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Background: Spleen is the most vulnerable organ in abdominal trauma. Ultrasound (US) has become an 
important examination method for splenic trauma. However, the sensitivity of routine US in the diagnosis 
of splenic trauma is low. Contrast-enhanced ultrasound (CEUS) can improve the sensitivity, but it also has 
some limitations. This study sought to explore the application value of artificial intelligence (AI)-assisted US 
in the classification of splenic trauma.
Methods: The splenic injuries of Bama miniature pigs were established. A large number of ultrasonic 
images were collected. Then, 3-fold cross validation (CV) was used to establish the animal models. Next, 
clinical ultrasonic images were collected at multiple centers. All injuries were diagnosed by CEUS, enhanced 
CT or surgery. We used animal models to fine tune a small amount of human data, and then established the 
final AI splenic trauma recognition model. The whole model was constructed by averaging the prediction 
ability of the 3 fine-tuned models. Finally, 2 doctors’ recognition US results of splenic trauma were compared 
to the AI recognition results. The area under the curve (AUC), sensitivity, specificity, negative predictive value, 
and positive predictive value were used to evaluate the diagnostic performance in diagnosis of spleen trauma.
Results: (I) Based on the receiver operating characteristic (ROC) curves, the test cohort 1 (AUC =0.90) 
and 2 (AUC =0.84) had a similar performance. Based on the decision curve analysis (DCA) curves, while 
threshold smaller than 0.8, the proposed model had better performance on test cohort 1 than test cohort 2. 
Test cohort 1 had higher sensitivity (0.82 vs. 0.71, P<0.01) and higher specificity (0.88 vs. 0.81, P<0.01) than 
test cohort 2. (II) The diagnostic accuracy of the AI model was higher than that of doctor 1 (0.82 vs. 0.62, 
P<0.001) and doctor 2 (0.82 vs. 0.66, P<0.001), and its specificity was higher than that of doctor (0.88 vs. 0.78, 
P=0.001).
Conclusions: AI-assisted US diagnosis of splenic trauma can significantly improve the ultrasonic diagnosis 
rate. We still need to increase the number of samples to further improve the diagnostic efficiency of the 
model.
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Introduction

Due to its fragile texture and abundant blood supply, the 
spleen is the most vulnerable organ in abdominal trauma. 
Splenic injury accounts for about 13–25% of abdominal 
trauma (1). The early symptoms of splenic trauma are 
not obvious in some patients, but splenic trauma is often 
accompanied by serious organ problems. If patients are not 
diagnosed and treated in a timely manner, their lives may 
be endangered (2-4). Presently, preliminary screening by 
imaging is the main way to quickly evaluate splenic injury. 
Imaging examination methods mainly include computed 
tomography (CT) and ultrasound (US) examinations. CT 
has a number of advantages, including that it has a high 
coincidence rate and is not affected by gas interference 
or patient breathing during the examination. However, 
CT examinations also have certain limitations. As CT is 
radioactive, children and pregnant women have an increased 
risk of exposure to radiation. Additionally, a certain rate of 
adverse reactions occurs in enhanced CT.

US has become an important examination method for 
splenic trauma. It can be applied to rapid injury assessments 
in pre-hospital or emergency rooms and can be used as an 
evaluation method for post-traumatic treatment. It can also 
be repeatedly performed to observe the recovery of organs 
(5,6). US can reveal whether there is organ damage by 
displaying the continuity of the organ capsule, the presence 
of subcapsular hematoma, and changes to the echo of the 
parenchyma. Additionally, US can also indicate whether 
there is organ damage through some indirect signs, such as 
retroperitoneal hematoma and peritoneal effusion. Color 
doppler US can detect abnormal blood supply in the lesions, 
which improves the detection rate of parenchymal organ 
injury. However, US examinations are operator dependent 
and cannot detect some mild traumas. It has been reported 
in the literature that the sensitivity of conventional US in the 
diagnosis of parenchymal organ injury is only about 41% (7,8).

