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Introduction

De novo lipogenesis (DNL) provides cells with a continuous 
supply of lipids mainly derived from excess carbohydrates, 
which helps to protect against glucotoxicity while providing 
energy storage. DNL is catalyzed through a coordinated 
series of enzymatic reactions by ATP-citrate lyase, acetyl-
CoA carboxylase, and fatty acid synthase (FASN; also 

known as FAS). FASN catalyzes palmitate biosynthesis 
by using acetyl-CoA and malonyl-CoA in an NADPH-
dependent reaction, which generates the first endogenous 
lipid during DNL. As the rate-limiting enzyme of DNL, 
FASN is believed to play a decisive role in the maximal 
capacity of lipogenesis (1).

The DNL process is closely associated with nutritional 
status and hormones, which are more active in the liver 
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and adipose tissues. Most enzymes involved in DNL are 
primarily regulated at the transcriptional level through 
the activation of sterol regulatory element-binding 
proteins (SREBPs) and carbohydrate response element-
binding protein (ChREBP) (2,3). Insulin promotes glucose 
absorption from the blood and induces the expression 
of SREBP (4). Glucose provides a carbon source for 
DNL via the glycolytic pathway, and glucose metabolites 
have the ability to activate ChREBP (5). Compared with 
carbohydrates, a high-fat diet inhibits DNL by blocking 
the activation of ChREBP (6). Leptin, a hormone produced 
primarily by adipocytes, suppresses the expression of the 
enzymes involved in the lipogenic pathway by decreasing 
SREBP-1 (7).

Aberrant DNL is associated with a variety of chronic 
diseases, including obesity, type 2 diabetes mellitus, 
nonalcoholic fatty liver disease (NAFLD), and numerous 
cancers (8-10). The most common cause of aberrant 
DNL is abnormal insulin signaling. Insulin resistance or 
insufficient insulin secretion decreases the use of glucose 
in extrahepatic tissues, which serves as a substrate for 
hepatic DNL independent of insulin signaling. Elevated 
DNL is a critical contributor to the development of  
NAFLD (11). Obesity affects DNL by elevating hepatic 
DNL and decreasing adipocyte DNL (12). Further, the 
beneficial lipid product of adipocyte DNL, palmitic acid 
esters of hydroxy fatty acids, decreases inflammation and 
enhances insulin-stimulated glucose uptake (13). In various 
types of cancer cells, DNL level is increased, which supports 
the abundance of energy substrates and enhances membrane 
biogenesis in rapidly proliferating cells (14). Hence, the 
modulation of DNL may be a potential therapeutic target 
for obesity-associated metabolic diseases. However, it 
remains unclear what degree of DNL inhibition is optimal 
for producing curative effects, and there are minor side 
effects to consider based on the variability among different 
tissues. Therefore, monitoring DNL systemically and 
organ-specifically is essential for studying the regulatory 
network and screening effective therapeutic agents.

Bioluminescence imaging (BLI) is a sensitive and 
noninvasive optical tool that has recently attracted 
substantial attention. BLI is based on a substrate-oxidation 
reaction catalyzed by luciferase that produces detectable 
light (15). Thus, BLI can be used to optically trace 
spatiotemporal gene expression dynamically by expressing 
different luciferase reporters in living cells and animals. 
Based on these advantages, BLI has been widely applied 
in the fields of tumor growth and metastasis, cellular 

apoptosis and tracking, bacterial and viral infections, and 
drug development (16-18). Previous data showed that 
BLI enabled systematic imaging of brown and brite fat 
recruitment in a murine model using an uncoupling protein 
1 (UCP1)-based luciferase reporter (19). Another study 
used BLI to show the sequential in vivo induction of two 
key gluconeogenesis transcription factors with adenoviral 
CRE-luciferase and G6Pase-luciferase reporters (20). These 
studies provided excellent examples of monitoring dynamic 
energy metabolism in a more visual and real-time manner. 
However, no mouse model has been developed for dynamic 
and longitudinal monitoring of the endogenous DNL 
process.

