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Background: Type 2 diabetes (T2D) is a prevalent chronic disease with elusive. Combining transcriptome 
and single-cell sequencing data to explore biomarkers of T2D could provide new insights into the in-depth 
understanding of the molecular mechanisms and diagnosis of T2D. 
Methods: The GSE41762 dataset including RNA-seq data for healthy and T2D patients, was obtained 
from the Gene Expression Omnibus (GEO) database. The potential functions of the differentially expressed 
genes (DEGs) were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis. Moreover, biomarkers were screened out by the Least Absolute Shrinkage and Selection 
Operator (LASSO) algorithm and receiver operating characteristic (ROC) analysis. Furthermore, single-
cell RNA (sc-RNA)-seq data in the “E-MTAB-5061” dataset was downloaded from the ArrayExpress 
(European Bioinformatics Institute, EBI) database. Principal components analysis (PCA) and t-distributed 
stochastic neighbor embedding (tSNE) were used for dimensionality reduction analysis and cell clustering. 
The FindAllMarkers function was used annotate different cell clusters, and key cell clusters were screened 
by the expression levels of the biomarkers. Finally, the transcription factors (TFs) of the biomarkers were 
recognized.
Results: A total of 111 DEGs were screened in the GSE41762 dataset, which were mainly related to 
hormone secretion, specialized postsynaptic membrane, pancreatic secretion, JAK-STAT signaling pathway, 
and Ras signaling pathway. In addition, SLC2A2, SERPINF1, RASGRP1, and CHL1 were screened out as 
biomarkers of T2D, which possessed potential diagnostic value as AUC value greater than 0.8. A total of 1,515 
T2D group cells and 1,817 healthy cohort cells were screened as core cells in the “E-MTAB-5061” dataset. 
Following tSNE dimensionality reduction cluster analysis, the core cells were divided into 13 cell clusters. 
According to the marker genes, the 13 cell clusters were annotated into six types of cells. Notably, SERPINF1 
was highly expressed in fibroblasts and might be regulated by NR2F2 (nuclear receptor subfamily2, group F, 
and member 2).
Conclusions: This study identified four biomarkers (SLC2A2, SERPINF1, RASGRP1, and CHL1) for 
T2D, which provided new markers for the clinical diagnosis of T2D. Among them, SERPINF1 might be 
regulated by NR2F2, which provides valuable insight into the pathogensis of T2D.
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Introduction 

Diabetes mellitus (DM) is a chronic disease characterized 
by high blood sugar levels, caused by insufficient insulin 
production by the pancreas or an inappropriate response of 
the body's cells to insulin (1). DM is generally classified into 
two forms: type 1 diabetes (T1D) and type 2 diabetes (T2D). 
Of these, T2D is the most common type of diabetes, 
accounting for 90–95% of all diabetes cases, and is primarily 
characterized by pancreatic beta-cell dysfunction and insulin 
resistance (2). T2D can lead to serious clinical complications 
such as diabetic cardiomyopathy, retinopathy, nephropathy, 
and neuropathy, with high rates of disabil ity and  
mortality (3). As lifestyle habits have changed, the number 
of T2D patients globally has increased significantly. 
According to the World Health Organization (WHO), 
T2D affected 425 million people worldwide in 2017 and 
is expected to affect 629 million people by 2045 (4). At 
present, clinically, the early diagnosis of T2D lacks reliable 
biomarkers, and its pathogenesis has not been fully studied, 
and the treatment is still challenging (5). Although some 
glycemic control drugs are used to treat advanced T2D, 
complete remission is rare among patients (6). Therefore, 
the study of early diagnostic markers and molecular 
pathology of T2D is of great significance for the clinical 
treatment of T2D.

