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The goal of precision medicine is to provide tailored 
therapy to each patient with considering therapeutic 
benefits and risks. Strides toward this goal have been made 
by harnessing the benefits of big data, the development of 
mathematical and data-based computational models, and the 
use of artificial intelligence (AI) and machine learning (ML) 
algorithms (1-3). The currently available mathematical 
models lack fidelity, are unable to represent changes in real-
time, and are far from being the optimal tools to provide 
robust predictive enrichment that can be of use in clinical 
medicine. In their article, Liu et al. (4) performed an 
exhaustive bibliometric analysis of the currently available 
applications, specifically in the arena of individualized 
diagnosis and treatment of the critically ill patients. There 
has been an increasing number of articles published over the 
past decade, however, the clinical relevance and real-world 
application remains debatable. To circumvent these issues, 
the construction of digital twin models based on research 
data and physiological properties has been proposed.

What is a “digital twin” and what is its utility in 
healthcare? 

A digital twin is a scientifically sound concept that creates 
an “in-silico” model, a computerized replica, of a patient 

and their physiology that can be used in either a clinical 
or research setting. In other words, a digital twin is an 
exact replica of a patient at a baseline clinical state or an 
exact match at baseline created for each subject in clinical 
trials. These virtual models, or digital twins, are designed 
and validated using real-life patient data and a conceptual 
understanding of physiology to simulate a continuum of 
scenarios or interventions without putting real patients 
at risk (5-7). Another attempt at defining a digital twin 
would be “a living model of physical asset or system, which 
continually adapts to operational changes based on the 
collected online data and information, and can forecast the 
future of the corresponding physical counterpart” (8).

Digital twins have been widely utilized in healthcare 
scenarios ranging from studies of ventricular electrophysiology 
to modeling disease progression in stroke and multiple 
sclerosis patients (9-11). Outside of the world of medicine 
and healthcare, the concept of the digital twin has been 
increasingly pervasive and has been extensively used all the 
way from modeling of smart cities, anomaly detection in 
the automobile industry to the design of electrical systems  
(12-14). It is quintessential to distinguish the concept of 
“digital twin” from simulation. While both the processes 
utilize digital platforms to replicate a process or a system, 
the “digital twin” platforms create a virtual environment 
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with a modifiable degree of fidelity for a richer study. 
In addition to this, whereas a simulation conventionally 
studies one process, a digital twin platform can run 
multiple intertwined processes. The level of complexity 
does not end there, while the simulations do not benefit 
from having real-time access to data and feedback loop, 
the digital twin platforms have the advantage of a “two-
way” flow of information (from digital twin to end-user 
and from end-user to the digital twin to improve on the 
next iteration of modeling). In-silico modeling pairs 
individual patient’s physical artifacts with digital models, 
reflecting patient status in real-time. These models provide 
a unique opportunity to better calculate and assess risk 
without endangering actual patients. We would not have to 
perform a real-life evaluation of the risk of death or a major 
traumatic injury in participants jumping from an aircraft 
with and without a parachute (15). 

While AI holds much promise in structure data (imaging, 
electrocardiography, robotics-assisted surgery), there 
will be different challenges for healthcare organizations, 
providers, and patients in the adoption and integration 
of AI in healthcare (16-18). The degree of trust between 
clinicians and the AI system is a vital but difficult to quantify 
determinant of how AI will be used and adopted in the 
clinic. Trust in AI systems can be improved by increasing 
transparency, ensuring robustness, and encouraging fairness 
in the design of the AI system, but a healthy amount of 
skepticism should not be discouraged (19). AI can help 
address disparities by expanding care to underserved 
populations, but AI may also act to reinforce disparities in 
disproportionately disadvantaged and underrepresented 
groups by training the algorithms on a pre-selected group 
of patients which may not be representative of a diverse 
real world patient population (20). Applications of ML 
have progressed rapidly as highlighted in the article by Liu 
et al., but many clinicians still lack experience in properly 
understanding and interacting with these models (4,21). 
Proper regulation of software as medical devices (SaMDs) 
will be essential to ensure the safe, reliable and fair 
integration of AI across clinical settings that clinicians and 
patients can trust.