In this study, we inserted the coding sequence of Gaussia 
luciferase (GLuc) into the murine FASN gene locus to 
monitor endogenous FASN expression in vivo and ex vivo 
using BLI. Our results showed that the organ-specific 
distribution of GLuc signals was consistent with FASN 
expression. When the nutritional status changed, the 
bioluminescence signal remained synchronized with FASN 
gene expression, decreasing significantly during the fasted 
station and rapidly recovering after refeeding. With this 
model, we found that fatostatin, an inhibitor of SREBPs, 
effectively inhibited DNL in multiple organs and decreased 
the food intake of mice. Overall, our FASN-2A-GLuc 
reporter mouse model faithfully enabled the detection of 
endogenous FASN expression in a dynamic, noninvasive, 
and systemic manner. We present the following article in 
accordance with the ARRIVE reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-1132/rc).

Methods

Generation of FASN-2A-GLuc

FASN-2A-luciferase reporter mice were generated by 
inserting the 2A-GLuc sequence between exon 43 of 
the endogenous FASN gene and its 3'-untranslated 
region (UTR). The left homologous arm was inserted 
5.6 kb upstream of the stop codon of FASN, and the 
right arm was inserted 5.2 kb downstream of the 3'-
UTR. An FRT-flanked neomycin-resistance cassette 
was inserted 246 bp downstream of the 3'-UTR. 
Embryonic stem cell clones were screened by Southern 
blotting using 5' and 3'probes. The neomycin-selection 
cassette was removed before the cells were used for 
producing chimeras .  FASN-2A-GLuc mice  were 

https://atm.amegroups.com/article/view/10.21037/atm-22-1132/rc
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identified by polymerase chain reaction (PCR)–based 
genotyping using the following primers: forward primer: 
5'-GATGGGACCTCGGGTAATTTGG-3', reverse 
primer: 5'-GTCTTGCCTGTGATAGACCTTAG-3'.

Animal studies

All animal experiments conducted in this study were 
approved by the Institutional Animal Care and Use 
Committee (IACUC) of the Air Force Medical University 
of PLA in China (No. IACUC-20181204) and were 
performed in accordance with the Guide for the Care and 
Use of Laboratory Animals, 8th edition. C57BL/6J mice 
were housed in a pathogen-free animal facility at 22±2 ℃ 
under a controlled 12-h light-dark cycle. We performed 
the following studies with male litter FASN-2A-GLuc 
mice: (I) a fasting and refeeding study, in which mice 
were randomly split into 3 groups (n=5–6 mice/group)—
the ad libitum feeding group, the fasting group (fasting 
for 24 h), and the refeeding group (fasting for 24 h and 
refeeding for 4 h); and (II) a fatostatin-administration study  
(n=5– 6 mice/group), in which mice were given glucose 
and fructose solutions (Sigma-Aldrich, St. Louis, MI, USA) 
and treated intraperitoneally with either corn oil (control) 
or fatostatin (30 mg/kg; Selleck Chemicals, Houston, TX, 
USA) daily for 6 days.

In vitro analysis of luciferase activities

Luciferase activities were measured in tissues and mouse 
serum samples with the Pierce Gaussia Luciferase Flash 
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) 
using a Varioskan Flash multimode reader (Thermo Fisher 
Scientific). GLuc-containing serum or GLuc-negative 
serum (10 μL) samples were added directly to separate wells 
of a 96-well black microtiter plate (Corning, Inc., Corning, 
NY, USA). GLuc activity was detected by adding 50 μL 
of coelenterazine working solution (1 mg/mL) to each 
well and acquiring photon counts for 10 s, as previously  
described (21). Mouse tissues were homogenized for  
20 s with lysis buffer and lysed for 30 min on ice. The tissue 
lysates were then centrifuged at 10,000 ×g for 15 min at  
4 ℃, and 10 μL of each resulting supernatant was mixed with  
50 μL of coelenterazine working solution in the wells 
of a 96-well black microtiter plate. GLuc activities were 
detected and normalized to the total protein concentration 
in each sample.

In vivo and ex vivo BLI analysis

BLI was performed with an in vivo imaging system 
(PerkinElmer, Waltham, MA, USA). Coelenterazine was 
first dissolved in methanol (5 mg/mL) and then diluted to 
1 mg/mL in phosphate-buffered saline without calcium 
chloride or magnesium chloride. Before imaging, the 
fur covering the regions of interest was removed with a 
commercial electrical razor. For in vivo luciferase imaging, 
mice were injected intraperitoneally (i.p.) or intravenously 
(i.v.) with 5 mg/kg body weight of coelenterazine (Yeasen, 
Shanghai, China). The mice were anesthetized with  
2.5–3.5% isoflurane in an anesthesia box for 5 min and then 
transferred to the imaging chamber. The mice were imaged 
continuously at 1-min intervals, with the total imaging 
time dependent on the experiment. All in vivo images were 
quantified with Living Image Software (PerkinElmer). 
For ex vivo imaging, freshly isolated organs and tissues 
were placed into 12-well culture plates containing chilled 
phosphate-buffered saline and subjected to BLI under the 
following settings: sensor-exposure time, 60 s; binning, 4; 
and speed index, 1.

