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Introduction

Atherosclerosis (AS) is a disease led by the residues 
deposited on the blood vessel wall for many years (1). It is 
the main pathological basis of cardiovascular diseases, such 
as cerebral infarction (2,3), and is associated with various 

complications during the onset of the AS, leading to shock 
and even death (4,5). There are no obvious features in its 
early stage, but chest tightness, dizziness, abdominal pain, 
lower limb gangrene, and other symptoms can occur later 
depending on the location of the lesion (6). Hypertension, 
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dyslipidemia, and smoking can increase the risk of AS (7-9).  
The age of AS onset is decreasing, and its incidence is 
increasing. The pathogenic factors of AS are very complex, 
often involving the arteries of the heart, brain, kidney, 
and other organs, which causes difficulty in the treatment 
process (10,11). 

Microarrays, also known as oligonucleotide arrays, are 
a new molecular biology technique used to study how 
genes can interact and how a cell network can control 
a large number of genes at the same time (12,13). This 
technology has been widely used in exploring the molecular 
mechanism and clinical indicators of diseases, making it 
possible to develop the effective therapies (14-16). The 
Gene Expression Omnibus (GEO) database provides users 
with a free high-throughput gene expression online search 
platform (17). In the present study, we analyze the GEO 
database and a variety of bioinformatics analysis methods to 
study the mechanism of AS and explore new biomarkers for 
AS patients. 

We applied various bioinformatics methods to analyze 
the GSE28829 dataset, including the Search Tool for the 
Retrieval of Interacting Genes (STRING) database, the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) dataset, and Gene Set Enrichment 
Analysis (GSEA) to determine the key gene related to AS. 
Functional assays were then used to study the mechanism 
between CUL1 (Cullin 1) and AS. The findings will help 
in finding biomarkers and therapeutic targets for AS. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-4372/rc). 

Methods

Microarray data download 

The GSE28829 dataset was downloaded from the GEO 
database. The dataset contained 29 samples, comprising  
16 groups of advanced atherosclerotic plaque and 13 groups 
of early atherosclerotic plaque. We set the former as the 
experimental group and the latter as the control group to 
analyze the potential biological information of AS. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Screening of differentially expressed genes 

In this study, we used the limma package of the R software 

(MathSoft) to analyze and compare the differentially 
expressed genes (DEGs) in the experimental and control 
groups (18). We set the screening criteria for upregulation 
as fold change (FC) >1, and downregulation as FC <1, and 
both selections met P<0.001. A heatmap of the screening 
results was drawn using RStudio software. 

Functional enrichment analysis of DEGs

The DAVID database (http://david.abcc.ncifcrf.gov/), 
established in 2003, provides systematic and thorough 
biological function annotation information for numerous 
gene or protein lists by integrating biological data and 
analytic methods. Gene Ontology (GO) provides a standard 
vocabulary for the attributes of gene products, including 
molecular function (MF), cellular component (CC), and 
biological process (BP) (19). The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) is a database that examines 
gene functions in a systematic manner and connects 
genomic and functional data, including metabolic pathway 
databases, hierarchical classification databases, gene 
databases, and genome databases (20). In the present study, 
we performed functional annotation analysis on upregulated 
and downregulated DEGs by the DAVID database. 

Protein-protein interaction network construction and 
module analysis

The STRING database is  used for searching for 
connections between proteins in physics and function (21).  
First, we input 2 types of DEGs into the data to acquire 
a TSV format file. The protein-protein interaction 
(PPI) network was processed using Cytoscape software. 
To identify hub genes, we used molecular complex 
detection (MCODE) analysis to analyze upregulated and 
downregulated DEGs, and genes with top degree values in 
each group were identified as hub genes, integrin subunit 
beta 2 (ITGB2), integrin subunit alpha M (ITGAM), 
complement C3a receptor 1 (C3AR1), vesicle associated 
membrane protein 8 (VAMP8), S-phase kinase associated 
protein 1 (SKP1), CUL1, and ubiquitin C (UBC). The 
expression levels of 7 hub genes in the case group (AS) and 
the control group were investigated based on R software. 