Contrast-enhanced ultrasound (CEUS) can detect 
parenchymal organ injury and active bleeding from multiple 
abdominal injuries, improve the accuracy of ultrasonic 
examinations of splenic trauma, provides a more reliable 
evaluation method for parenchymal organ injury, and makes 
up for the shortcomings of conventional US (9). Studies 
have shown that CEUS is as accurate as CT in the detection 
and staging of traumatic splenic injury (10-12). However, 
CEUS is an invasive examination, and the contrast agent is 
expensive; thus, it has some limitations.

As a leading technology for the future, artificial 
intelligence (AI) is increasingly being applied to all fields. 

As a popular analysis method of machine learning, deep 
learning can represent massive data by constructing multi-
layer artificial neural networks. Rapid improvement of 
graphics processing capacity has made the development of 
more advanced algorithm possible. Such algorithms have 
a stable and powerful image analysis ability (13,14). Thus, 
they have been widely used in the diagnosis and recognition 
of ultrasonic images of various organs, and have been 
proven to have high accuracy (15-17). 

However, deep learning requires a large amount of 
image data. To solve this problem, we applied the method 
of transfer learning. The performance of pig spleen in 
ultrasound is similar to that of human, and the performance 
of spleen trauma in conventional ultrasound and contrast-
enhanced ultrasound is also similar to that of human spleen 
trauma (18). Therefore, we learn the low-level ultrasonic 
damage characteristics by building animal models. On the 
premise that the low-level ultrasonic damage characteristics 
are unchanged, we migrate the animal models, retrain with 
a small number of human spleen ultrasonic images, and 
learn the high-level human spleen damage characteristics, so 
as to achieve the effect of building a human spleen damage 
identification model. Although there was no migration from 
animal to human model in the past studies, However, there 
are examples of using natural image modeling to migrate 
medical images (19), using data modeling of other organs 
or modalities to migrate to lung segmentation models (20), 
and using 2D image modeling to migrate to 3D images (21). 
Therefore, we assume that animal models can be established 
first by collecting a large number of animal spleen trauma 
images and fine-tuning through human data, so as to make 
up for the lack of human data. At present, there is no report 
on the AI-assisted US diagnosis of splenic trauma. This 
study combined animal experiments and clinical US image 
data, and applied a deep-learning method to establish a 
CEUS splenic trauma classification model. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3767/rc).

Methods 

Experimental animals

The animal experiments were performed under a project 
license (No. 2021KY033-KS001) granted by the Medical 
Ethics Committee of PLA General Hospital, in compliance 
with National Laboratory Animal Management Regulations 
and guidelines for the care and use of animals.

https://atm.amegroups.com/article/view/10.21037/atm-22-3767/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3767/rc
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In total, 20 Bama miniature pigs, male and female, 
weighing 15–25 kg, were anesthetized by intramuscular 
injection with 50 mg/mL of Shutai 50 (tiletamine 
hydrochloride 125 mg and zolazepam hydrochloride 125 mg) 
(0.1 mL/kg). After being anesthetized, each animal was fixed 
on the operating table, the vein access was established in 
the ear marginal vein, and the abdominal skin was prepared. 
Heart rate, blood oxygen, and other indicators were 
monitored. We examed the injuries in the condition of gray 
scale. Then we collected normal-spleen images in different 
sections before establishing the trauma model. About  
100 images were collected for each organ, and a total 
of 2,225 spleen images were collected. After the image 
acquisition, the spleen was impacted by external force to 
simulate blunt organ injury and establish a splenic trauma 
model. A total of 49 splenic trauma foci were established.

We used the Mindray M9 portable ultrasonic diagnostic 
instrument (Mindray Company, China), which has a convex 
array probe C5-1s, and a probe frequency of 1–5 MHz, 
and the large ultrasonic diagnostic instrument, Philip 
EPIQ 7 (Philips, Netherlands), which has a convex array 
probe C5-1, and a probe frequency of 1–5 MHz. After the 
establishment of the wound lesions, US contrast agent was 
administered. The contrast agent used was the SonoVue 
contrast agent (Bracco, Italy). Normal saline (5 mL) was 
dissolved in each contrast agent and shaken. The probe 
was placed in the abdomen, and at the trauma site, the 
parameters of the ultrasonic instrument were adjusted, and 
the same parameters were applied to the same trauma focus. 
The contrast medium (1 mL) was injected into the spleen 
through the ear vein, followed by normal saline (5 mL). In 
the arterial phase, the damaged part was observed, the size 
of the wound was measured, and the dynamic angiography 
images were collected. The ultrasonic instrument was 
adjusted to the gray-scale condition, the wound location 
shown by the contrast agent was explored, its location, 
boundary, echo, and other ultrasonic manifestations were 
observed, the size of the wound was measured, and the 
scope of the wound was determined according to the results 
of the CEUS. About 100 gray-scale images were collected 
from different angles and sections of each trauma focus, and 
4,280 trauma images were collected from the spleens.