Western blot analysis

Tissue samples (white fat ,  100 mg; other t issues,  
30 mg) were lysed with radioimmunoprecipitation 
assay buffer (4A Biotech Co., Ltd., Beijing, China) 
for 30 min on ice and centrifuged at 12,000 ×g for  
15 min at 4 ℃. Protein samples were resolved on 4–20% 
sodium dodecyl sulfate-polyacrylamide gels (Beyotime 
Biotechnology, Shanghai, China) and electrotransferred 
onto nitrocellulose membranes (Merck Millipore, 
Burlington, MA, USA). The membranes were probed 
overnight with specific antibodies at 4 ℃, washed 3 times 
with Tris-buffered saline containing 0.05% Tween 20, 
and incubated with a horseradish peroxidase-conjugated 
anti-rabbit immunoglobin G (IgG) antibody for 1 h at 
room temperature. The membranes were developed with 
UltraSignal ECL reagent (4A Biotech Co., Ltd.). The 
protein expression levels were quantified with ImageJ 
software (National Institutes of Health, Bethesda, MD, 
USA) (22). Primary antibodies against FASN (1:1,000; 
Cell Signaling Technology, Danvers, MA, USA), GLuc 
(1:500; New England Biolabs, Ipswich, MA, USA), and 
β-tubulin (1:2,000; Proteintech, Wuhan, China) were 
used in the experiments.
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RNA extraction, reverse transcription, and quantitative 
PCR analysis

Total RNA (500 ng) was isolated from tissues using 
the RNeasy Mini Kit (Qiagen, Hilden, Germany), and 
complementary DNA was generated with PrimeScript 
RT Master Mix (Takara Bio, Inc., Kusatsu, Japan). Gene 
expression levels were determined by real-time PCR using 
the QuantiTect SYBR Green PCR Kit (Roche, Basel, 
Switzerland) on a LightCycler 480 instrument II (Roche). 
All data were normalized to β-tubulin RNA expression.

Metabolic cage

Systemic energy metabolism in mice administered 
with fatostatin was continuously measured using the 
Comprehensive Lab Animal Monitoring System (Columbus 
Instruments, Columbus, OH, USA). Mice were weighed 
and individually housed in metabolic chambers. After their 
adaptation to the environment, the following parameters 
were monitored: oxygen consumption (VO2), carbon 
dioxide production (VCO2), respiratory exchange ratio 
(RER), heat, drink intake, food intake, and activity.

Statistical analysis

All data are expressed as the mean ± SEM. Statistical 
analyses were performed using GraphPad Prism 8 software 
(GraphPad Software, Inc., San Diego, CA, USA). A 1-way 
analysis of variance (ANOVA) was used to compare values 
obtained from 3 or more groups, which was followed by 
Tukey’s post hoc test. The Student’s t test was performed to 
compare values obtained from 2 groups. P values <0.05 were 
considered to reflect statistically significant differences.

Results

Generation and characterization of FASN-2A-GLuc mice

To generate luciferase reporter mice for endogenous FASN, 
we inserted the coding sequence for GLuc preceded by a 2A 
peptide-encoding sequence between the 3'-UTR and the 
last coding exon of the murine FASN gene by homologous 
recombination (Figure 1A). The 2A peptide functioned as a 
cis-acting hydrolase element to mediate a cleavage reaction 
between proteins, thus enabling the expression of flanking 
genes to be transcribed under a single open reading frame (23). 

We verified successful homologous recombination by PCR 
analysis and agarose gel electrophoresis. The corresponding 
PCR products of wild-type (WT) mice were 201 bp long, 
and those from FASN-2A-GLuc knock-in (FASN+/GLuc) 
mice were 201 and 287 bp long (Figure 1B).