Correlation analysis between hub genes and immune 
factors 

In this analysis, we used the dataset from the GEO 

https://atm.amegroups.com/article/view/10.21037/atm-22-4372/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-4372/rc
http://david.abcc.ncifcrf.gov/
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database; the download data format was MINiML. The 
heatmaps of the correlation between hub genes and 
chemokine, immunoinhibitor, immunostimulator, MHC 
(Major histocompatibility complex) molecule, and receptor 
were displayed using pheatmap in R software. Spearman’s 
correlation analysis was used to describe correlations 
between hub genes and the above immune factors. P<0.05 
was considered statistically significant. 

GSEA and receiver-operating characteristic curve analysis 
of the 7 hub genes 

GSEA is commonly used to detect the expression levels of 
2 groups of samples that are significantly associated with 
specific biologically significant genomes (22). We uploaded 
the hub gene information to the GSEA website and used 
default parameters for analysis to study the biological 
functions of these genes. Furthermore, the survival receiver 
operating characteristic (ROC) curve package was used to 
assess the accuracy of AS prognosis when the hub gene was 
used as a predictive biomarker (23). According to the above 
results and previous research, CUL1 was confirmed to be 
the key gene related to AS. 

Cell culture

Human umbilical vein endothelial cells (HUVECs) were 
purchased from the Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). The cells were incubated 
in RPMI-1640 (Gibco, Grand Island, New York, USA) 
containing 10% fetal bovine serum (Gibco, USA), 50 mg/mL 
penicillin, and 100 mg/mL streptomycin (Solarbio, Beijing, 
China) in a humid environment at 37 ℃ and 5% CO2. 

Cell transfection 

Over-NC and CUL1 vector (over-CUL1) were purchased 
from Riobo and transfected into HUVECs using 
Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) according to the manufacturer’s 
instructions. The efficiency of transfection was detected by 
quantitative reverse transcription polymerase chain reaction 
(qRT-PCR). Pifithrin-α (PFT-α) is a commonly used p53 
inhibitor that inhibits p53-dependent gene transcriptional 
activity, such as cell-cycle albumin. When there is an 
excess of oxidized low-density lipoprotein (oxLDL), the 
cholesterol it carries accumulates in the walls of arteries, 
causing AS over time. In the present study, oxLDL was 

applied to construct the AS model. The applied PFT-α 
and oxLDL were purchased from GenePharma (Shanghai, 
China). 

qRT-PCR

Total RNAs were extracted from cells with TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) (24). We carried out 
reverse-transcription and real-time PCR assays using the 
PrimeScript RT reagent kit (Takara, Tokyo, Japan) and 
SYBR premix Ex Taq II kit (Takara, Japan). The 2−ΔΔCT 
method was used to measure the relative expressions of 
genes. 

Cell Counting Kit-8 

We used Cell Counting Kit-8 (CCK-8; Sigma, St. Louis, 
Missouri, USA) to verify cell viability. In total, 2×103 cells/well  
were seeded in a 96-well plate and cultured for 96 h (25). 
A total of 10 μL CCK-8 was added, and we evaluated the 
absorbance of each well at 450 nm. The growth curve used 
time as the horizontal axis and absorbance as the vertical axis. 

Statistical analysis

To analyze the data, we used SPSS version 15.0 (SPSS, 
Chicago, IL, USA) and GraphPad Prism version 6.0 
(GraphPad Software, La Jolla, CA, USA). To calculate 
significant differences, we used Student’s t-test or one-way 
analysis of variance as appropriate. P<0.05 was considered 
statistically significant.