Clinical image collection

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by ethics committee of PLA General Hospital 

(No. S2020-323-01) and informed consent was taken from 
all the patients. Ultrasonic images of splenic trauma from 
PLA General Hospital and Beijing Chaoyang Emergency 
Rescue Center were collected retrospectively (2015.4.10–
2021.8.18). All injuries were diagnosed by CEUS, enhanced 
CT or surgery. A total of 548 images of 149 patients with 
splenic trauma were collected. Additionally, 652 images of 
652 normal spleen patients were collected. After excluding 
the poor-quality images, 505 spleen-trauma images and 
559 normal-spleen images remained. A small number of 
images (125 images, including 58 spleen-trauma images 
and 67 normal-spleen images) were randomly selected as 
the training set. The remaining images were divided into 
test set 1 and test set 2. The 274 images (133 spleen-trauma 
images and 141 normal-spleen images) collected at the 1st 
and 4th Medical Centers of PLA General Hospital were 
used as test set 1, and the 665 images (314 spleen-trauma 
images and 351 normal-spleen images) collected by the 
Beijing Chaoyang Emergency Rescue Center were used as 
test set 2.

Image annotation

Image annotation was undertaken to establish the 
classification model, and the normal spleen and spleen-
trauma images were sketched with sketching software. 
For the normal-spleen images, we only needed to draw 
the outline of the spleen and the edge of the spleen as 
accurately as possible along the spleen envelope. For the 
spleen-trauma images, we needed to draw the outline of 
the spleen and trauma at the same time. The outline of the 
wound was based on the location and scope of the wound as 
determined by the results of the CEUS or enhanced CT. 

US model building

US static images were collected in JEPG format. Each 
image was resized to 224×224 pixels. The MobileNet V2 
structure was used to construct the US model. The animal 
CV models were trained by 3-fold cross validation (CV) in 
the animal training cohorts and animal validation cohorts. 
Next, some human data were used to fine tune the animal 
CV models. The whole model was constructed by averaging 
the prediction ability of the 3 fine-tuned models. 

Model construction

The static model was a structure of MobileNet V2 
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(Appendix 1). MobileNet V2 was used to extract the spatial 
features (see Figure 1).

MobileNet V2

The structure of MobileNet V2 (22) is listed in Table S1, 
and had 7 bottleneck stages. All of the bottleneck stages 
were constructed by a 2-dimensional convolution layer, 
batch normalization layer, ReLu activation layer, and depth-
wise convolution layer (see Figure 1).

Image evaluation

In this study, 2 experienced doctors (with 10 and 12 years of 
US examination experience respectively) performed blind 
evaluations of 382 splenic injury images from clinical test set 
2 and classified each image as traumatic or non-invasive. We 
then compared the US doctors’ image recognition results 
to those of the CEUS model to evaluate the performance of 
the model.

Statistical analysis

We used t-tests for the continuous data and χ2-tests for the 
categorical data to compare the baseline characteristics 
between test cohorts 1 and 2. A receiver operating 
characteristic (ROC) curve analysis was conducted to 
examine the prediction performance of the model. In the 

CV process, the validation cohorts were used to evaluate the 
performance of the animal model. Test cohorts 1 and 2 were 
used to verify the predictive efficacy of the model. Statistical 
analyses were undertaken using R software (version 3.3.1; R 
21 Foundation for Statistical Computing, Vienna, Austria). 
All the statistical tests were 2-sided, and the statistical 
significance level was set at P<0.05. The AUC, sensitivity, 
specificity, negative predictive value, and positive predictive 
value were used to evaluate the diagnostic performance in 
diagnosis of spleen trauma.