The protein expression levels of GLuc and GLuc-Fusion 
in liver tissues were detected by western blot analysis. The 
results showed that the GLuc protein was expressed in 
FASN+/GLuc mice but not in the negative control and WT 
mice. (Figure 1C). The GLuc enzyme is a relatively small, 
secreted, thermostable protein (24). Thus, we also detected 
the levels of GLuc in mouse sera, finding that it was present 
at approximately 100-fold higher levels in FASN+/GLuc 

mice than in WT mice (Figure 1D). We next assessed the 
luciferase activities by performing in vivo BLI (Figure 1E) 
and ex vivo BLI in epididymal white adipose tissue (eWAT), 
brown adipose tissue (BAT), the liver, the kidneys, and 
visceral WAT (vWAT) (Figure 1F). Consistent with the 
protein expression level of GLuc, the luciferase signal was 
only detected in FASN+/GLuc mice. Taken together, these 
results indicated that the FASN-2A-luciferase reporter 
mouse model was generated successfully.

In vivo kinetics of GLuc following i.v. and i.p. substrate 
administration

To ensure the optimal administration route and detection 
time for  in vivo BLI, GLuc activity kinetics were 
determined after administering coelenterazine (a GLuc 
substrate) by either i.v. or i.p. injection. First, FASN+/GLuc 
mice were imaged continuously at 1-min intervals following 
coelenterazine injection into the caudal vein. We observed 
that the bioluminescence signals were significantly reduced 
within the first 5 min after substrate injection. After  
30 min, the bioluminescence signal was reduced by over 
90% compared to the initial value. Initially, the luciferase 
signals were distributed throughout the whole body but 
were later concentrated in the abdomen (Figure 2A). Thus, 
administration by i.v. suited experiments with a short assay 
time involving molecules that undergo rapid metabolism. 
The bioluminescence signal remained stable within the 
first 20 min, after which the signal gradually decreased over 
time when coelenterazine was i.p. injection. The luciferase 
signal was primarily distributed in the abdomen (Figure 2B). 
Importantly, administration by i.p. was simpler to perform 
and was more suitable for intergroup comparisons.
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Organ-specific GLuc bioluminescence in FASN-2A-GLuc 
mice

We monitored the bioluminescence of multiple organs  
ex vivo and compared the findings with the corresponding 
endogenous FASN expression levels. First, we ascertained  

in situ bioluminescence for FASN-2A-GLuc mice using 
BLI. The signals were concentrated in the eWAT in the 
supine position. In the scapula region, the signals were 
observed mainly in the BAT and subcutaneous WAT  
(Figure 3A). We then detected the bioluminescence 
in freshly isolated mouse organs by ex vivo imaging. 

Figure 1 Generation and characterization of FASN-2A-GLuc mice. (A) A schematic illustration of the FASN-2A-GLuc knock-in strategy. (B) 
Genotyping-based identification of WT and FASN-2A-GLuc knock-in mouse (FASN+/GLuc) by PCR. The DNA product of WT was only 
201 bp, in which 2 PCR products were formed (201 and 287 bp) with FASN+/GLuc mice. (C) Protein expression levels of GLuc-fusion and 
GLuc in liver tissues were analyzed by western blotting. (D) GLuc activities in serum from WT and FASN+/GLuc mice. (E) In vivo luciferase 
imaging of WT and FASN+/GLuc mice. (F) Ex vivo luciferase imaging in freshly isolated eWATs, BATs, liver tissue, kidney tissues, and vWATs 
from WT and FASN+/GLuc mice. The data shown were analyzed by Student’s t test. The graphs show mean values ± SEMs. ***, P<0.001. M, 
molecular size markers; Neg, negative control; GLuc, Gaussia luciferase; eWAT, epididymal white adipose tissue; BAT, brown adipose tissue; 
vWAT, visceral white adipose tissue.
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Figure 2 The kinetics of GLuc in vivo imaging. (A) Representative BLI (left) and quantification (right) after coelenterazine injection by i.v. 
(B) BLI (left) and quantification (right) after coelenterazine injection by i.p. The results shown are from 1 representative mouse from each 
group. Three independent experiments were performed with each group. GLuc, Gaussia luciferase; BLI, bioluminescence imaging; i.v., 
intravenously; i.p., intraperitoneally.