Results 

Screening and functional analyses of DEGs 

Using limma software, we screened 29 samples and 
obtained 986 DEGs, including 595 upregulated and 391 
downregulated DEGs. The heatmap in Figure 1A shows 
the cluster distribution of these DEGs in 16 samples 
with advanced atherosclerotic plaque and 13 with early 
atherosclerotic plaque. In GO term, upregulated DEGs 
were enriched in neutrophil activation involved in 
immune response and neutrophil-mediated immunity 
(Figure 1B), and downregulated DEGs were enriched in 
cell-matrix adhesion and actin filament depolymerization 
(Figure 1C). Simultaneously, upregulated DEGs were 
enriched in the Leishmaniasis and B-cell receptor 
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Figure 1 Visualization, functional enrichment, and PPI network analysis of DEGs. (A) Heatmap showing the expressions of DEGs in 
the case (red) and control groups (purple). (B,C) Gene Ontology enrichment analysis of upregulated and downregulated DEGs. (D,E) 
Enrichment pathways of upregulated and downregulated DEGs in Kyoto Encyclopedia of Genes and Genomes. (F,G) PPI network map of 
upregulated and downregulated DEGs. PPI, protein-protein interaction; DEGs, differentially expressed genes.

signaling pathways in KEGG (Figure 1D), and the top 
10 KEGG pathways enriched by downregulated DEGs 
also included dilated cardiomyopathy and fatty acid 
degradation (Figure 1E). Based on the STRING network 
and Cytoscape software, we constructed upregulated 
PPI and downregulated PPI networks. The upregulated 
PPI network consisted of 311 nodes and 1,540 edges  
(Figure 1F), and the downregulated PPI network consisted 
of 293 nodes and 566 edges (Figure 1G).

Identification of the 7 hub genes 

We then used the MCODE plug in to identify the degree 
values of DEGs, and identified the upregulated hub genes as 
C3AR1 (degree =38), ITGB2 (degree =37), ITGAM (degree 

=34), and VAMP8 (degree =34, Figure 2A). Figure 2B-2E 
show the gene expression boxplots of the 4 upregulated 
hub genes. These boxplots indicated that the expression 
levels of the hub genes in the case group were higher than 
those in the control group (***P<0.001). In addition, the 
downregulated hub genes were UBC (degree =33), SKP1 
(degree =15), and CUL1 (degree =14) (Figure 3A). The 
boxplots of these 3 downregulated hub genes are shown in 
Figure 3B-3D, and their expression levels in the case group 
were lower than those in the control group (**P<0.01). 

Immunoassay of hub genes 

Next, we explored the correlations of the 7 hub genes 
with immune factors using pheatmap. These immune 
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Figure 2 Screening of upregulated and downregulated hub genes. (A) Upregulated hub genes are shown in yellow. (B-E) Boxplots of 
ITGAM, ITGB2, VAMP8, and C3AR1 expression analyses. ***P<0.001. ITGAM, integrin subunit alpha M; ITGB2, integrin subunit beta 2; 
VAMP8, vesicle associated membrane protein 8; C3AR1, complement C3a receptor 1.
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factors included 5 categories in total, as follows: chemokine  
(Figure 4A), immunoinhibitor (Figure 4B), immunostimulator 
(Figure 4C), MHC molecule (Figure 4D) and receptor  
(Figure 4E). The results were shown by Spearman’s 
correlation analysis. Blue indicated positive correlation and 
red indicated negative correlation (*P<0.05, **P<0.01). The 
7 genes were found to be associated with these immune 
factors, especially chemokine and MHC molecule. 