Results

Results of the animal model

We used 3-fold CVs to establish the animal models. A total 
of 5,087 images (3,275 spleen-trauma images and 1,812 
normal-spleen images) were selected for the 1st training set, 
and a total of 1,079 images (666 spleen-trauma images and 
413 normal-spleen images) were selected for the validation 
set). Next, 5,549 images (3,532 spleen-trauma images and 
2,017 normal-spleen images) were selected for the 2nd 
training set, and 617 images (409 spleen-trauma images and 
208 normal-spleen images) were selected for the validation 
set. Finally, 5,541 images (3,515 spleen-trauma images and 
2,026 normal-spleen images) were selected for the 3rd-
fold CV training set, and 625 images (426 spleen-trauma 
images and 199 normal-spleen images) were selected for 

Figure 1 The model construction process employed in this study. 3-fold CV was used to construct the animal CV models for the animal 
training cohort. A few human images were used to fine tune the animal model and establish the human model. An inter-test cohort and an 
independent test cohort were used to evaluate the human model. ROI, region of interest; CNN, convolutional neural network; CV, cross 
validation; ROC, receiver operating characteristic; AUC, area under the curve.
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the validation set. The areas under the curve (AUCs) of the 
3rd-fold model were 0.81 for the training set and 0.70 for 
the test set (see Table 1, Figure 2).

Clinical model establishment

To evaluate the performance of the proposed model, the 
ROC and DCA curves were plotted (see Figure 3). The 
ROC curve results showed that the performance of test 
cohorts 1 (AUC =0.84) and 2 (AUC =0.90) was similar. 
Based on the DCA curves, while the threshold was <0.8, 
the proposed model performed better on test cohort 2 than 
test cohort 1. As Table 2 shows, the test cohort 2 had higher 
sensitivity (0.82 vs. 0.71, P<0.01) and higher specificity (0.88 
vs. 0.81, P<0.01) than test cohort 1.

Doctor’s US recognition results

Next, 2 doctors examined all the normal and abnormal 
images and divided the recognition results into “traumatic” 
and “non-invasive”. Taking the final modeling results 
from test cohort 2 as the standard for convolutional neural 
network (CNN) recognition, Figure 3 shows the ROC 
curves of the images recognized by the CNN model and 
doctors. The accuracy of image recognition by doctor 1 was 
0.70 (95% CI: 0.66–0.73), the sensitivity was 0.62 (95% CI: 
0.56–0.67), the specificity was 0.78 (95% CI: 0.73–0.83), the 
positive predictive value was 0.76 (95% CI: 0.71–0.81), and 
the negative predictive value was 0.64 (95% CI: 0.60–0.69). 
While the accuracy of image recognition by doctor 2 was 
0.74 (95% CI: 0.70–0.77), the sensitivity was 0.66 (95% CI: 

Table 1 Classification performance of animal model

Data Cohort AUC Accuracy Sensitivity Specificity PPV NPV

Fold 1 Training cohort 0.86 (0.86–0.87) 0.77 (0.77–0.78) 0.76 (0.74–0.76) 0.81 (0.80–0.82) 0.88 (0.87–0.88) 0.65 (0.63–0.66)

Test cohort 0.70 (0.68–0.71) 0.65 (0.64–0.67) 0.66 (0.64–0.73) 0.63 (0.55–0.66) 0.74 (0.72–0.76) 0.54 (0.52–0.57)

Fold 2 Training cohort 0.79 (0.79–0.80) 0.72 (0.71–0.73) 0.70 (0.69–0.75) 0.75 (0.70–0.76) 0.83 (0.81–0.84) 0.58 (0.58–0.62)

Test cohort 0.74 (0.72–0.76) 0.72 (0.70–0.74 0.74 (0.71–0.81) 0.67 (0.59–0.71) 0.81 (0.79–0.84) 0.57 (0.54–0.63)

Fold 3 Training cohort 0.81 (0.81–0.82) 0.73 (0.73–0.76) 0.71 (0.69–0.78) 0.77 (0.71–0.80) 0.84 (0.82–0.86) 0.61 (0.59–0.65)

Test cohort 0.70 (0.67–0.72) 0.79 (0.78–0.81) 0.93 (0.92–0.97) 0.48 (0.43–0.51) 0.79 (0.77–0.81) 0.77 (0.74–0.87)

Data in parentheses are 95% CIs. AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.
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Figure 2 The ROC curves of the animal model for the training and test cohorts. ROC, receiver operating characteristic; AUC, area under 
the curve. 
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Figure 3 The ROC and DCA curves of the human model for the training cohort, test cohort 1, and test cohort 2. ROC, receiver operating 
characteristic; DCA, decision curve analysis.