Over the past decades, multiple digital tools have been 
developed using AI to aid in clinical decision making and 
in research. In research, AI has been used to generate large 
scale synthetic data to train other ML algorithms (22). 
Patient generated health data, including patient reported 
outcomes, treatment histories, and biometric data are also 
increasingly being integrated into the fields of research and 

clinical care (23).
The Introduction of Internet of things (IoT) devices 

such as sensors, softwares, and AI/ML algorithms are not 
without risk and there are regulatory issues regarding safety, 
efficacy, and quality. Unexpected and unpredictable results 
from the AI algorithms in healthcare rattle clinicians’ 
confidence in these new technologies. The failure of IBM’s 
Watson is a living example of when a computer algorithm 
was unable to provide expected reproducible results and 
outcomes (24). Major healthcare center partnered with IBM 
to develop an advisory tool to be used in clinical practice. 
While the tool performed well in the training environment, 
its performance in the clinical setting lacked promise (25). 
The US Food and Drug Administration (FDA) in their 
position paper in 2019 proposed a regulatory framework for 
modifications to the AI or ML based software (26). This was 
proposed with a vision to appropriately regulate the tailored 
total produce lifecycle-based oversight on these softwares 
by labeling them as “medical devices”. 

This effort has led to gaining consensus from the major 
stakeholders about the good ML practice (GMLP). In 
addition to the harmonization of GMLP, including data 
management, feature extraction, training, evaluation, and 
documentation, the oversight for these activities was also 
emphasized. In 2011, the FDA identified eight priority areas 
where “new or enhanced engagement” at the regulatory 
science front was found to be quintessential. Subsequently, 
in 2013, a ninth priority area was also added. The 
regulatory issues surrounding the development and quality 
control of SaMDs (digital twins and AI/ML algorithms) 
could overlap with more than one priority areas identified 
by the FDA such as priority area 4, “Ensure FDA readiness 
to evaluate innovative emerging technologies” and priority 
area 3, “support new approaches to improve product 
manufacturing and quality and potentially others”. 

Since this field of SaMDs and AI/ML algorithms in 
healthcare is a nascent and evolving, the regulatory guidance 
is not as well defined as for conventional drug, device and/
or biologics (development and approval). The Global 
Harmonization Task Force (established in 1993) and the 
International Medical Device Regulators Forum (IMDRF) 
currently guide the regulation of SaMDs for the FDA in the 
United States and in Europe. To ensure the safety, efficacy 
and performance of SaMDs; the IMDRF outlined principles 
for quality management (27). The FDA also published a 
working model for the software precertification program 
in 2019, which is a voluntary pathway for manufacturers of 
SaMDs with unwavering commitment to quality, excellence 
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and assurance to monitoring real-world performance (28). 
Digital technologies and AI also have the potential to 

contribute to the realms of research and medical education. 
In clinical research, digital technologies can help enhance 
clinical trials including recruitment through online 
engagement, health data collection through smart devices, 
and analytics utilizing AI/ML technologies (29). Utilizing 
digital technologies in clinical trials can help reduce costs, 
improve data fidelity, and allow studies to reach more 
diverse populations (30) (Figure 1).

In education, AI is anticipated to change not only how 
information is taught, but also what topics will be focused 
on. As AI becomes more pervasive in the clinical setting, 
future providers will need to adapt to be proactive in the 
design, development of AI diagnostic systems, and how to 
optimize these AI systems for the most optimal patient care 
use (31). Since the 1920s, AI has been incorporated into 
education as personal tutors and typing instructors. In the 
1980s, a dialogue based tutoring system (DBTS) known as 
CIRCSIM was introduced to medical students, allowing 
students to better understand and retain what they had 
learned, but since then there has been a paucity of literature 
on the application of AI to the education of nursing, allied 
health, and medical education (11,32). AI may potentially 
be so integrated into medical education one day as to be 
able to recommend modules, identify areas of weakness, and 

even augment learning during an operation throughout a 
resident’s day (33).

Current gaps and potential areas for future 
development

There is an evident lack of a mechanism for head-to-
head comparison of AI algorithms used in healthcare to 
assess their efficacy and superiority (over the conventional 
regression models and amongst themselves). An example 
could be cited from the arena of intensive care medicine 
where AI/ML algorithms have been used for prognostic and 
predictive enrichment in the clinical setting. Some of these 
algorithms and softwares are purely data driven (34,35). 
Other algorithms are grounded in the pathophysiological 
basis of the disease (36). Currently, FDA regulations and 
guidance fall short of comparing two similar SaMDs 
for efficacy, safety, and quality. This may diminish the 
motivation for the developers and the clinical scientists to 
strive for continual improvement or even quality control. 

There is also insufficient characterization and oversight 
for development and performance testing. The current 
SaMDs development process is affected by similar biases as 
in clinical trials. The FDA and National Institute of Health 
(NIH) now require that the patient population recruited 
and targeted during a drug development should have a good 

Figure 1 Digital twin utilization for in silico testing and comparison of different interventions for optimal outcome.
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representation of historically under-represented patient 
populations such as women and minorities. However, 
during the development of AI/ML algorithms, the datasets 
used for training and validation could have an inherent bias 
if the dataset is primarily composed of a skewed population. 