RNA-sequencing (RNA-seq) is a precise and sensitive 
technique for  examining global  gene express ion  
profiles (7). providing new and powerful means to study the 
pathogenesis of complex diseases such as T2D (8). In the 
past, studies have tried to find the biomarker genes of T2D 
through RNA-seq, and proposed the possible molecular 
mechanism. Che et al. proposed that 10 hub genes including 
CNOT6L, and CNOT6, etc, are involved in the pathogenesis 
of T2D (9). Transcriptomic analysis also found that two 
core genes, SERPING1 and ANPEP, were associated 
with the development of T2D (10). Whether these genes 
can work as clinical biomarkers of T2D, there is a lack 
of modeling verification of large-scale clinical samples. 
In addition, a limitation of RNA-seq methods is that 
bulk RNA-seq cannot capture the heterogeneity of each  
sample (11). Furthermore, heterogeneity may exist even 
within a single disease (12). Single-cell RNA sequencing 

(scRNA-seq) is a new technology to reveal cellular 
heterogeneity, which not only overcomes the limitations of 
traditional RNA-sequencing techniques in detecting small 
expression differences between cells (13), but also clearly 
shows gene expression profiles of various cell types, as well 
as specific cellular functional alterations.

In this study, we obtained RNA-seq data from healthy 
and T2D patient cohorts from the Gene Expression 
Omnibus (GEO) database. Subsequently, we performed 
Gene Ontology (GO) functional enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment pathway analysis to explore the biological 
functions and enrichment pathways of differentially 
expressed genes (DEGs). Importantly, we also applied 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) algorithm and Nomogram establishment, 
demonstrating that SLC2A2, SERPINF1, RASGRP1 
and CHL1 are reliable biomarkers of T2D. Finally, we 
annotated cell clusters by analyzing single-cell sequencing 
data of human islet cells, and screened key cell clusters 
using biomarker expression levels, and finally identified 
biomarker transcription factors (TFs). Our findings suggest 
that aberrantly expressed SERPINF1 in fibroblasts may 
be regulated by NR2F2, which provides new insights into 
the treatment of T2D. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-4303/rc).

Methods

Data source

We downloaded the GSE41762 dataset containing RNA-
seq data from the islet tissues of 57 healthy participants and 
20 T2D patients from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE41762). Moreover, 
the scRNA-seq data of pancreatic tissue and islets of six 
healthy controls and four T2D donors was downloaded 
from the ArrayExpress database (registration number: 
“E-MTAB-5061”) (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5061/). The design and analysis 
flow of this study was shown in Figure S1. The study was 
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conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Differential expression analysis

The “limma” R package (https://bioconductor.org/
packages/release/bioc/html/limma.html) was applied to 
screen DEGs between the healthy and T2D samples with 
a setting of |log2 fold change (FC)| >0.5 and P<0.05 (14). 
Next, the volcano plot of DEGs was displayed using the 
“ggplot2” R package, and the heatmap of DEGs was plotted 
using the “heatmap” R package.

Functional enrichment analysis

The “clusterProfiler” package in R language was used 
to perform the GO and KEGG enrichment analyses of 
DEGs (15). P<0.05 was considered to indicate significant 
enrichment.

Biomarkers screening

The LASSO algorithm in R language was used to screen 
biomarkers for T2D. Next, the ability of biomarkers to 
distinguish healthy from T2D patients was analyzed using 
receiver operating characteristic (ROC) curves of the 
“pROC” package by calculating the area under curve (AUC) 
values of the ROC curves. Genes with AUC values greater 
than 0.8 were defined as biomarkers.

Nomogram establishment 

A nomogram based on the biomarkers was constructed 
using the “lrm” function in the R package to predict the 
probability of illness. Moreover, calibration curves were 
displayed using the “rms” package, decision curves were 
constructed by “ggDCA” package and ROC curves were 
applied to verify the validity of the nomogram.

Single-cell analysis

The “Seurat” R package was utilized to process the scRNA-
seq data. The data were initially filtered according to the 
following criteria: (I) genes that were only expressed in ≤3 
cells; (II) low-quality cells with <100 genes; and (III) cells 
with >10,000 genes. Next, the retained cells were defined 
as core cells. Moreover, analysis of variance (ANOVA) 
as performed on the genes of core cells to screen out the 

highly variable genes (16). Moreover, the gene expression of 
core cells was normalized through a linear regression model, 
and principal components analysis (PCA) was performed 
to illustrate the distribution of core cells. Next, the top 20 
principal components were selected for data dimensionality 
reduction using the tSNE algorithm in the R language. The 
“FindAllMarker” function of the “Seurat” R package was 
employed to identify marker genes and used these marker 
genes to annotate different cell clusters through the R 
package “single” and “CellMarker” database (17). Also, the 
expression levels of biomarkers were utilized to screen the 
key cell clusters.

