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Background: Ovarian cancer (OC) is the most lethal malignancy among gynecological cancers worldwide. 
It is urgent to identify effective biomarkers for the prognosis and diagnosis of OC.
Methods: We analyzed 4 OC Gene Expression Omnibus (GEO) data sets to detect differentially expressed 
genes (DEGs). To explore potential correlations between the gene sets and clinical features, we conducted 
weighted gene co-expression network analysis (WGCNA). Hub genes were identified from the key modules 
by univariate Cox regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox 
regression analyses and risk scores were calculated based on the expressions of the hub genes. Univariate 
and multivariate Cox regression analyses were conducted to determine the values of the diagnoses for OC 
patients. We also determined the predictive value of the long non-coding RNA (lncRNA) score in response 
to immunotherapy and chemotherapeutic drugs.
Results: DEGs were analyzed between the OC and normal ovarian tissues and prognostic modules 
were identified by a WGCNA. Nine hub genes chose from the prognostic modules were determined the 
prognostic values in OC. The risk scores were calculated based on the expression of hub genes, and patients 
with high-risk scores had poor survival. Univariate and multivariate Cox regression analyses showed that the 
risk score was an independent prognostic factor for OC. Additionally, the levels of hub genes were also found 
to be related to immune cell infiltration in OC microenvironments. An immunotherapy cohort showed that 
high-risk scores enhanced the response to anti-programmed death-ligand 1 (PD-L1) immunotherapy and 
was remarkably correlated with the inflamed immune phenotype, and had significant therapeutic advantages 
and clinical benefits. Further, patients with high-risk scores were more sensitive to midostaurin.
Conclusions: We identified the risk score including protein phosphatase, Mg2+/Mn2+ dependent 1K 
(PPM1K), protein phosphatase 1 catalytic subunit alpha (PPP1CA), exostosin glycosyltransferase 1 (EXT1), 
RAB GTPase activating protein 1 like (RABGAP1L), mitotic arrest deficient 2 like 1 (MAD2L1), xeroderma 
pigmentosum complementation group C (XPC), Egl-9 family hypoxia inducible factor 3 (EGLN3), cyclin 
D1 binding protein 1 (CCNDBP1), and zinc finger protein 25 (ZNF25), and validated their prognostic and 
predicted values for OC.
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Introduction

Ovarian cancer (OC) is by far the most aggressive 
malignancy among female reproductive carcinomas, and it 
has been reported that there are approximately 300,000 new 
cases per year globally (1). Due to its uncertain etiology and 
a lack of efficient early detection biomarkers, approximately 
70% of OC individuals are already at an advanced stage 
with widespread metastases at the time of diagnosis (2). 
Even though some genetic risk factors like breast cancer 
1 (BRCA1) and breast cancer 2 (BRCA2) are identified in 
OC (3), the development of new predictive biomarkers 
is important for the understanding of OC. Despite some 
advances in the past few decades, the long-term survival rate 
of individuals with OC remains dismal (4). Thus, it is vital 
to identify novel biomarkers for the prognosis and early 
diagnosis to elevate the survival rates of OC patients.

Recently, various biomarkers have been identified as 
having a significant effect on oncogenicity and as having 
the potential to be used to treat OC. In-vitro and in-vivo 
research has shown that the silencing of mitochondrial 
elongation factor 2 greatly inhibits OC cell growth 
and metastasis by blocking epithelial-to-mesenchymal 
transition, and causing cell death, and thus is considered a 
viable prognostic indicator of OC (5). Carbohydrate antigen 
25 (CA125) was detected as a biomarker for OC with 
the specificity of 78% (95% CI: 76–80%) (6). Moreover, 
circulating tumor DNA is a promising biomarker with an 
estimated sensitivity of 70% and specificity of 90% for 
quantitative analysis in OC (7). Lung adenocarcinoma 
(LUAD) has been shown to be associated with a 9-gene 
signature that is independently linked to the disease and 
substantially correlated with immunological infiltration (8). 
This signature might provide direction for LUAD patients’ 
prognoses and molecular-targeted treatment (8). Due to 
the unsatisfied clinical utility, it is urgent to identify more 
effective biomarkers to improve the survival of OC.