Table 2 Classification performance of human model

Data AUC Accuracy Sensitivity Specificity PPV NPV

Animal cohort 0.96 (0.96–0.96) 0.89 (0.89–0.90) 0.89 (0.87–0.90) 0.91 (0.89–0.93) 0.94 (0.94–0.96) 0.82 (0.80–0.84)

Test cohort 1 0.84 (0.83–0.86) 0.76 (0.75–0.78) 0.71 (0.65–0.87) 0.81 (0.65–0.87) 0.77 (0.69–0.83) 0.76 (0.73–0.85)

Test cohort 2 0.90 (0.89–0.92) 0.85 (0.83–0.87) 0.82 (0.78–0.87) 0.88 (0.83–0.92) 0.87 (0.82–0.90) 0.84 (0.81–0.87)

Data in parentheses are 95% CIs. AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

0.61–0.71), the specificity was 0.82 (95% CI: 0.78–0.86), the 
positive predictive value is 0.80 (95% CI: 0.75–0.85), and 
the negative predictive value was 0.68 (95% CI: 0.63–0.73). 
The diagnostic sensitivity of the deep-learning model was 
higher than that of doctor 1 (0.82 vs. 0.62, P<0.001) and 
doctor 2 (0.82 vs. 0.66, P<0.001), and the specificity was 
higher than that of doctor 1 (0.88 vs. 0.78, P=0.001) and 
doctor 2 (0.88 vs. 0.82, P=0.03). The final modeling results 

for the deep-learning test set 2 are shown in Figure 4 and 
Table 3.

Discussion

As an important imaging method for the injury evaluation 
of patients with splenic trauma, US plays a very important 
role in the diagnosis of trauma. In pre-hospital treatment, 
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it can help save lives, as it enables the injuries of patients 
to be evaluated and medical interventions to be conducted 
quickly and accurately.

Focused assessment with sonography for trauma 
(FAST), which is a bedside assessment tool for patients with 
abdominal trauma, is widely used in clinical practice. This 
method is mainly used for the assessment of intraperitoneal 
hemorrhages caused by injuries to the liver, spleen or 
other organs in patients with trauma. It has high sensitivity 
to intraperitoneal hemorrhage and can indirectly assess 
abdominal organ injuries (23). In the diagnosis of abdominal 
trauma, AI can be used to diagnose organ trauma by FAST 
(24,25). However, in FAST, it is often difficult to distinguish 
between peritoneal effusion caused by abdominal organ 
injury and peritoneal effusion caused by other factors (e.g., 
tumor or liver cirrhosis), and it is impossible to determine 
which organ has trauma.

Conventional US diagnosis of organ trauma is not only 
operator dependent, but also often miss minor traumas. 
The sensitivity of US diagnosis is relatively low. Thus, as 
an important examination method of abdominal trauma, it 
is urgent to improve the sensitivity of ultrasonic diagnosis 
of visceral trauma. However, there is no relevant report 
on evaluations of the presence or absence of trauma foci 
in organs. In this study, AI was used to identify traumatic 
lesions that are difficult to identify by conventional gray-
scale US through feature extraction, internal echo changes 
of parenchymal organs, and subtle texture changes of 
images. Its diagnosis accuracy was significantly higher than 