Quantitative analysis of the bioluminescence intensities 
showed that the signals were higher in the WAT, BAT, and 
lungs than in the liver, heart, and kidneys (Figure 3B). The 
GLuc activities in different tissue lysates were evaluated 
with a GLuc assay kit, and the results were consistent with 
those obtained by ex vivo imaging (Figure 3C). Finally, 
the messenger RNA (mRNA; Figure 3D) and protein 
(Figure 3E) levels of FASN were detected in these organs 
to study organ-specific bioluminescence intensities. The 
general trends of the FASN levels in different organs were 
consistent with the GLuc bioluminescence results.

Visualization of FASN expression patterns in FASN-2A-
GLuc mice under ad libitum, fasted, and refed conditions

We evaluated bioluminescence changes after fasting and 
refeeding conditions to test whether the bioluminescence 
values varied along with changes in endogenous FASN 
expression. First, we observed the bioluminescence changes 
when mice fasted for 6 or 12 h. The bioluminescence 
tended to decrease after the mice had fasted for 6 h and 
significantly decreased after the mice had fasted for 12 h 
(Figure 4A,4B). Following this, the reporter mice were 
fasted for 24 h and refed for 4 h. The results showed that 
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Figure 3 Organ-specific bioluminescence characteristics of FASN-2A-GLuc mice. (A) Bioluminescence emission of mouse abdominal 
cavity and scapula tissues in situ. The red dotted line points to WAT, and the blue dotted line points to BAT. (B) Ex vivo imaging (left) and 
quantification analysis (right) of bioluminescence in the freshly isolated lung, liver, heart, skeletal muscle, kidney, vWAT, BAT, iWAT, and 
eWAT samples. (C) Quantified GLuc activities in multiple tissue lysates. (D) FASN mRNA expression levels in multiple tissues from FASN-
2A-GLuc mice. (E) Protein levels (left) and quantification (right) of FASN in multiple tissues. The values shown are expressed as mean ± 
SEMs (n=3). GLuc, Gaussia luciferase; WAT, white adipose tissue; vWAT, visceral WAT; BAT, brown adipose tissue; eWAT, epididymal 
WAT; iWAT, inguinal WAT; BLI, bioluminescence imaging; RLU, relative light units.
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Figure 4 GLuc bioluminescence and FASN expression levels following ad libitum feeding, fasting, and refeeding. (A) In vivo BLI 
luminescence images of mice fasted for 6 h (top) or 12 h (bottom). (B) Quantification of the luminescence images shown in panel A. (C) 
Luminescence images of mice after ad libitum feeding, fasting for 24 h, and refeeding for 4 h after fasting, as determined in vivo and ex vivo 
(WAT). (D) Quantification of the luminescence images shown in panel C (top). (E) Quantification of the luminescence images shown in 
panel C (bottom). (F) GLuc luciferase activities in serum samples from FASN-2A-GLuc mice following ad libitum feeding, fasting, and 
refeeding. (G) GLuc activities in WAT protein lysates after ad libitum feeding, fasting, and refeeding. (H) FASN mRNA levels in WAT after 
ad libitum feeding, fasting, and refeeding. (I) Immunoblotting (top) and relative quantification (bottom) of FASN protein expression in WAT 
isolated from FASN-2A-GLuc mice after ad libitum feeding, fasting, and refeeding (n=5–6 mice/group). The data presented were analyzed 
by 1-way ANOVA and Student’s t test. The graphs show mean values ± SEMs. *, P<0.05; **, P<0.01; ***, P<0.001. GLuc, Gaussia luciferase; 
BLI, bioluminescence imaging; WAT, white adipose tissue; ANOVA, analysis of variance; RLU, relative light units.
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the bioluminescence signals were significantly lower in 
the fasted group than in the ad libitum group and fully 
recovered after refeeding, as determined by in vivo BLI  
(Figure 4C,4D) and ex vivo BLI in WAT (Figure 4E) and 
the liver (Figure S1A). We also detected GLuc activities 
in mouse serum (Figure 4F), WAT (Figure 4G), and liver 
lysates (Figure S1B) from the 3 groups, and the results were 
in accordance with the BLI results. Finally, we analyzed 
the mRNA and protein expression levels of FASN in WAT 
(Figure 4H-4I) and the liver (Figure S1C) under different 
dietary conditions. The results were consistent with the 
bioluminescence changes between the groups. These results 
demonstrated that our FASN-2A-GLuc mouse model 
accurately reflected dynamic changes in FASN levels in a 
visual and noninvasive manner.