Current oversight overview, standards, and 
recommendations for product/technology 
evaluation

The United States government has been advocating to 
emphasize the use of AI application for the public good 
while maintaining the aspects of fairness, safety, and 
governance (37). In the year 2020, the White House 
published an executive order for the regulation for AI 
applications highlighting the ten main principles of public 
trust in AI, public participation, scientific integrity and 
information quality, risk assessment and management, 
benefits and cost, flexibility, fairness and nondiscrimination, 
disclosure and transparency, safety and security and 
interagency coordination (38). 

Currently, AI applications that have a role in the clinical 
decision-making process, either in diagnostic realm or 
treatment, are regulated by the FDA as SaMDs. However, 
barriers to more specific regulations such as the ambiguous 
nature of AI/ML, concerns about cybersecurity, and the 
rapid development of these technologies remain (39). 
The FDA stratifies potential risk posed by an SaMDs into  
classes I (low risk) to class IV (highest risk) based on the 
severity of a healthcare condition (non-serious to critical) 
and the extent to which the SaMDs is involved in clinical 
decision making (purely informational to treatment 
delivery). While current FDA regulations cover fixed 
rule-based AI, there is little oversight on more advanced, 
continuously learning AI applications that incorporate ML 
to adapt to new information (19). 

There also remain areas of potential testing that can 
further improve the development process and regulatory 
oversight of SaMDs. Some of these areas include: (I) self-
awareness of limitations (AI algorithms if not trained 
appropriately, lack the concept of contextualizing and 
can often disregard important cues when those lay at or 
outside the limit of their competencies); (II) transparent 
logic (7,25,40) (moving away from black-box algorithms 
and providing a transparent interface to build clinical trust 
and engagement); and (III) auditability or accountability 
(providing independent means to evaluate the software’s 
continuing performance). The suggestions made above are 

by no means an extensive or complete list and there remains 
a plethora of issues that need close regulatory oversight. 

A word on ethical issues surrounding development 
of SaMDs and digital twins in healthcare

The use of AI based SaMDs and digital twins have a huge 
potential to transform the healthcare delivery for the 
better, but, as highlighted above, there exist also major 
ethical concerns around the governance of such algorithms. 
The five major components of biomedical ethics (patient 
autonomy, non-malfeasance, distributive justice, utility and 
beneficence) can be compared to the regulatory issues in 
AI/ML (informed consent, algorithm fairness and biases, 
intellectual property law, data privacy, and safety and 
transparency) (41) (Figure 2). 

Depending on the development process of the digital 
twin (use of AI/ML, IoT, big data etc.), it can be affected 
by multiple socio-ethical issues. These can include the 
appropriate representation of under-represented patient 
population (women and minorities) and training and 
validation cohorts may have a population selection bias 
(western vs. developing world patient population) to 
name a few. Other major areas of improper conduct could 
involve privacy and property of data, patient autonomy and 
freedom. Concerns exist that digital twin technology could 
further worsen the health disparity by facilitating medical 
treatment or education in the developed world, compared 
to the other regions where it may lack the same degree of 
availability. Despite the challenges, the overall sentiment 
towards the future development of SaMDs and digital 
twin platforms remains positive, and experts believe in the 
overall social benefit brought in by this innovation and that 
digital twins promise to replace “subjective data” with the 
“objective data” (42,43). 

Summary and conclusions

SaMDs and digital twin platforms in healthcare have an 
enormous potential. Considering the pace of development 
and interest of the stakeholders, appropriate oversight is 
pivotal. At this point, although there are no clear FDA 
guidelines specifically for AI/ML algorithms, the guidelines 
for SaMDs still apply and should be diligently followed. 
Despite the current checks and balances in place by the 
FDA and IMDRF there are multiple areas where the safety, 
efficacy and quality concerns could be improved upon. Some 
of the suggested ways to address those concerns would 
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be bringing in place measures to improve accountability 
(independent auditing), transparency (transparent logic), 
and performance testing. 

Acknowledgments

Funding: This study was supported by the National Center 
for Advancing Translational Sciences, No. UL1 TR002377 
(to AL).

Footnote

Provenance and Peer Review: This article was commissioned 
by the editorial office, Annals of Translational Medicine. The 
article did not undergo external peer review. 

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-4203/coif). 
AL serves as an unpaid editorial board member of Annals of 
Translational Medicine from September 2022 to August 2024. 
The other authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 

to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Corral-Acero J, Margara F, Marciniak M, et al. The ‘Digital 
Twin’ to enable the vision of precision cardiology. Eur 
Heart J 2020;41:4556-64.

