 
DEGs were significantly enriched in cancer pathways (see 
Figure 9A-9F), such as the PI3K-AKT signaling pathway, 
the Wingless/Integrated (WNT) signaling pathway, 

Figure 8 DEGs in LIHC patients stratified by PCGF1 levels and functional enrichment analysis with PCGF1. (A) Volcano plot of DEGs 
between the high (red triangles) and low (blue triangles) PCGF1 expression groups. (B) Heatmap of the top 20 genes that were positively or 
negatively correlated with PCGF1. (C) Functional enrichment analysis with PCGF1. *, P<0.05; **, P<0.01; ***, P<0.001. PCGF1, polycomb 
group factor 1; TPM, transcripts per million; BP, biological process; CC, cellular composition; MF, molecular function; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; LIHC, liver hepatocellular carcinoma. 
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Figure 9 (A-F) PCGF1-related signaling pathways were analyzed by GSEA. NES, normalized enrichment score; FDR, false discovery rate; 
PCGF1, polycomb group factor 1; GSEA, gene set enrichment analysis. 

forkhead box O (FOXO)-mediated transcription, selective 
autophagy, second gap-mitosis (G2-M) checkpoints, and 
cell cycle checkpoints.

Role of PCGF1 in immune cells based on the ssGSEA

Tumor-infiltrating lymphocytes (TILs) are considered 
independent predictors of adverse OS in cancer patients 
(34,35). The relationship between PCGF1 expression 
and infiltration levels in 24 immune cell subtypes in the 
LIHC microenvironment was studied by a Wilcoxon rank-
sum test. The enrichment score of the T cells, B cells, a 
cluster of differentiation 8 (CD8) T cells, cytotoxic cells, 
dendritic cells (DCs), iDCs, macrophages, mast cells, 
neutrophils, natural killer (NK) CD56dim cells, NK cells, 
pDCs, T central memory (Tcm), T effector memory 
(Tem), T gamma delta (Tgd), T helper cell 1 (Th1) cells, 
and regulatory T cells (Tregs) were enriched in the low 
PCGF1 group (P<0.05; see Figure 10A). Next, we conducted 
a Spearman analysis to explore the relationship between 

PCGF1 and the infiltration levels of TILs. We observed 
that PCGF1 expression was negatively associated with mast 
cells (r=–0.276; P<0.001), DCs (r=–0.273; P<0.001), B cells 
(r=–0.277; P<0.001), neutrophils (r=–0.282; P<0.001), and 
cytotoxic cells (r=–0.289; P<0.001) (see Figure 10B-10G). 
Further, we conducted a GSEA to quantify the immune-
related-associated signaling pathways of PCGF1. PCGF1-
high expression was significantly enriched in the interleukin  
(IL)-12, IL-4 and IL-13, and IL-10 signaling pathways, 
CD22 mediated B cell receptor (BCR) regulation, 
neutrophil pathways, and interferon-gamma pathways (see 
Figure 11A-11F). In summary, PCGF1 appears to play a 
role in the regulation of the tumor immune response.

Discussion

LIHC is a major aggressive cancer of the digestive system 
worldwide, which is common in patients with chronic 
liver disease and cirrhosis (36). There have been some 
marked improvements in the management of LIHC since 
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Figure 10 The relationship of immune cell infiltration between PCGF1 expression in LICHC. (A) Enrichment scores of 24 immune cell 
in high- and low-PCGF1 expression groups based on the Wilcoxon rank-sum test. ns, P≥0.05; *, P<0.05; **, P<0.01; ***, P<0.001. (B) The 
correlations between PCGF1 expression and the infiltration levels of 24 immune cells using the Spearman analysis. (C-G) The negatively 
expressed correlations between PCGF1 and mast cells, DC, B cells, neutrophils, and cytotoxic cells. aDC, activated dendritic cell; CD8, 
cluster of differentiation 8; iDC, immature dendritic cell; NK, natural killer; pDC, Plasmacytoid dendritic cells; Tcm, T central memory; 
Tem, T effector memory; TFH, T follicular helper; Tgd, T gamma delta; Th1, T helper cell 1; Th17, T helper cell 17; Th2, T helper cell 2;  
Treg, regulatory T cell; PCGF1, polycomb group factor 1; TPM, transcripts per million; LIHC, liver hepatocellular carcinoma; DC, 
dendritic cell. 
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Figure 11 (A-F) Immune-related signaling pathways mediated by PCGF1 expression using a GSEA. PCGF1, polycomb group factor 1; 
GSEA, gene set enrichment analysis; NES, normalized enrichment score; FDR, false discovery rate. 