GSEA and prognostic value analysis of hub genes 

To elucidate the biological functions of hub genes, we 
performed KEGG enrichment analysis on the 7 hub genes 
using GSEA software. The findings indicated that the up-
regulated gene ITGAM was enriched in Systemic lupus 
erythematosus [Figure 5A,5B, area under the ROC curve 
(AUC) =0.903], ITGB2 in Arachidonic acid metabolism 
(Figure 5C,5D, AUC =0.913), VAMP8 in O glycan biosynthesis 
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Figure 4 Heatmap of the correlation between the 7 hub genes and immune factors. Horizontal and vertical coordinates represent genes, 
and the different colors represent the correlation coefficient. Blue represents a positive correlation, and red represents a negative correlation. 
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(Figure 5E,5F, AUC =0.944), and C3AR1 in Tryptophan 
metabolism (Figure 5G,5H, AUC =0.969). ROC curve of 
the upregulated hub genes (ITGAM, ITGB2, VAMP8, and 
C3AR1) indicated that their AUC values were all >0.7, 
which showed that they had a strong prognostic ability 
for AS. In addition, the downregulated hub gene SKP1 
was enriched in the Pentose phosphate pathway (Figure 
6A,6B, AUC =0.938), UBC in Non-homologous end-
joining (Figure 6C,6D, AUC =0.844), and CUL in Cell 
cycle (Figure 6E,6F, AUC =0.851). The AUC values of the 
downregulated hub genes (SKP1, UBC, and CUL1) were 
also >0.7, indicating that the downregulated hub genes 

also had a stronger prognostic predictive ability. These 
findings demonstrated that the 7 hub genes have the 
potential to be prognostic biomarkers for AS. 

CUL1 could inhibit cell proliferation in AS 

To determine an appropriate concentration of oxLDL in the 
AS model, we measured the relative expressions of CUL1 
with 50 and 100 μg/mL in HUVECs. The latter had better 
efficiency (Figure 7A). Therefore, 100 μg/mL was chosen 
for the next assays. Then, over-CUL1 was transfected into 
HUVECs (Figure 7B). In CCK-8, it was found that oxLDL 
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Figure 5 GSEA analysis and ROC curve analysis of upregulated hub genes. (A,B) Enrichment pathways and ROC curves of ITGAM. AUC 
=0.903. (C,D) Enrichment pathways and ROC curves of ITGB2. AUC =0.913. (E,F) Enrichment pathways and ROC curves of VAMP8. 
AUC =0.944. (G,H) Enrichment pathways and ROC curves of C3AR1. AUC =0.969. GSEA, gene set enrichment analysis; ROC, receiver-
operating characteristic; AUC, area under the ROC curve; ES, Enrichment score; NP, NOM P-value; TPR, true positive rate; FPR, false 
positive rate. 
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Figure 7 CUL1 could inhibit cell proliferation in AS. (A) Relative expressions of CUL1 with 50 and 100 μg/mL in HUVECs. (B) Over-
CUL1 was transfected into HUVECs. (C) CUL1 could inhibit cell proliferation in AS. (D) Over-expressed CUL1 could elevate the 
concentrations of cytokines. #P<0.05, compared with oxLDL group; *P<0.05, **P<0.01, compared with control group. CUL1, cullin 1; 
HUVECs, human umbilical vein endothelial cells; AS, atherosclerosis; oxLDL, oxidized low-density lipoprotein; NC, negative control; OD, 
optical density; IL, interleukin; TNF, tumor necrosis factor.

weakened cell viability compared with the normal group, 
CUL1 promoted cell proliferation in HUVECs, and CUL1 
could inhibit cell proliferation in AS (Figure 7C). We also 
investigated the relationship between CUL1 and cytokines. 
The data showed that over-expressed CUL1 could elevate the 
concentrations of cytokines (Figure 7D). 
CUL1 inhibits the progression of AS by the p53 pathway 

Based on the GSEA results, we determined several candidate 
downstream targets of CUL1 in AS, including the p53, 
MDM, Bax, caspase-9, caspase-3, and p21 pathways. Using 
qRT-PCR assays, the expressions of genes were detected 
in the following groups: normal, oxLDL (100 μg/mL),  
oxLDL + NC, oxLDL + CUL1, oxLDL + PFT-α, and 
oxLDL + PFT-α + CUL1. As shown in Figure 8A, the relative 
expression level of CUL1 in those groups was detected. Then, 
the expressions of p53 (Figure 8B), MDM2 (Figure 8C), Bax 

(Figure 8D), caspase-9 (Figure 8E), caspase-3 (Figure 8F), 
and p21 (Figure 8G) were detected in the above groups. We 
found that in AS PFT-α had a negative relation with CUL1. 
Combined with the findings above, we supposed that p53 
pathway might be the downstream target of CUL1 in AS. 
As shown in Figure 8H, CCK-8 demonstrated that PFT-α 
could promote cell growth in AS, and CUL1 had a positive 
association with p53. 