2. Topol EJ. High-performance medicine: the convergence of 
human and artificial intelligence. Nat Med 2019;25:44-56.

3. Nicholls M. Machine Learning—state of the art: The 
critical role that machine learning can play in advancing 
cardiology was outlined at a packed session at ESC 2019. 
Eur Heart J 2019;40(45):3668-9.

4. Liu YX, Zhu C, Wu ZX, et al. A bibliometric analysis 

Figure 2 Parallels between principles of biomedical ethics and ethical issues surrounding AI/ML, digital twins and SaMDs. AI, artificial 
intelligence; ML, machine learning; SaMDs, software as medical devices. 

Autonomy

Distributive  
justice

Beneficence

Data  
privacy

Safety and 
transparency

Utility

Intellectual  
property law

Algorithmic  
fairness and biases

Informed  
consent

Parallels between principles 

of biomedical ethics and 

ethical issues surrounding AI, 

digital twins and SaMDs

Non- 
malfeasance

https://atm.amegroups.com/article/view/10.21037/atm-22-4203/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-4203/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Lal et al. Regulatory oversight and digital twin technology Page 6 of 7

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):950 | https://dx.doi.org/10.21037/atm-22-4203

of the application of artificial intelligence to advance 
individualized diagnosis and treatment of critical illness. 
Ann Transl Med 2022;10:854.

5. Feng Y, Chen X, Zhao J. Create the individualized digital 
twin for noninvasive precise pulmonary healthcare. 
Significances Bioengineering & Biosciences 2018;1:26-30.

6. Barricelli BR, Casiraghi E, Fogli D. A survey on digital 
twin: definitions, characteristics, applications, and design 
implications. IEEE Access 2019;7:167653-71.

7. Trevena W, Lal A, Zec S, et al. Modeling of Critically 
Ill Patient Pathways to Support Intensive Care Delivery. 
IEEE Robotics and Automation Letters 2022;7:7287-94.

8. Liu Z, Meyendorf N, Mrad N. editors. The role of data 
fusion in predictive maintenance using digital twin. 
AIP Conference Proceedings. Melville, NY, USA: AIP 
Publishing LLC, 2018. 

9. Henschke A, Desborough J, Parkinson A, et al. 
Personalizing Medicine and Technologies to Address the 
Experiences and Needs of People with Multiple Sclerosis. 
J Pers Med 2021;11:791.

10. Allen A, Siefkas A, Pellegrini E, et al. A Digital Twins 
Machine Learning Model for Forecasting Disease 
Progression in Stroke Patients. Applied Sciences 
2021;11:5576.

11. Lal A, Herasevich V, Gajic O. Utility of AI models in 
critical care: union of man and the machine. Crit Care 
2021;25:46.

12. Kulikov G, Antonov V, Rodionova L, et al. A digital 
twin model for electricity systems. 2021 International 
Conference on Electrotechnical Complexes and Systems 
(ICOECS). Ufa: IEEE, 2021.

13. Petrova-Antonova D, Ilieva S. Digital twin  odelling 
of smart cities. In: Ahram T, Taiar R, Langlois K, et al. 
editors. Human Interaction, Emerging Technologies 
and Future Applications III. IHIET 2020. Cham: 
Springer, 2020.

14. Huang H, Yang L, Wang Y, et al. Digital twin-driven 
online anomaly detection for an automation system based 
on edge intelligence. Journal of Manufacturing Systems. 
2021;59:138-50.

15. Yeh RW, Valsdottir LR, Yeh MW, et al. Parachute use 
to prevent death and major trauma when jumping from 
aircraft: randomized controlled trial. BMJ 2018;363:k5094.

16. Singh RP, Hom GL, Abramoff MD, et al. Current 
Challenges and Barriers to Real-World Artificial 
Intelligence Adoption for the Healthcare System, Provider, 
and the Patient. Transl Vis Sci Technol 2020;9:45.

17. Bohr A, Memarzadeh K. The rise of artificial intelligence 

in healthcare applications. In: Artificial Intelligence in 
Healthcare. Academic Press, 2020:25-60.

18. Siontis KC, Noseworthy PA, Attia ZI, et al. Artificial 
intelligence-enhanced electrocardiography in 
cardiovascular disease management. Nat Rev Cardiol 
2021;18:465-78.

19. Asan O, Bayrak AE, Choudhury A. Artificial Intelligence 
and Human Trust in Healthcare: Focus on Clinicians. J 
Med Internet Res 2020;22:e15154.