Fatostatin inhibited DNL in high-carbohydrate water-
induced FASN-2A-GLuc mice

Fatostatin is a synthetic chemical, formerly called 125B11, 
which was identified by screening for adipogenesis-blocking 
compounds in 3T3-L1 cells (25). Previous results showed 
that fatostatin could inhibit SREBPs, which are master 
transcriptional factors that regulate DNL (26). Previous 
findings also showed that fatostatin could reduce the weight 
of ob/ob mice and possesses high antitumor properties 
against various cancers (27,28). Using our reporter mouse 
model, we monitored the role of fatostatin in DNL 
induced by high glucose and fructose water. The results 
showed that bioluminescence decreased in WAT, BAT, 
and the lungs but not in the liver in the fatostatin group  
(Figure 5A-5E). The total bioluminescence tended to 
decrease in the fatostatin group (Figure S2). In addition, the 
changes in FASN mRNA expression levels in those tissues 
coincided with changes in bioluminescence intensities 
(Figure 5F). We also evaluated the energy metabolism 
characteristics of mice by performing metabolic cage 
experiments. In mice treated with fatostatin, the daily 
water intake (Figure 5G) and food intake (Figure 5H) 
decreased compared with those of the control group. We 
found that the RER increased significantly when mice 
were provided a high glucose and fructose solution. After 
treatment with fatostatin, the RER was lower than that in 
control mice, especially during the final 2 days, indicating 
that carbohydrate oxidation had decreased (Figure 5I). In 
summary, we found that fatostatin effectively inhibited 
DNL in multiple metabolic organs by ex vivo BLI. The 
FASN-2A-GLuc reporter mouse model provides a useful 

tool for screening preclinical drugs targeting the DNL 
pathway.

Discussion

Results of previous studies provided reliable evidence that 
blocking the DNL pathway may help prevent and treat 
obesity-related disorders (29-31). To facilitate progress in 
understanding these regulatory networks and screen for 
effective therapeutic agents, we generated a FASN-2A-Gluc 
reporter mouse model. This enabled us to dynamically and 
systemically monitor endogenous DNL in vivo and ex vivo.

Our FASN-2A-Gluc reporter mouse model enabled 
sensitive detection of bioluminescence signals for visualizing 
and quantifying DNL. We evaluated the global level 
of DNL activity with the reporter mice by performing  
in vivo BLI and detecting GLuc activity in mouse serum 
samples. By performing ex vivo BLI, we found that the 
bioluminescence approach accurately reported organ-
specific FASN transcription following short-term starvation, 
long-term starvation, refeeding, or administration of 
fatostatin. Overall, our mouse model was not only easy 
to operate but had high sensitivity and accurate organ 
localization. Based on the complex role of DNL, it 
remains to be determined whether systemic or organ-
specific inhibitors should be targeted, as their side effects 
and efficacies need to be considered. Thus, our reporter 
mouse model is highly suitable for drug evaluation at the 
systemic and organ-specific levels, which may become a 
trend in drug development that targets metabolic pathways. 
In addition, the model has advantages in studying tumor 
growth and metastasis related to DNL using in vivo BLI. 
However, there are still several limitations to this model. 
First, it is not applicable to study protein posttranslational 
modifications of FASN because the GLuc signal mainly 
reflects the transcriptional level of FASN. Secondly, this 
mouse model can elucidate potential targets’ role in the 
DNL process by crossing with corresponding transgenic 
mice. However, cross-breeding 2 transgenic mice may take 
about 4 months, which is a relatively long time.

Currently, isotope labeling is the most commonly used 
method for monitoring metabolic flux. Hydrogen isotopes 
(2H) of water have been used extensively to estimate DNL 
in vivo. 2H2O is administered orally or via intraperitoneal 
injection to achieve a target body water enrichment of 
3–5%. The hepatic DNL can be assessed by measuring the 
appearance of 2H in VLDL-palmitate-triglyceride using gas 
chromatography/mass spectrometry (32,33). This technique 