The fibroblasts were separated into high and low 
expression groups according to the expression of 
biomarkers. Gene set variation analysis (GSVA) was used 
to analyze the functional enrichment of all genes in the 
biomarker genome. Differences in the GSVA scores (which 
we denoted as “t”) between the high and low biomarker 
expression groups were analyzed using the “limma” R 
package (18). 

SCENIC analysis

Single-cell regulatory network inference and clustering 
(SCENIC) analysis was performed on the high and low 
biomarker expression groups using the “SCENIC” package 
in R language to identify the TFs (19). 

Statistical analysis

All analyses were conducted using the R programming 
language. If not specified above, a P value (two-sided) less 
than 0.05 was considered statistically significant. 

Results

Analysis of T2D-related DEGs

Following analysis using the “limma” package, a total of 
111 DEGs between the control and T2D groups were 
obtained, including 68 up-regulated genes and 43 down-
regulated genes (Figure 1A,1B, https://cdn.amegroups.cn/
static/public/atm-22-4303-1.xls). The GO analysis results 
showed that 111 genes were enriched, with a total of 636 
GO terms, including the regulation of hormone secretion, 
positive regulation of the MAPK (mitogen activated 
protein kinase) cascade, metabolic process of collagen, etc.  
(Figure 2A, https://cdn.amegroups.cn/static/public/atm-
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Figure 1 The volcano plot (A) and heatmap (B) of differentially expressed genes. 

Figure 2 GO (A) and KEGG (B) functional analysis of the differentially expressed genes. BP, biological process; CC, cell component; MF, 
molecular function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; EGFR, epidermal growth factor receptor.
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22-4303-2.xls). In addition, these DEGs were involved in 
diabetes at maturity, pancreatic secretion, the Ras signaling 
pathway, etc. (Figure 2B, https://cdn.amegroups.cn/static/
public/atm-22-4303-3.xls). 

Identification of biomarkers

To further screen out the biomarkers in T2D, the LASSO 
algorithm was executed based on the 111 DEGs. Based on 
λmin =0.1169, a total of six genes were extracted, namely 
SLC2A2, SERPINF1, RASGRP1, CHL1, PGC, and IAPP 
(Figure 3A,3B, https://cdn.amegroups.cn/static/public/atm-
22-4303-4.xls).

The gene with the highest AUC value was SLC2A2 (AUC 
=0.9), followed by those of SERPINF1, RASGRP1, and 
CHL1 (AUC =0.83), and the AUCs of PGC and IAPP were 
0.79 and 0.77, respectively. Notably, SLC2A2, SERPINF1, 
RASGRP1, and CHL1, which had AUCs >0.8, were 
screened as biomarkers for subsequent analysis (Figure 3C).

Nomogram construction

A nomogram based on SLC2A2, SERPINF1, RASGRP1, 
and CHL1 was constructed (Figure 4A), and the calibration 
curve indicated that the diagnostic model nomogram was 
effective (Figure 4B). The highest benefit rate of the model 
(SLC2A2 + SERPINF1 + RASGRP1 + CHL1) highlighted 
the validity of the nomogram (Figure 4C). Furthermore, 
the AUC value of the nomogram based on SLC2A2 + 

SERPINF1 + RASGRP1 + CHL1 was 0.902, which verified 
the effectiveness of the nomogram (Figure 4D).

Screening of single-cell data and cell cluster analysis

After filtering, a total of 1,515 and 1,817 cells were retained 
in the T2D and healthy groups, respectively (Figure 5A). 
These cells were computed by ANOVA and the top 2,000 
most variable genes were selected (Figure 5B). 

Following the normalization of gene expression, PCA 
of the variably expressed genes between the T2D and 
healthy groups was conducted (Figure 5C), and the top 20 
principal components were screened for subsequent analysis  
(Figure 5D,5E).

Through unbiased clustering based on the tSNE 
analyses, 13 cell clusters were identified (Figure 6A). 
The results of cell cluster analysis in the healthy and 
T2D cohorts are shown in Figure 6B. Marker genes were 
screened using the FindAllMarkers function (https://cdn.
amegroups.cn/static/public/atm-22-4303-5.xls) and the top 
five marker genes are displayed in Figure 6C. 