2015, especially in the rapidly evolving field of systemic 
therapies, such as radiofrequency ablation, microwave 
ablation, cryoablation, and immunotherapy (37-40). With 
the development of a comprehensive treatment mode, 
the quality of life and OS of LIHC patients have been 
significantly improved. However, a useful predictive or 
prognostic LIHC biomarker has yet to be identified for use 
in daily practice, especially in immunotherapy (41).

PCGF1 is a member of the PCG protein family and plays 
an important role in the development of the mammalian 
nervous system. Studies have confirmed that PCGF1 
plays an important role in the self-renewal of embryonic 
stem cells and is expressed in many tumors (13,21). The 
molecular mechanisms of PCGF1 in LIHC progression 
remain speculative and require further investigation. In our 
previous research, we found that PCGF1 was overexpressed 
in glioma, and is a prognostic biomarker related to tumor 
immunity (42). In this study, we conducted a comprehensive 
expression and survival analysis based on TCGA data and 
found that PCGF1 is highly expressed in several cancers. 

The KM (OS, DSS, and the PFI) analyses showed that high 
PCGF1 expression was associated with poor survival in 
LIHC. Ji et al. found that PCGF1 is upregulated in CRC 
and is associated with decreased OS rates (14). We also 
described the upregulation of PCGF1 in CRC tissues. In 
summary, our observations suggest that PCGF1 functions 
as a candidate oncogene and is unlikely to be limited to 
LIHC and CRC.

There is accumulating evidence that various ncRNAs 
play key roles in the pathogenesis of human cancer (43). It 
is increasingly recognized that ncRNAs interact with each 
other via a ceRNA network and crosstalk to regulate gene 
expression (44). MiRNAs are widely expressed in human cells 
and can regulate gene expression as negative regulators (45).  
Thus, we used the online StarBase tool to explore the 
upstream regulatory miRNAs of PCGF1. Ultimately, a 
total of 16 miRNAs were identified as upstream regulatory 
oncogenic miRNAs of PCGF1 in LIHC. These miRNAs 
appear to work as tumor suppressor miRNAs.

We also performed expression validation and survival 
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analyses and found a high negative correlation between hsa-
miR-22-3p and PCGF1 in LIHC. We found ample evidence 
that hsa-miR-22-3p plays a key role in the development of 
various tumor cells (46,47). Chen et al. (48) showed that 
hsa-miR-22-3p acts as a tumor suppressor that inhibits cell 
proliferation and induces cell cycle arrest and apoptosis 
by targeting specificity protein 1 (SP1) in LIHC. Further, 
catalpol negatively regulates MTA3 through hsa-mir-22-3p 
in LIHC cells to achieve an antitumor effect (49). 

We also used the StarBase database to examine the 
upstream lncRNAs of the hsa-miR-22-3p/PCGF1 axis in 
LIHC. Under the ceRNA network and crosstalk hypothesis, 
upstream lncRNAs should be overexpressed in LIHC and 
act as oncogenic lncRNAs. Based on the expression, survival, 
and correlation analyses, only AC016405.3, BX284668.6, and 
MIR4435-2HG were identified as potential regulators of the 
hsa-miR-22-3p-PCGF1 axis and as functioning as oncogenes 
in LIHC.