We built a prognostic risk model comprising protein 
phosphatase, Mg2+/Mn2+ dependent 1K (PPM1K), protein 
phosphatase 1 catalytic subunit alpha (PPP1CA), exostosin 
glycosyltransferase 1 (EXT1), RAB GTPase activating 
protein 1 like (RABGAP1L), mitotic arrest deficient 2 like 
1 (MAD2L1), xeroderma pigmentosum complementation 
group C (XPC), Egl-9 family hypoxia inducible factor 3 
(EGLN3), cyclin D1 binding protein 1 (CCNDBP1), and 
zinc finger protein 25 (ZNF25) functions as innovative 
biomarkers, and validated the prognostic and predictive 

significance of the model in providing molecular evidence 
of OC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3752/rc).

Methods

Data sets and data acquisition

The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/repository) provided us with the ribonucleic acid 
sequencing (RNA-seq) data of 379 OC patients and the 
relevant clinical characteristics. We also acquired 4 microarray 
data sets GSE105437 (9), GSE14407 (10), GSE54388 (11),  
G S E 6 9 4 2 8  ( 1 2 ) ,  a n d  a  i m m u n o t h e r a p y  c o h o r t  
(IMvigor210) (13) from the Gene Expression Omnibus 
(GEO) database. GSE26193 was used as a training cohort 
while GSE18520 was treated as a validation cohort and 
TCGA as an external validation cohort for clinicopathological 
features. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

DEGs

When comparing the expression profiling data between the 
OC and adjacent normal samples, the “limma” R program 
was employed as a screening tool. A |log 2-fold change 
(FC)| >1 and an adjusted P value <0.05 were considered 
significant.

WGCNA and key module identification

A WGCNA was conducted to identify the co-expressed 
gene modules and examine the links between the gene 
networks and the clinical characteristics (14). The WGCNA 
was conducted using the “WGCNA” function in the R 
platform to develop a matrix establishing the module-trait 
correlations between the prognostic genes and the grade 
based on the β value, and the Pearson correlation test was 
used (soft-thresholding value).

Functional enrichment analysis

To determine the biological roles of the key genes in the 
modules, we used the “clusterProfiler” R program to 
conduct Gene Ontology (GO) functional annotations (15) 
and a Kyoto Encyclopedia of Genes and Genomes (KEGG) 

https://atm.amegroups.com/article/view/10.21037/atm-22-3752/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3752/rc
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
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pathway enrichment analysis using the key genes in the 
modules (16). The cutoff value for the adjusted P value in 
relation to the false discovery rate was set at 0.05.

Establishment of a prognostic model for OC

To select the prognostic genes from the DEGs, we 
performed multivariate and univariate Cox regression 
analyses. A LASSO regression analysis was employed 
to examine the genes that had been chosen for further 
investigation. To choose the prognostic genes, the LASSO 
Cox regression technique was employed in conjunction 
with the “glmnet” program to determine the variable 
coefficients. To determine each sample’s risk score, we used 
the following equation: risk score = (coefficient mRNA1 × 
expression of mRNA1) + (coefficient mRNA2 × expression 
of mRNA2) + … + (coefficient mRNAn × expression 
mRNAn). The threshold level was determined by taking the 
median risk score for all the specimens. The specimens in 
the training and validation cohorts were classified into high- 
and low-risk groups based on the threshold value.

Nomogram

To discover the independent predicting variables, the “rms” 
tool in the R program was used to create the nomogram 
and calibrate curves. With the help of a receiver operating 
characteristic curve analysis, we successfully verified the 
specificity and sensitivity of the nomogram in terms of 
overall survival (OS) prediction.

Relationship of gene expression with immune cell 
infiltration

The Spearman’s correlation test was used to examine the 
possible link between the hub genes’ expression levels 
and the levels of the 6 tumor-infiltrating immune cells 

(TIICs). The data were acquired from the Tumor Immune 
Estimation Resource (TIMER; https://cistrome.shinyapps.
io/timer/). A P value <0.05, when corrected for tumor 
purity, was considered significant.