Discussion

Apoptosis represents a major mechanism responsible for 
regulating the cellular structure of arterial walls during 
atherogenesis. Many environmental and endogenous factors 
can affect apoptosis through various signal transduction 
pathways or enzymatic systems. Abnormal apoptosis may 
occur in atherosclerosis, leading to a large accumulation of 



Annals of Translational Medicine, Vol 10, No 18 September 2022 Page 9 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):1008 | https://dx.doi.org/10.21037/atm-22-4372

Figure 8 CUL1 inhibits the progression of AS by the p53 pathway. (A) Relative expression levels of CUL1 in each group were detected. (B-G) 
Expressions of the p53 (B), MDM2 (C), Bax (D), caspase-9 (E), caspase-3 (F), and p21 (G) pathways in each group. (H) CCK-8 demonstrated 
that PFT-α could promote cell growth in AS. *P<0.05 compared with normal; #P<0.05, ##P<0.01 compared with oxLDL. CUL1, cullin 1; 
AS, atherosclerosis; oxLDL, oxidized low-density lipoprotein; PET-α, pifithrin-α; NC, negative control; OD, optical density; CCK-8, cell 
counting kit-8. 
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intimal cells during the development of atherosclerosis. In 
advanced atherosclerotic plaques, especially during acute 
vascular syndromes, massive apoptosis of vascular cells may 
weaken the fibrous cap, promote thrombosis, and increase 
the risk of plaque rupture. Our study found that CUL1 
can affect the proliferation and apoptosis of atherosclerosis 
through the expression of p53 signaling pathway proteins. 
Further elucidation of the molecular mechanism of vascular 
apoptosis may contribute to the clinical diagnosis and 
treatment of atherosclerosis.

Complications of AS are the leading cause of its 
morbidity and mortality (26). In aortic AS, aortic aneurysm 
is the main complication (27). In carotid artery and cerebral 
AS, long-term insufficient blood supply to the brain tissues 
can cause brain atrophy and intellectual disability. Cerebral 
hemorrhage and renal AS can cause renal atrophy and 
refractory hypertension (28). So far, no effective cure has 
been determined for AS. A deeper understanding molecular 
of AS will facilitate its diagnosis and treatment, and reduce 
the economic and social burden on AS patients. 

In our research, we screened the GSE28829 dataset and 
identified 595 upregulated and 391 downregulated DEGs 
enriched in neutrophil degranulation, the B-cell receptor 
signaling pathway, cell-matrix adhesion, and fatty acid 
degradation, which were reported to be associated with 
heart diseases. Kawasaki et al. found that the increase in 
neutrophil degranulation affected a variety of biological 
processes that were altered in atrial fibrillation. In a 
separate cohort, patients with atrial fibrillation had an 
activated neutrophil in the left atrium, and neutrophil gene 
expression increased (29). Wang et al. found the B cell-
receptor signaling pathway to be an important signaling 
pathway in controlling humoral immunity, and promote the 
formation of plasma cells (30). Other studies have shown 
that the B-cell receptor is a therapeutic target for chronic 
lymphocytic leukemia (31,32). Some researchers pointed out 
that the interaction between cells and cell-matrix adhesion 
and cell-extracellular matrix guides complex cell decisions 
in various physiological processes, including immune 
regulation, such as the passage of white blood cells through 
the blood and lymphatic system (33). Zhou et al. reported 
that fatty acid is the main inducer of endothelial cell 
apoptosis and inflammatory cytokines. Fatty acid results in 
endothelial dysfunction, causing macrophages, fibroblasts, 
and monocytes to adhere to the endothelium and migrate to 
endothelial cells. The migrated cells form a large number of 
lipid-laden foam cells, which eventually form atherosclerotic 
plaques (34). These terms and pathways might be potential 