In BRCA, AC016405.3 acts as an oncogenic lncRNA by 
targeting hsa-miR-22-3p to regulate ERBB3 (50). However, 
Ren et al. (51) reported that AC016405.3 is downregulated 
in glioblastoma and targets miR-19a-5p to regulate the 
expression of Ten-Eleven Translocation 2 (TET2) and 
inhibit cell proliferation and metastasis. BX284668.6 is 
highly expressed in TCGA-LIHC and is associated with 
a poor prognosis, but the function and mechanism of 
BX284668.6 in cancers are unknown. This needs to be 
explored further.

MIR4435-2HG enhances the development of LIHC 
(52,53). For example, Shen et al. (53) reported that MIR4435-
2HG is involved in tumor proliferation and metastasis 
through the miR-22-3P/YWHAZ axis, which is related to a 
poor prognosis and overexpression. Based on these results, 
AC016405.3, BX284668.6, and MIR4435-2HG/the hsa-
miR-22-3p/PCGF1 axis were used to construct a ceRNA 
network axis in LIHC.

Previous studies have shown that high PCGF1 
expression is related to clinicopathological features and a 
poor prognosis (14,42). Additionally, similar results were 
observed in relation to LIHC, including in relation to the 
pathologic stage, histologic grade, AFP level, and vascular 
invasion. PCGF1 may be more predictive in early and 
late periods of cancer. In addition, for a biomarker to be 
successful, it must have appropriate detection accuracy. 
In recent years, while we have been keen to study novel 
biomarkers in serum or tissue biomarkers, their utility in 
clinical practice has been limited, except for AFP (41). 
Thus, we need to constantly search for biomarkers that can 

be used in the clinical diagnosis and prediction of LIHC. 
PCGF1 showed a promising diagnostic value for LIHC 
and had an AUC of 0.983 in the ROC analyses. We also 
constructed a predictive nomogram that included PCGF1 
expression, T stage, and pathologic stage to determine the 
OS, DSS, and PFI of LIHC patients. Physicians can use 
this nomogram to identify high-risk patients. Thus, PCGF1 
has the potential as a diagnostic and prognostic indicator of 
LIHC.

PcG complexes are involved in diverse BPs, including 
cell stages, cellular signaling and cancer, and positively 
regulate gene transcription, and modify non-histone 
substrates (54). PCGF4 (BMI1) is an important oncogene 
in CRC, which can downregulate the expression of 
cyclin-dependent kinase inhibitor 2A (CDKN2A) (55). 
Additionally, the gene product of PCGF2 (Mel-18) is 
very similar to that of PCGF4 in structure and is also 
a member of the PCG family (42). In gastric cancer, 
the expression of PCGF4 and PCGF2 were negatively 
correlated. Unlike PCGF4, which is an oncogene, PCGF2 
acts as a tumor suppresser (56,57). Conversely, PCGF6 
acts as a master regulator to Nanog homeobox (Nanog), 
octamer-binding transcription factor 4 (Oct4), and SRY-
box transcription factor 2 (Sox2) expression in embryonic 
stem cells (58). Yan et al. reported that PCGF1 function is 
strongly and mechanistically associated with tumorigenesis 
and progression, and the c-Myc signaling pathway takes 
part in regulating cell proliferation in glioblastoma (15). 
We speculated that the abnormal expression of PCGF1 
interferes with the transmission of various signal pathways 
related to tumorigenesis and progression. However, the role 
of PCGF1 in the occurrence and development of LIHC 
requires further study.