Prediction of chemotherapeutic drugs

To evaluate the different sensitivities to chemotherapeutic 
agents for the high and low long non-coding ribonucleic 
acid (lncRNA) score subgroups, the pRRophetic algorithm 
was used to predict the 50% inhibiting concentration (IC50) 
value of the 138 drugs based on the Cancer Cell Line 
Encyclopedia (17).

Statistical analysis

All the computational and statistical studies were undertaken 
using the R program (version 4.0.3). The Kaplan-Meier 
technique was employed to conduct a survival analysis of 
the data. Statistically significant differences were set at two-
sided P<0.05.

Results

Identification of DEGs and mapping to chromosomal 
locations

Following the examination of the GEO database, we 
identified 4 potentially useful microarray data sets (i.e., 
GSE105437, GSE14407, GSE54388, and GSE69428), 
which were included in our research. Table 1 summarizes 
the most essential features of the GEO data sets that were 
included. A total of 46 OC and 33 normal tissues were 
included in our study. Based on the findings recorded from 
the Robust Rank Analysis (RRA) analysis with an adjusted P 
value <0.05 and a |log 2-FC| >1, we identified 499 DEGs 
that were significant, of which 196 were upregulated and 
303 were downregulated (see Figure 1A). S100 Calcium 

Table 1 Characteristics of the included data sets

Series accession ID Country
Number of samples

Platform ID
Tumor Normal

GSE105437 South Korea 10 5 GPL570

GSE14407 United States 12 12 GPL570

GSE54388 United States 16 6 GPL570

GSE69428 China 10 10 GPL570

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Binding Protein 2 (S100A2) was the top-ranking gene 
among all those that were upregulated (P=9.50E-10, 
adjusted P=2.06E-05), while OGN (P=8.07E-10, adjusted 
P=1.75E-05) was the most considerably downregulated 
gene in the OC samples. Further, the top 20 upregulated 
and downregulated DEGs were shown on a heatmap (see 
Figure 1B). To illustrate the expression profiles of these 
genes and their corresponding chromosome sites, the 50 
most upregulated and downregulated genes were selected 
(see Figure 1C). The top 5 upmodulated genes (i.e., S100A2, 
RRM2, PTH2R, KLK6, and MELK) were distributed 
in chromosomes 1, 2, 2, 19, and 9. While, the top 5 
downregulated genes (i.e., OGN, TCEAL2, ALDH1A1, 
NDNF, and BCHE) were distributed in chromosomes 9, X, 
9, 4, and 3.

Analysis of the enrichment of DEGs

The biological roles of DEGs were investigated using 
GO annotations. Mitotic nuclear division, mitotic sister 
chromatid segregation, and sister chromatid segregation 
were the biological processes (BPs) that were the most 
enriched (see Figure 2A). In relation to the cellular 
components (CCs), the spindle, chromosome, centromeric 
region, and midbody were the most enriched (see  
Figure 2B). In relation to the molecular functions (MFs), the 
DEGs enrichment was predominantly found in microtubule 
binding, tubulin binding, and heparin-binding (see  
Figure 2C). Additionally, the enriched KEGG pathways 
included the cell cycle, retinol metabolism, and protein 53 
signaling pathways (see Figure 2D).
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Figure 1 Identification and chromosomal positions of the DEGs in the integrated microarray analysis. (A) Volcano plot visualizing 
the DEGs between the OC and normal tissues in GSE105437, GSE14407, GSE54388 and GSE69428; (B) heatmap showing the top 
20 upregulated and downregulated DEGs; (C) Circos plot of expression patterns and chromosomal positions of the top DEGs. DEGs, 
differentially expressed genes; OC, ovarian cancer. 
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Figure 2 Functional enrichment analysis of the top 300 DEGs. (A) BPs of GO analysis; (B) CCs of GO analysis; (C) MFs of GO analysis; 
and (D) KEGG pathway analysis. BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; FC, fold change; DEGs, differentially expressed genes.

WGCNA and identification of critical modules

To identify which major modules were strongly linked 
to the clinical characteristics of OC, a WGCNA was 
conducted of the GSE26193 data set, which included the 
DEGs (see Figure 3A). Following the establishment of the 

soft-threshold power as 4 (scale-free R2=0.95 slope =−2.36; 
see Figure 3B,3C), 30 modules were obtained from the co-
expression network after integrating similar modules based 
on a cutoff height of 0.25 (see Figure 3D). The green, 
green-yellow, and turquoise modules were found to be 
substantially linked to the clinical features, as shown by a 
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heatmap of the module-trait associations (see Figure 3E). 