Based on the marker genes, we annotated 13 cell clusters 
to six different cell types (Figure S2A), including epithelial 
cells (CELA3A, CTRB1, SPINK1, CLPS, PRSS3, and 
eGFP), fibroblasts (BGN, SFRP2, COL3A1, COL1A2, 
IGFBP4, and SPARC), neurons (GPC5-AS1, DLK1, 
STMN2, SEC11C, G6PC2 and LY6E), endothelial cells 
(CLDN5, RGCC, IFI27, CD36, PLVAP, and ESAM), 
macrophages (ALOX5AP, CPA3, S100A4, TPSB2, 

Figure 3 LASSO regression analysis (A and B) and univariate Cox regression (C) analysis were used to screen eigengenes. LASSO, least 
absolute shrinkage and selection operator, the basic idea of LASSO is to minimize the residual sum of squares under the constraint that the 
sum of the absolute values of the regression coefficients is less than a constant, so as to produce some regression coefficients strictly equal to 
0 to get an interpretable model.
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TPSAB1, and TPSD1), and hepatocytes (CRYBA2, TTR, 
GPX3, CHGA, SNORD50A, and GCG). The expression 
levels of marker genes in the six cell types were displayed in 
violin and scatter plots (Figure S2B-S2M).

Confirmation of the key cell clusters and GSVA analysis

We found that SERPINF1 was mainly expressed in 
fibroblasts, which indicated that fibroblasts may be 
more correlated with the occurrence and progression of 
diabetes, so fibroblasts were used as the target cell for 
subsequent analysis (Figure S3A,S3B). The expression 

level of SERPINF1 in fibroblasts in the healthy group 
was higher than that in fibroblasts in the T2D group  
(Figure S3C, S3D). Furthermore, we discovered that 
the proportion of fibroblasts with a high expression of 
SERPINF1 was higher in the healthy group than in the 
T2D group (Figure S3E).

To explore the potential role of fibroblasts with high 
and low expressions in T2D, we analyzed the foundational 
enrichment by GSVA. Seventeen functional pathways were 
mainly activated in the high expression group, including 
phosphatidylinositol-3 kinase/protein kinase B (PI3K-AKT) 
signaling, interferon α response, reactive oxygen species 
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Figure 5 Single-cell data filtering, the left ordinate represents the number of genes, and the right ordinate represents the count value of 
gene expression (A); display of hypervariable genes (B); PCA (C); principal component screening (D and E). PCA, principal component 
analysis.

pathway, and 21 functional pathways including apoptosis, 
inflammatory response pathway, and myogenesis were 
activated in the low expression group (Figure 7, https://cdn.
amegroups.cn/static/public/atm-22-4303-6.xls).

Analysis of key TFs and target genes

To investigate the specific transcriptional regulators of 
fibroblasts with high and low expressions of SERPINF1, the 
TFs of the two cell groups were predicted by SCENIC, and 
the top 10 TFs of relative activity scores were demonstrated 
in Figure 8A and Figure 8B (https://cdn.amegroups.cn/
static/public/atm-22-4303-7.xls). Both cell groups were 
regulated by HEYL, HOXB2, HOXA1, ATF5, ZNF467, 
SMARCB1, CREB3L1, JUNB, and NR1H2, which have 

already been identified as TFs for fibroblasts. However, 
NR2F2 and NFE2L2 were specific TFs in the high and low 
biomarker expression groups, respectively (Figure 8C), and 
their expression levels were visualized in Figure 8D,8E. The 
expression level of NR2F2 was significantly different, and 
therefore, it was considered as a TF of fibroblasts with high 
SERPINF1 expression (Figure 8F). 

We also extracted the target genes regulated by NR2F2 
from the SCENIC analysis results and intersected them 
with the DEGs. A total of 18 genes were both target genes 
and DEGs (Figure 8G), and four target genes: SERPINF1, 
SFRP4, CELA3A, and CTRC had notable differences 
between the fibroblasts with high and low expressions of 
SERPINF1 (Figure 8H), and their expression levels are 
displayed in Figure 8I,8J.
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Discussion

Diabetes is an incurable chronic disease with chronic 
complications that can spread to vital organs of the body, 
and severe acute complications can be life-threatening. 
T2D accounts for more than 90% of the total number 
of diabetic patients (20). At present, the pathogenesis of 
T2D has not been fully studied, and in-depth research 
will help to advance the problem of curing T2D. With the 
development of single-cell sequencing technology, scRNA-
seq data analysis has become a current research hotspot. 
Unlike tissue expression data, scRNA-seq data can mask 

important transcriptional signals contained in individual 
cells, and researchers can study genes at higher resolution 
in different types of cell populations based on scRNA-seq  
data (21). Using scRNA-seq data to study the gene 
expression profile changes and pathogenesis of T2D is a 
promising and effective method.