therapeutic targets in AS treatment. 
Next, we constructed PPI networks of upregulated and 

downregulated DEGs, and identified 4 upregulated and 
3 downregulated hub genes as follows: C3AR1, ITGB2, 
ITGAM, VAMP8, UBC, SKP1, and CUL1. In their study, 
Zou et al. found that the expression of C3AR1 in metastatic 
osteosarcoma was lower than that in non-metastatic 
osteosarcoma. Its overexpression inhibited the proliferation, 
migration, and invasion of osteosarcoma cells, and induced 
cell apoptosis (35). C3AR1 is closely related to a variety of 
immune cells, such as macrophages (35). Blackburn et al.  
found that ITGB2 is mainly expressed in the blood and 
encodes the integrin β chain (36). The ITGB2 integrin β 
chain combines with a variety of α chains to form different 
integrin heterodimers. Integrin is a complete cell surface 
protein involved in cell adhesion and cell surface-mediated 
signal transmission (36). CUL1 has been identified as 
a scaffold protein in the early development of chicken 
embryos (37). CUL1 promotes the invasion of human 
trophoblast cells. Moreover, the abnormal expression of 
CUL1 has been reported to be related to pre-eclampsia (38). 

The expressions of the hub genes were detected in the AS 
group and control group through TCGA database. The results 
showed that upregulated hub genes were promotors, and 
downregulated hub genes were suppressors in AS progression. 
Their association with immune factors was also analyzed. The 
data demonstrated that the 7 hub genes were closely related 
to chemokine, immunoinhibitor, immunostimulator, MHC 
molecule, and receptor. These findings indicate that the 7 hub 
genes might be potential treatment targets for AS. Moreover, 
GSE28829 was clustered in systemic lupus erythematosus, 
arachidonic acid metabolism, tryptophan metabolism, the 
pentose phosphate pathway, non-homologous end-joining, 
and cell cycle. In ROC curves, all the hub genes showed good 
ability in AS prognosis prediction. Combined with all the 
analyses and previous research, CUL1 was identified as the key 
gene for the functional experiments. 

Through the functional experiment, the AS model was 
constructed by HUVECs with 100 μg/mL oxLDL. In the 
CCK-8 assays, we found that CUL1 could inhibit the cell 
proliferation in AS, and its overexpression could increase 
the concentration of cytokines, which meant that CUL1 
was a suppressor gene in AS progression and had a positive 
relation with cytokines. To explore the downstream target 
of CUL1 in AS, we started with the GSEA results of CUL1, 
namely cell cycle, oocyte meiosis, DNA replication, and 
basal transcription factors. Based on these, the candidate 
pathways were determined, including the p53, MDM2, 
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Bax, caspase-9, caspase-3 and p21 pathways. Through PCR 
assays, we inferred that p53 was the potential target, which 
was confirmed by CCK-8 assays. These results will assist in 
AS research. 

There are certain limitations in our study, and there is a 
lack of corresponding in vivo experiments to further verify 
our conclusions. In the next study, we will further verify 
through animal real and clinical samples of atherosclerosis, 
and further clarify through in vivo experiments. CUL1 
affects the progression of atherosclerosis.

Conclusions

In the present study, we identified 7 hub genes (C3AR1, 
ITGB2, ITGAM, VAMP8, UBC, SKP1, and CUL1) through 
multiple bioinformatics analyses that have the potential to 
be treatment targets and prognostic biomarkers in AS. In 
functional experiments, we found that CUL1 could inhibit 
the cell proliferation of AS through the p53 pathway, which 
is of great significance for AS research. However, more 
studies are necessary to validate these findings. 
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