The module relevance of these 3 modules was greater than 

that of other modules, indicating that there was a significant 

link to of the modules the grade (see Figure 3F).

Validation of hub genes

To detect the hub genes from the modules, we analyzed 
the members from the 3 modules. Figure 4A shows the P 
values and the relationship between the gene significance 
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values and module membership. The univariable and 
multivariable Cox regression analyses revealed that PPM1K, 
PPP1CA, EXT1, RABGAP1L, MAD2L1, XPC, EGLN3, 
CCNDBP1, and ZNF25 might have prognostic value 
(see Figure 4B,4C). The expression levels of CCNDBP1, 
PPM1K, RABGAP1L, and ZNF25 were considerably 
lower in the OC samples than the normal tissue samples, 

while EGLN3, MAD2L1, PPP1CA were much lower 
in the normal tissue samples than the OC samples (see  
Figure 4D). Further, immunohistochemical staining data 
acquired from the Human Protein Atlas (HPA) database 
confirmed the consistent protein expression levels of the  
7 hub genes, excluding EGLN3 and EXT1, which were not 
stained in the HPA data (see Figure 4E).

Figure 4 Verification of the expression and genetic alterations of the 9 hub genes in the OC and normal tissues. (A) Scatterplot of GS in the 
green-yellow, green, and turquoise modules; forest plot of the 9 hub genes analyzed by the (B) univariate Cox regression and (C) multivariate 
Cox regression; (D) boxplot showing the expression of the 9 hub genes between the tumor and normal tissues in GSE54388; (E) protein 
levels of the hub genes presented by an immunohistochemical staining analysis of data from the HPA database (×10). *, P<0.05; ***, P<0.001; 
ns, not significant. OC, ovarian cancer; GS, gene significance; HPA, Human Protein Atlas. 
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Establishment of a prognostic risk model

A regression analysis using the LASSO was used to 
predict the therapeutic outcomes of the 9 hub genes in 
OC patients with high accuracy. The study was conducted 
using the expression patterns of the 9 hub genes from the 
GEO training cohort. The coefficients produced by the 
LASSO technique were used to compute the risk scores 
of the training (GSE26193) and validation (GSE18520) 
cohorts, and in this case, the following formula was used: 
(risk score = 0.54302496 × PPM1K − 0.4778786 × PPP1CA 

+ 0.08080111 × EXT1 + 0.6944571 × RABGAP1L − 
0.0278971 × MAD2L1 + 0.43948467 × XPC − 0.2467983 
× EGLN3 − 0.5788344 × CCNDBP1 + 0.75443752 × 
ZNF25). Based on the median risk score, patients were 
categorized into the following 2 groups: the low- and high-
risk groups. Figure 5A,5B show the distribution of the risk 
scores, OS, and the expression patterns of the 9 hub genes 
across the training and validation groups. An examination 
of the Kaplan-Meier survival data derived from this model 
demonstrated that patients belonging to the low-risk group 
had significantly longer survival times than those belonging 
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to the high-risk group (see Figure 5C). This was consistent 
with TCGA results (see Figure S1).

Nomogram construction

We conducted univariate and multivariate Cox regression 
analyses of the grade, stage, and risk score to examine 
whether the newly developed immune risk score model was 
independent of other clinicopathologic factors (univariate: 
HR =1.853, P<0.001; multivariate: HR =1.698, P=0.003, 
see Figure 6A,6B). The findings from the 2 analyses 
demonstrated that the risk score was an independent 

prognostic predictor for OC. A nomogram was created to 
help us illustrate our model, and we discovered that the 
grade, risk score, and stage of OC patients may all be used 
to predict their survival (see Figure 6C).