To further screen the biomarkers in T2D, we applied 
the LASSO algorithm based on 111 DEGs and identified 
four biomarker genes, including SLC2A2, SERPINF1, 
RASGRP1, and CHL1. These four genes have been 
studied in the past, including those linked to diabetes. 
In mice, biallelic SLC2A2 inactivation induces neonatal  
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diabetes (22) and biallelic SLC2A2 mutations cause 
Fanconi-Bickel syndrome (FBS).

A previous study investigated the role of SLC2A2 in 
transient neonatal diabetes mellitus (TNDM) or permanent 
neonatal diabetes mellitus (PNDM) using a combination of 
sequencing and homozygosity mapping to rule out common 
genetic causes of NDM. Of the 104 included patients, 
five had SLC2A2 homozygous mutations, including four 
de novo mutations. Four out of five patients with SLC2A2 
mutations developed isolated diabetes followed by Fanconi–
Bickel syndrome. Four out of five patients had TNDM, 
and one patient with PNDM was still on insulin at 28 
months. These results suggest that SLC2A2 mutation 
is an autosomal recessive cause of NDM. Patients with 
homozygous SLC2A2 mutations may have neonatal 
diabetes, which emphasizes the role of GLUT2 in human 
beta cells (23). 

Pigment epithelium-derived factor (PEDF), also 
known as serpin F1 (human gene symbol: SERPINF1), 
belongs to the serpin family of peptide enzyme inhibitors. 
SERPINF1 exerts multiple roles in vitro and in mice, 
including promoting neuronal survival and differentiation 
and effectively inhibiting angiogenesis (24). The fat mass-
increasing allele SNP rs12603825 is significantly associated 
with increased fasting SERPINF1 concentrations, and 

SERPINF1 levels are significantly positively correlated with 
all of the measured body fat parameters and fasting leptin 
concentrations. A common functional genetic variant at the 
locus encoding SERPINF1 is associated with overall obesity, 
obesity-related insulin resistance, and circulating leptin 
levels in populations that are at increased risk of T2D (25). 
Impaired endothelial angiogenesis is a hallmark of diabetic 
vascular complications.

RASGRP1, a member of the RasGRP family, is a 
nucleotide exchange factor necessary for Ras activation, 
which in turn stimulates various effector systems (26,27). A 
study has shown that knockdown of RasGRP1 significantly 
attenuates vascular endothelial growth factor (VEGF) 
induced migration and angiogenesis of human umbilical 
vein endothelial cells (HUVECs) and activation of the 
AKT pathway. Phosphorylation of VEGF, RASGRP1, and 
AKT is downregulated in high glucose-exposed HUVECs 
compared with normal glucose, whereas metformin up-
regulates RASGRP1-dependent VEGF signaling and 
ameliorates impaired angiogenesis induced by high glucose. 
RASGRP1 is also involved in VEGF-induced angiogenesis 
and the pro-angiogenic effect of metformin under 
hyperglycemia (28). 

CHL1  i s  a  neural  recognit ion molecule  of  the 
immunoglobulin superfamily that is mainly expressed in the 

Figure 7 GSVA enrichment analysis. GSVA, Gene set variation analysis.
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nervous system (29). CHL1 regulates neuronal migration, 
axonal growth, and dendritic projection. In contrast to 
CHL1 overexpression, silencing of CHL1 induces cell 
proliferation, decreased apoptosis, prolonged S phase, and 
shortened G1 phase of the cell cycle. Extracellular signal-
regulated kinase (ERK) 1/2-MAPK inhibitors abolish the 
effect of CHL1 deficiency on MIN6 cell proliferation. 
Furthermore, a high-fat diet results in increased islet volume 
and β-cell proliferation in mice, decreased CHL1 expression, 
and activation of the ERK pathway. Thus, high fat-induced 

decreased expression of CHL1 in mouse islets leads to cell 
proliferation via the ERK pathway and regulation of the 
cell cycle via the p53 pathway. These mechanisms may 
contribute to obesity-induced compensatory hyperplasia of 
pancreatic beta cells in prediabetes (30).