20. Bombard Y, Hayeems RZ. How digital tools can advance 
quality and equity in genomic medicine. Nat Rev Genet 
2020;21:505-6.

21. Broome DT, Hilton CB, Mehta N. Policy Implications of 
Artificial Intelligence and Machine Learning in Diabetes 
Management. Curr Diab Rep 2020;20:5.

22. Mazumder O, Roy D, Bhattacharya S, et al. Synthetic 
PPG generation from haemodynamic model with 
baroreflex autoregulation: a Digital twin of cardiovascular 
system. Annu Int Conf IEEE Eng Med Biol Soc 
2019;2019:5024-9.

23. Jim HSL, Hoogland AI, Brownstein NC, et al. Innovations 
in research and clinical care using patient-generated health 
data. CA: A Cancer Journal for Clinicians 2020;70:182-99.

24. Strickland E. How IBM  odell overpromised and 
underdelivered on AI health care. 2019:1-8.

25. Lal A, Pinevich Y, Gajic O, et al. Artificial intelligence and 
computer simulation models in critical illness. World J 
Crit Care Med 2020;9:13-9.

26. FDA. Proposed regulatory framework for modifications 
to artificial intelligence/machine learning (AI/ML)-based 
software as a medical device (SaMD). 2019.

27. IMDRF. Clinical investigation. International Medical 
Device Regulators Forum. 2018.

28. FDA. Developing a software precertification program: A 
working model. US Department of Health and Human 
Services. 2018.

29. Inan OT, Tenaerts P, Prindiville SA, et al. Digitizing 
clinical trials. NPJ Digit Med 2020;3:101.

30. Greenbaum D. Making Compassionate Use More Useful: 
Using real-world data, real-world evidence and digital 
twins to supplement or supplant randomized controlled 
trials. Pac Symp Biocomput 2021;26:38-49.

31. Masters K. Artificial intelligence in medical education. 
Med Teach 2019;41:976-80.

32. Randhawa GK, Jackson M. The role of artificial 
intelligence in learning and professional development 
for healthcare professionals. Healthc Manage Forum 
2020;33:19-24.



Annals of Translational Medicine, Vol 10, No 18 September 2022 Page 7 of 7

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):950 | https://dx.doi.org/10.21037/atm-22-4203

Cite this article as: Lal A, Dang J, Nabzdyk C, Gajic O, 
Herasevich V. Regulatory oversight and ethical concerns 
surrounding software as medical device (SaMD) and digital twin 
technology in healthcare. Ann Transl Med 2022;10(18):950. 
doi: 10.21037/atm-22-4203

33. Sheikh AY, Fann JI. Artificial Intelligence: Can 
Information be Transformed into Intelligence in Surgical 
Education? Thorac Surg Clin 2019;29:339-50.

34. Tomašev N, Glorot X, Rae JW, et al. A clinically applicable 
approach to continuous prediction of future acute kidney 
injury. Nature 2019;572:116-9.

35. Komorowski M, Celi LA, Badawi O, et al. The Artificial 
Intelligence Clinician learns optimal treatment strategies 
for sepsis in intensive care. Nat Med 2018;24:1716-20.

36. Lal A, Li G, Cubro E, et al. Development and Verification 
of a Digital Twin Patient Model to Predict Specific 
Treatment Response During the First 24 Hours of Sepsis. 
Crit Care Explor 2020;2:e0249.

37. Artificial Intelligence, Automation, and the Economy. 
Executive office of the President. 2016. Available online: 
https://obamawhitehouse.archives.gov/blog/2016/12/20/
artificial-intelligence-automation-and-economy

38. Trump DJ. Executive order on maintaining American 

leadership in artificial intelligence. 2019.
39. Pesapane F, Volonté C, Codari M, et al. Artificial 

intelligence as a medical device in radiology: ethical and 
regulatory issues in Europe and the United States. Insights 
Imaging 2018;9:745-53.

40. Dang J, Lal A, Flurin L, et al. Predictive  odelling in 
neurocritical care using causal artificial intelligence. World 
J Crit Care Med 2021;10:112-9.

41. Gerke S, Minssen T, Cohen G. Ethical and legal 
challenges of artificial intelligence-driven healthcare. In: 
Artificial Intelligence in Healthcare. Academic Press, 
2020:295-336.

42. Harris B. How ‘digital twins’ are harnessing IoT to 
advance precision medicine. Healthcare IT News. 2020.

43. Popa EO, van Hilten M, Oosterkamp E, et al. The use of 
digital twins in healthcare: socio-ethical benefits and socio-
ethical risks. Life Sci Soc Policy 2021;17:6.