Relationship between hub genes and immune cell 
infiltration

The TIMER analysis indicated that the expression 
of PPM1K was linked to dendritic cells, cluster of 
differentiation (CD)8+ T cells, macrophages, and neutrophil 
cells. PPP1CA was shown to be closely linked to dendritic 
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cells, B cells, macrophages, and neutrophils. MAD2L1 
expression was linked to dendritic cells, macrophages, and 
neutrophils. XPC expression was linked to dendritic cells 
and B cells. EGLN3 expression was linked to macrophages, 
neutrophils, and dendritic cells. There was a substantial 
association between CCNDBP1 expression and dendritic 
cells, B cells, CD8+ T cells, and neutrophils. ZNF25 was 
only correlated with macrophages. No significant link was 
found between EXT1 and RABGAP1L expression (see 
Figure 7).

The risk score predicted immunotherapeutic benefits

To examine the possible mechanisms of the lncRNA score 
in OC, we determined the enriched pathways between 
the high- and low-risk score groups using KEGG. In the 
low-risk score group, immune-related pathways were 
enriched, including antigen processing and the presentation 
and intestinal immune network for immunoglobulin A 
(IgA) production (see Figure 8A). Moreover, homologous 
recombination, the cell cycle, and mismatch repair 
were also highly enriched in the low-risk score group. 
Additionally, the risk score was strongly associated with 
repair like mismatch repair, nucleotide excision repair, and 
deoxyribonucleic acid (DNA) damage repair (see Figure 8B).

We explored the predictive significance of the risk 
score in relation to responsiveness to immune checkpoint 
blockade (ICB) treatment in 2 immunotherapy groups. The 
expression of programmed death-ligand 1 (PD-L1) was 
high in the high-risk score patients (see Figure 9A). Patients 
receiving anti-PD-L1 treatment with high-risk scores had a 
more favorable prognosis than in the low-risk score group 
(IMvigor210; see Figure 9B). Patients with high-risk scores 
had remarkable therapeutic benefits and showed enhanced 
immune responsiveness to the PD-L1 blockade (see  
Figure 9C,9D). Further, patients who had a combined high-
risk score and high neoantigen load benefited significantly 
in terms of survival (see Figure 9E). In IMvigor210, the 
high-risk scores were significantly associated with the 
inflamed immune phenotype, and the checkpoint inhibitors 
exerted an anti-tumor effect in this phenotype (see  
Figure 9F) .  Thus, the risk score was shown to be 
significantly correlated with tumor immune phenotypes and 
was useful in predicting the responses of patients to anti-
PD-L1 immunotherapy.

The risk score predicted patients’ sensitivity to 
chemotherapeutic drugs

To evaluate the value of the risk score in predicting patients’ 
responses to drugs, the IC50 values of 138 drugs were 
calculated (see Figure 10A). We found that the high-risk 
score patients had a greater sensitivity to midostaurin (see 
Figure 10B), Nutlin.3a (see Figure 10C), PD.173074 (see 
Figure 10D), and NVP.BEZ235 (see Figure 10E). Thus, the 
risk score appeared to be a predictive biological marker for 
medications against OC.

Discussion

We di scovered  499  DEGs between  the  OC and 
neighboring normal tissues in our investigation. Further, 
we performed a WGCNA, and 9 hub genes were chosen 
by multivariate and univariate Cox regression analyses and 
LASSO. A prognostic risk model, which was considered 
to be an independent indicator, was also strongly linked 
to the infiltration of immune cells. Thus, a prognostic risk 
model comprising PPM1K, PPP1CA, EXT1, RABGAP1L, 
MAD2L1, XPC, EGLN3, CCNDBP1, and ZNF25 may be 
used as an innovative biological marker with prognostic and 
predictive significance for OC.

To identify the OC-related hub genes, we aggregated 
the expression patterns from 4 GEO data sets. S100A2 was 
the most highly expressed gene in the OC tissues, which is 
consistent with a similar finding that S100A2 overexpression 
increases glucose metabolism and proliferation in colorectal 
cancer (18). Additionally, OGN, which was the most lowly 
expressed gene in OC, has been shown to be a tumor 
inhibitor in bladder cancer (19). We discovered that 
DEGs are linked to cell proliferation after examining their 
expression levels in the GO and KEGG pathways. The 
WGCNA was used to identify the co-expression modules 
linked to the clinical characteristics.