that of the US doctors.
The establishment of the AI model required a large 

number of ultrasonic images, but ultrasonic images of 
splenic trauma are difficult to collect. Thus, we first 
established an animal model of splenic trauma, and found 
that the performance of image features of the pig spleen 
under US was similar to that of human. In the process of 
establishing the model, to establish different degrees of 
trauma, we used different forces to impact the spleen area. 
Thus, some trauma foci were difficult to identify in gray-
scale US images, and the trauma lesions needed to be 
identified by CEUS. Part of the trauma included splenic 
rupture. In US images, splenic trauma can be classified 
as hypoechoic, isoechoic, or hyperechoic echogenicity, 
heterogeneous echogenicity, or other. To simulate different 
levels of splenic trauma to the greatest extent possible, we 
obtained a large number of animal spleen-trauma images 
and established an AI model of splenic trauma through deep 
learning. For the human spleen-trauma images, we used a 
multi-center method to gather images collected by different 
machines and doctors to increase the number of images. 
Next, we fine-tuned the animal model. To evaluate the 
performance of this model, we established a test cohort 1 
and an independent test cohort 2. We proposed a transfer-
learning model with a MobileNet V2 structure and a pre-
trained ImageNet weight to predict the splenic trauma from 
the US images. Transfer learning can not only transfer the 
information in the original model established by a large 
amount of data to less data, but can also shorten the training 
time and achieve higher performance. The transfer-learning 
time is shorter than the original learning process time 
required to build the source model (26,27). The model can 
learn higher features by pre-trained weight. Our results 
showed that the model was able to predict splenic trauma 
from US images even in different center cohorts.

This study had some limitations. First, due to the 
morphological difference in the spleens of different patients, 
it was necessary to crop the spleen region for further 
analysis. This will become more automatized in further 
research. Second, the model was constructed using animal 
US images, and more clinical images are needed for further 
correction. Finally, more data from different center cohorts 
are needed for further study.

In summary, establishing an AI splenic trauma model 
through transfer learning could significantly improve 
the ultrasonic diagnostic sensitivity of splenic trauma. 
Such a model could help clinicians make clear judgments 
for patients with splenic trauma, especially pre-hospital 
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Table 3 Diagnostic performance of the CNN model and radiologists.

Data Accuracy Sensitivity Specificity PPV NPV

Test cohort 2 0.85 (0.83–0.87) 0.82 (0.78–0.87) 0.88 (0.83–0.92) 0.87 (0.82–0.90) 0.84 (0.81–0.87)

Doctor 1 0.70 (0.66–0.73) 0.62 (0.56–0.67) 0.78 (0.73–0.83) 0.76 (0.71–0.81) 0.64 (0.60–0.69)

Doctor 2 0.74 (0.70–0.77) 0.66 (0.61–0.71) 0.82 (0.78–0.86) 0.80 (0.75–0.85) 0.68 (0.63–0.73)

Data in parentheses are 95% CIs. CNN, convolutional neural network; PPV, positive predictive value; NPV, negative predictive value.

patients. When enhanced CT and other examinations 
cannot be carried out, routine US examination and AI-
assisted diagnosis can be used to quickly evaluate injuries, 
which is conductive to the clinical adoption of a reasonable 
treatment plan and is of great significance to improve the 
survival rate of patients. This method is convenient and 
non-invasive and can be applied to pre-hospital diagnoses, 
post-treatment injury evaluations, and regular follow-
ups. We still need to collect additional clinical data from 
more centers and adjust the original model to increase the 
accuracy of the diagnoses.
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Supplementary

Appendix 1 

Model Construction

The Static Model is a combination of MobileNet V2. The MobileNet V2 is used to extract the spatial features, which is 
shown in Figure S1.

MobileNet V2

The structure of MobileNet V2 (22) is detailed in Table S1, which had 7 bottleneck stages. All of the bottleneck stages 
were constructed by a 2-dimensional convolution layer, batch normalization layer, ReLu activation layer, and depth-wise 
convolution layer (see Figure S1).

Mathematics for layers

Convolution
Convolution is a basic operation used to extract the local features in an image (28), which can be expressed as:

( ) ( ) ( )
,

, , ,
k l

g i j f i k j l h k l= + +∑

where f(i,j) is the original image, h(k,l) is the convolution kernel, and g(i,j) is the feature image.

Batch normalization

Batch normalization (BN) is a non-parametric operation, which is used to accelerate the training process and address the 
overfit problem (29). The BN is a practical method to regularize a model and enables higher learning rates. The formulation 
can be expressed as:

[ ]
[ ]

ˆ
x E x

x
Var x

−
=

+∈

Where E[x] is the expectation over training mini-batches, and [ ] 2

1 B B
mVar x E

m
σ =  −

  is the unbiased variance estimate over 

training mini-batches of size m and sample variances 2
Bσ . This operation is used to follow the convolution operation.