In addition, we also investigated specific TFs that 
were differentially expressed in fibroblasts with high and 
low expressions of SERPINF1, and finally found that the 
TFs NFE2L2 and NR2F2 were differently expressed in 
fibroblasts with low and high expressions of SERPINF1, 

Figure 8 SERPINF1 overexpresses top10 transcription factor in Fibroblasts cells (A); SERPINF1 low expression top10 transcription factor 
in Fibroblasts cells (B); transcription factor Venn diagram (C); violin plot of expression levels of different transcription factors (D); scatter 
plot of expression levels of different transcription factors (E); differences between high and low expression groups of transcription factor 
biomarkers (F); Venn diagram of specific transcription factor target genes (G); differential analysis of transcription factor target genes 
between high and low expression groups of biomarkers (H); violin plot of expression levels of transcription factor target genes (I); scatter 
plot of transcription factor target gene expression (J). *, P<0.05, ****, P<0.0001, ns, not significant. TF, transcription factor; GEO, Gene 
Expression Omnibus; DEG, differentially expressed gene.
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respectively. NFE2L2, a member of the small family of 
basic leucine zipper (bZIP) proteins, exerts anti-oxidation 
and inflammation regulation functions (31). The high 
expression of NR2F2 is more significant in fibroblasts 
with high SERPINF1 expression, and its four target genes 
are differentially expressed in the two groups. NR2F2 is a 
nuclear receptor family gene and a ligand-induced TF that 
can regulate multiple genes (32). NR2F2 is thought to play a 
role in tumor progression and chronic periodontitis (33,34); 
however, the function of NR2F2 in the pathogenesis of 
diabetes needs to be further studied.

Our study also has certain limitations that should be 
noted. The sample size of single-cell data is too small, and 
there is no clinical sample validation. Also, experiments 
allowing further functional studies on key genes, such as 
NR2F2, were lacking. However, our study provides new 
important clues for the study of the pathogenesis of diabetes 
and proposes a possible function of fibroblasts in T2D (35). 
We will also continue to monitor our research findings.

In conclusion, we performed scRNA-seq analysis of T2D 
in this study. T2D-related DEG analysis yielded a total 
of 111 DEGs. Then, based on the LASSO algorithm of 
these DEGs, we identified relevant biomarkers, including 
SLC2A2, SERPINF1, RASGRP1, and CHL1, which could be 
used for the biological diagnostic prediction of T2D. Single-
cell data screening and cell clustering analysis revealed that 
13 cell clusters were annotated into six different cell types, 
including epithelial cells, fibroblasts, neurons, endothelial 
cells, macrophages, and hepatocytes. Interestingly, we 
found that SERPINF1 was predominantly expressed in 
fibroblasts, and subsequent analysis of fibroblasts revealed 
that SERPINF1 was expressed at higher levels in healthy 
constitutive fibroblasts than in T2D constitutive fibroblasts. 
Analysis of the key TFs and target genes found that NR2F2 
and its target genes were differentially expressed in the two 
groups of fibroblasts, suggesting that NR2F2 is involved in 
the pathogenesis of T2D. Further research will reveal the 
specific mechanism of NR2F2 in T2D.
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Supplementary

Figure S1 A flowchart shows the design and analysis of this study. T2D, Type 2 diabetes; DEGs, differentially expressed genes; LASSO, 
Least absolute shrinkage and selection operator; ROC, Receiver Operating Characteristic; GSVA, Gene set variation analysis.



Figure S2 Cell clusters were annotated according to cell-type markers (A). Expression levels of marker genes in 6 cell types expressed in violin and scatter plots (B-M).
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Figure S3 Violin plots of diagnostic biomarker expression in single-cell datasets (A); scatter plot of expression of diagnostic biomarkers in single-cell datasets (B); violin plot of expression of diagnostic genes in normal and T2D patients 
in different cell groups (C); scatter plot showing the diagnostic genes of normal and T2D patients in different cell groups (D); the percentage difference between high and low expression of SERPINF1 in Fibroblasts cells between disease 
and control Stacked graph (E). T2D, Type 2 diabetes.
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