Based on the univariate, multivariate Cox regression, 
and LASSO analyses, 9 key genes (i.e., PPM1K, PPP1CA, 
EXT1, RABGAP1L, MAD2L1, XPC, EGLN3, CCNDBP1, 
and ZNF25) were found to be correlated with the prognosis 
of OC. PPM1K has not been closely studied in OC. 
Research has shown that a PPM1K deficiency results in 
a significant reduction in MEIS1/p21 signaling, which 
reduces hematopoietic stem cells’ glycolysis and quiescence, 
and the deletion of PPM1K greatly prolongs survival in a 
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Figure 7 The relationship between the hub genes and the infiltration levels of 6 types of immune cells. TPM, transcript per million; OV, 
ovarian.
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mouse leukemia model (20). Congruent with our findings, 
research has shown that PPP1CA is expressed at a higher 
level in esophageal squamous cell carcinoma samples than 
adjoining normal samples (21). Previous research has 
shown that EXT1 is downregulated in acute lymphoblastic 
leukemia (22), but the levels of EXT1 did not differ in our 
study between the OC and normal tissues. In breast cancer 
cells and mouse fibroblasts, RABGAP1L has been shown to 
be an important aspect for conformational specific integrin 
trafficking and to delineate the function of Rabgap1 in β1-
integrin-induced cell migration (23). The overexpression 
of MAD2L1 has been discovered in diverse malignancies, 
such as lung (24), breast (25), and gastric cancers (26). XPC 
has been identified as an essential protein that recognizes 
DNA damage and performs an integral function in the 
repair of nucleotide excision and the modulation of cell 
growth and viability in non-small cell lung cancer (27). 
EGLN3 regulates tumor cell apoptosis and proliferation in 
glioma (28). When tested on dedifferentiated liposarcoma 
cells, CCNDBP1 was shown to greatly reduce cancer cell 
clone creation, and the proliferative, migratory, and invasive 
capacities of cells (29). ZNF25 performs a critical function 
in the differentiation of human bone marrow stromal or 
mesenchymal stem cells (hMSCs) to osteoblasts (30), but 

it is not well studied in cancers. Thus, the 9 hub genes 
identified perform important roles in the modulation of 
biological activities in cells.

Tumor microenvironments and immune cell infiltration 
are becoming more popular topics of research (31-34). 
The 9 genes identified in the present research are linked 
to neutrophils, B cells, CD8+ T cells, macrophages, and 
dendritic cells, and these genes may have promising 
applications in immunotherapies. Notably, in lung cancer, 
TIICs are thought to be major drivers of both patients’ 
prognoses and their responsiveness to immunotherapeutic 
treatments. However, the possible mechanisms of the 
biomarkers and immune cells remain to be explored.

The KEGG analysis indicated that the immune-related 
pathways were enriched. Notably, antigen processing and 
presentation and the intestinal immune network for IgA 
production were enriched in the low-risk score group. 
We also explored the predictive value of the risk score 
in relation to patients’ responses to immunotherapy. 
The PD-L1 blockade proved to have more therapeutic 
advantages and produce more immune responses in 
patients with high-risk scores. Further, the combination 
of a high-risk score and a high neoantigen burden served 
as a significant predictor of survival. Notably, higher-risk 
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scores were closely associated with an inflamed immune 
phenotype, which provided evidence that high-risk scores 
were beneficial for immunotherapy. A combination of the 
results from the immunotherapy cohorts strongly supported 
the supposition that the risk score is a predictor of the 
immunotherapeutic response in OC patients. Additionally, 
potential chemotherapeutic drugs were predicted based on 
the risk score, indicating that the risk score is a meaningful 
tool for evaluating the drug sensitivity of OC patients.

Conclusions

In  summary,  we  es tab l i shed  a  Ri skscore  sys tem 
to identi fy  the OC patients  who are el igible  for 
immunotherapy  and  pred ic t  the i r  sens i t i v i ty  to 
chemotherapeutic drugs. However, it should be noted 
that further investigations on the role and mechanism 
of this 9-gene signature in the progression of OC need 
to be conducted.
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Figure S1 Distributions of risk scores, OS status, heatmap of hub genes and survival in TCGA. TCGA, The Cancer Genome Atlas.
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