https://cdn.amegroups.cn/static/public/ATM-22-1132-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1132-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1132-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1132-Supplementary.pdf
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Figure 5 Fatostatin inhibited FASN expression in multiple tissues of FASN-2A-GLuc mice. (A) Luminescence images of mice after the 
fatostatin or control treatment, as determined by ex vivo BLI (WAT, BAT, liver, and lung samples). Quantification of luminescence signals 
in WAT (B), BAT (C), liver (D), and lung (E) samples. (F) mRNA expression levels of FASN in WAT, BAT, liver, and lung tissues in the 
fatostatin and control groups. (G) Quantification of water intake. (H) Quantification of food intake. (I) RER of mice after daily fatostatin 
or control treatment (left). Quantification of RER values during the last 2 days of treatment (right). The black arrows indicate the times of 
fatostatin treatment (n=5–6 mice/group). The data shown were analyzed with the Student’s t test. The graphs show mean values ± SEMs. *, 
P<0.05; **, P<0.01; ***, P<0.001. GLuc, Gaussia luciferase; BLI, bioluminescence imaging; WAT, white adipose tissue; BAT, brown adipose 
tissue; RER, respiratory exchange ratio.
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is applied to evaluate hepatic DNL in clinical patients. 
Compared with the isotope-labeling method, our mouse 
model is suitable for monitoring the dynamic changes 
of DNL systemically and organ-specifically in different 
conditions or treatments. Moreover, our mouse model has 
an advantage in the visual localization of DNL in metabolic 
diseases and related tumors.

By performing ex vivo BLI, this study found that 
fatostatin efficiently inhibited DNL in adipose tissues 
but not in the liver. This inhibition was related to the 
adipogenesis-blocking function of fatostatin (24). In previous 
studies, SREBP1 seemed to serve as a minor player during 
the DNL process in adipose tissues and to be important 
for the compensatory adaptations by SREBP2 (34,35). 
However, fatostatin can inhibit both SREBP1 and SREBP2, 
which can prevent compensatory effects. In addition, we 
found that fatostatin had an appetite-suppressant effect. In 
another study, fatostatin did not affect food intake in ob/ob 
mice. To some extent, this discrepancy may be related to a 
leptin deficiency in ob/ob mice, considering that leptin is 
an important hormone that controls feeding behavior (36). 
Thus, fatostatin is a potential therapeutic agent for obesity-
related diseases based on its role in feeding behavior and 
DNL. It deserves further exploration in the context of the 
obesity mouse model.

Beyond metabolic disorders, many findings have 
demonstrated that DNL is upregulated during viral 
infections (which promotes membrane synthesis and viral 
replication), including in severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) (37). In one study, an FASN 
inhibitor blocked SARS-CoV-2 replication and reduced 
lung pathology (38). In our mouse model, we observed very 
high bioluminescence signals in the lungs, and we found 
that fatostatin also inhibited FASN expression in the lungs. 
Our FASN-2A-GLuc model may be a useful screening tool 
for identifying drugs or small-molecule compounds for 
COVID-19 therapies by targeting the DNL process.

This FASN-2A-GLuc reporter mouse model can 
be further used to elucidate the mechanisms of DNL 
regulation by employing it with other transgenic mice and 
administering different adeno-associated virus vectors. 
Furthermore, this model can be used to preclinically 
evaluate the efficacy of therapeutic agents targeting the 
DNL pathway or to potentially examine the side effects of 
some drugs on lipid metabolism.

Conclusions

In this study, we generated a real-time reporter mouse 
model to sensitively monitor and visualize endogenous 
FASN levels. This model can be used to study the dynamic 
regulation of DNL and screen for potential therapeutic 
agents that can treat obesity-related diseases.
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Figure S1 GLuc bioluminescence and FASN expression levels in liver tissues after ad libitum feeding, fasting, and refeeding. (A) 
Luminescence images of liver tissues after ad libitum feeding, fasting for 24 h, and refeeding for 4 h after fasting, as determined by ex vivo 
analysis. (B) GLuc activities in protein lysates of liver tissues after ad libitum feeding, fasting, and refeeding. (C) mRNA expression levels of 
FASN in liver tissues after ad libitum feeding, fasting, and refeeding (n=5 mice/group). The data shown were analyzed with a 1-way ANOVA 
and Student’s t test. The graphs show mean values ± SEMs. *, P<0.05; **, P<0.01; ***, P<0.001. GLuc, Gaussia luciferase; ANOVA, analysis 
of variance; RLU, relative light units.

Figure S2 uminescence images of mice administered the fatostatin or control treatment, as obtained by in vivo BLI. (A) In vivo luminescence 
images. (B) Quantification of the luminescence images shown in (A). The data presented were analyzed with the Student’s t test. The graphs 
show mean values ± SEMs. BLI, bioluminescence imaging.
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