We then conducted a bioinformatics analysis to confirm 
the biological function and mechanisms of PCGF1 in 
LIHC. We found that PCGF1 was mainly involved in ion 
channel activity, gated channel activity, the immunoglobulin 
complex, the extracellular matrix, and neuron-to-neuron 
synapses. The KEGG analysis and the additional GSEA 
showed that PCGF1 expression was associated with the 
Ras, PI3K-AKT, FOXO, and WNT signaling pathways, 
autophagy, and the cell cycle. The literature demonstrated 
that these pathways play a pivotal role in tumorigenesis 
and progression, including proliferation, stemness, 
neovascularization, apoptosis, and epithelial-mesenchymal 
transition (59-63). Based on our findings, we hypothesized 
that PCGF1 functions as a proto-oncogene by promoting 
invasiveness and metastasis in LIHC; however, the detailed 
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mechanisms should be tested in other experiments.
The tumor microenvironment (TME) is a complex 

ecology in which immune cells are critical components. 
In the TME, immune cells can have divergent effects on 
tumorigenesis (e.g., anti-tumorigenic and pro-tumorigenic 
effects) according to the environment and tumor type (64). 
During cancer development and progression, the variation 
of TME components controlled by the host immune system 
can affect the immunophenotype and disease progression 
(64,65). In our previous study, we found that the expression 
of PCGF1 in glioma was positively correlated with Th2 cells, 
and negatively correlated with T follicular helper (TFH) 
enrichment, traditional Chinese medicine, and Tgd (42).  
However, our LIHC data demonstrated that PCGF1 
expression was negatively correlated with mast cells, DCs, 
B cells, neutrophils, and cytotoxic cells. Further, several 
immune-related pathways were confirmed by GSEA, such 
as the IL-12, IL-4, IL-13, and IL-10 signaling pathways, 
CD22-mediated BCR regulation, neutrophil pathways, 
and interferon-gamma pathways. The function of B cells 
in the TME can predict the poor prognosis of cancer, and 
the production of cytokines promotes immune suppressive 
phenotypes in tumor aggression (64). Neutrophils can 
release VEGF to promote tumor angiogenesis in the 
peritumoral stroma of LIHC (66). DCs harbor the potential 
to recognize, capture, and present antigens to T cells, which 
serve as immune system sentinels. However, the TME can 
combine with DCs to block its function and promote tumor 
progression (64,65).

Above all, we speculate that PCGF1 is a biomarker 
for predicting immune cell infiltration and a potential 
therapeutic target in LIHC. We identified the main 
mechanism of PCGF1 in LIHC; however, this study still 
had some limitations. First, it only used TCGA data, which 
may indicate bias. Second, to confirm the credibility of 
the results, our hypothesis needs to be further validated by 
experiments.

Conclusions

In summary, our research showed that PCGF1 is 
upregulated in multiple cancers and is a diagnostic and 
prognostic biomarker in LIHC. We further identified the 
upstream regulatory network of PCGF1, and used lncRNAs 
(i.e., AC016405.3, BX284668.6, and MIR4435-2HG) to 
construct a hsa-miR-22-3p/PCGF1 network. Further, our 
research suggests that PCGF1 may play a crucial role in 
immune infiltration and act as an oncogene in LIHC.
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Supplementary

Figure S1 OS of PCGF1 expression in BRCA, CESC, ESCA, KIRC, LUAD, LUSC, PAAD, PRAD, STAD, and UCEC (S1A-S1J). BRCA, 
breast invasive carcinoma; PCGF1, polycomb group factor 1; CESC, carcinoma and endocervical adenocarcinoma; ESCA, Esophageal 
carcinoma; KIRC, Kidney renal clear cell carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, 
Pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma; UCEC, Uterine Corpus Endometrial 
Carcinoma; OS, overall survival.
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Figure S2 Association of PCGF1 expression with clinical pathological characteristics in LIHC patients. (A) N stage; (B) M stage; (C) age; 
(D) Child-Pugh grade; (E) residual tumor; (F) gender; and (G) race. (ns, P≥0.05). PCGF1, polycomb group factor 1; TPM, transcripts per 
million; LIHC, liver hepatocellular carcinoma; ns, no significance. 