Non-linear activation

Non-linear activation is a non-linear function that can transform a linear system to a non-linear system. The operation 
usually uses a map function to enhance the fitting ability of the model. Sigmoid function and ReLU function (30) were used 
in our models, and both of these operations were element-wise. Sigmoid function is formulated as:

( ) 1
1 xf x

e−=
+

and this activation is used in the last dense layer to match the binary cross entropy loss. The ReLU function is expressed as:

( ) ( )max ,0f x x=

and this operation is used in each BN operation.
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Pooling

Pooling is a method to reduce the parameters and redundant information. Due to the static property of images, local features 
can be described by the statistics of local regions. Thus, the operation paid attention to the whole image domain and ignored 
the local information, which led to the invariance in translation, rotation, and scale. In this study, we use 2-dimensional 
maximum pooling with strides 2×2 and 2- dimensional global average pooling with strides 2×2 in the first convolution stage 
and final part.

Constraint

Weight constraint is a way to control the weight that needs to be trained. A weight constraint can keep the updated weight 
in a small range, which is a strategy for reducing overfit. The ResNet50 is based on ImageNet weights used in our study. 
Thus, only the last dense layer needed to be set. In this study, the weight constraint was used as the UnitNorm, which can be 
expressed as:

( ) 1norm w =

Figure S1 The structure of the static model.

Table S1 Structure of ResNet50

Layers Output Size Channel Size Stride Expansion

Convolution 112*112 32 2 –

Bottleneck 1 112*112 16 1 1

Bottleneck 2 56*56 24 2 6

Bottleneck 3 28*28 32 2 6

Bottleneck 4 14*14 64 2 6

Bottleneck 5 14*14 96 1 6

Bottleneck 6 7*7 160 2 6

Bottleneck 7 7*7 320 1 6

Conv 7*7 1280 1 –

Average Pool 1*1 – – –

Conv 1*1 1 – –

Dense 1 – – –
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Depth-wise separable convolution

Depth-wise separable convolution is a two-step convolution operation to reduce the parameters of convolution (28), which 
can be expressed as depth-wise convolution and pointwise convolution.

Depth-wise convolution can be expressed as:

( ) ( ) ( )
,

. . , , , ,
k l

g i j c f i k j l c h k l c= + +∑

Where f(i,j,c) is the original image for channel c,h(k,l,c) is the convolution kernel with c filters, and g(i,j,c) is the feature image. 
Pointwise convolution can be expressed as:

( ) ( ) ( ), ,
, , , , , ,

k l c
g i j M f i k j l c h k l M= + +∑

Where f(i,j,c) is the original image for channel c,h(k,l,c) is the 1*1 convolution kernel with M filters, and g(i,j,M) is the 
feature image.

Training details

In this study, a clinical model was trained. The model was trained in 2 steps. First, it was trained using animal US images. 
Second, the model was fine-tuned using a few human US images. For the 1st step, 3-fold CV was used for the animal US 
images. For the 2nd step, each fold CV model was fine-tuned with the last 3 layers from the same human US images and 
averaged to obtain the final clinical model. The training process employed an optimization process to obtain the parameters 
in the deep-learning model. In our study, 4 deep-learning models were trained by gray scale (GS) images. The data were 
augmented to overcome the overfit in the training process. The augmentation included vertical and horizontal random 
flipping, random brightness, and random contrast. The classification model sought to predict 2 classes of images. In the 
training set, binary cross entropy loss was used for the classification, which can be expressed as:

( ) ( )1 ln 1 ln 1
n

L y x y x
n

= − + − −  ∑

where the sample number is n,x is the prediction, and y is the ground truth. An algorithm for the 1st-order gradient-based 
optimization of stochastic objective functions, based on adaptive estimates of lower-order moments (Adam) (31), served as the 
optimizer. The hyper parameter learning rate (LR), batch size (BS) and epoch (Ep) are listed in Table S2. 
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Table S2 The hyper parameters for training process.

Model LR BS Eq Dropout

Animal Model 1e–07 64 60 0.5

Human Model 1e–07 64 60 0.5

LR, learning rate; BS, batch size; Ep, epoch. 


