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Background: Prediction of type 2 diabetes mellitus (DM) has been studied widely. However, a hospital 
visit was necessary to apply previous prediction models for the evaluation of DM. This study was conducted 
to develop and validate a hospital visit-free self-diagnosis tool for DM.
Methods: Participants who underwent health screening between 2017–2018 (n=7,519; training cohort) 
and 2019–2020 (n=7,564; validation cohort) were extracted from the Korea National Health and Nutrition 
Examination Survey (KNHANES). DM was defined as doctor-diagnosed DM in a questionnaire. Logistic 
regression was used to determine independent predictors for DM, and a multivariable logistic regression-
based nomogram was developed for the prediction of DM, which was validated in a cohort consisting of 
an independent population. The presence of nonalcoholic fatty liver disease (NAFLD) was operationally 
defined using the KNHANES-NAFLD score.
Results: Age, sex, waist circumference, systolic blood pressure, total cholesterol, triglyceride, aspartate 
aminotransferase, blood urea nitrogen, urinary protein, urinary glucose, and NAFLD were identified 
as independent predictors for DM. After excluding laboratory variables that require laboratory tests, a 
simplified multivariable model was conducted based on hospital visit-free variables, including age, sex, waist 
circumference, systolic blood pressure, and NAFLD. The full and simplified prediction models for DM 
were presented as nomograms. In the independent validation cohort, the full and simplified DM prediction 
models were validated with an area under the curve values of 0.903 and 0.824 from the receiver operating 
characteristic curves, respectively.
Conclusions: Involvement of NAFLD has allowed satisfactory prediction of DM without laboratory 
tests that require a hospital visit. The developed model may be promising in terms of early diagnosis of DM 
among individuals without hospital visits and may reduce the socioeconomic burden of DM in the real-
world, which awaits future prospective trials to confirm.
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Introduction

Type 2 diabetes mellitus (DM) is one of the most prevalent 
human diseases globally that can lead to a number of health 
issues in terms of morbidity, death, and economic loss (1). DM 
is recognized as a serious, global public health concern and will 
continue to pose a major challenge for healthcare systems since 
its prevalence is expected to nearly double by 2030 (2). DM has 
been identified to be associated with unhealthy lifestyles such 
as sedentarism and no physical activity, and other concomitant 
chronic conditions, such as obesity and liver diseases (3,4).

In general, three standard tests are used in asymptomatic 
patients to diagnose impaired glucose metabolism or DM: 
the hemoglobin A1c (HbA1c) test, the fasting plasma 
glucose (FPG) test, and the 2-hour 75 g oral glucose 
tolerance test (OGTT) (5). While the sensitivities and 
specificities of these tests vary, the OGTT is considered the 
gold standard for the diagnosis of DM. The OGTT detects 
DM more effectively than FPG because it recognizes 
altered postprandial metabolism (6). Nonetheless, all of 
these diagnostics require a hospital visit and undergo tests.

Nonalcoholic fatty liver disease (NAFLD) has gained greater 
prominence as one of the major factors contributing to the 
pathogenesis of DM (7,8). NAFLD is a condition characterized 
by excess fat in the liver caused by nonalcoholic reasons (9) and 
is regarded as the hepatic component of metabolic syndrome 
due to its similarities to metabolic disorders such as obesity, 
inflammation, insulin resistance, and DM (10,11). 

Generally, NAFLD is diagnosed using clinical history, 
lab data, radiographic data, and histologic information (12).  
Liver biopsy is regarded as trustworthy and, in certain 
cases, essential for diagnosing NAFLD by grading various 
histological features, such as steatosis, hepatocellular 
ballooning, lobular inflammation, and fibrosis. However, 
due to the invasiveness and high cost of liver biopsy, it 
is not commonly performed for all individuals at risk of  
NAFLD (13). Therefore, experts have recommended its 
selective use in NAFLD patients with a higher likelihood 
of progression to nonalcoholic steatohepatitis (NASH). 
Hence, there has been a growing interest in non-invasive 
diagnostic strategies for NAFLD, such as transient 
elastography, abdomen ultrasound, computed tomography, 
or magnetic resonance imaging. Despite their noninvasive 

nature, these methods have lower sensitivity than a liver 
biopsy and are associated with radiation hazards or contrast-
related risks, which limit their availability (12). As a result, 
further simplified methods without imaging approaches 
are becoming increasingly necessary. Following the initial 
development of the NAFLD liver fat score by Kotronen 
et al. [2009], there have been ongoing efforts to develop a 
simplified NAFLD score that is applicable to the general 
population and health examination datasets (13,14). Jeong 
et al. [2020] have suggested the K-NAFLD (Korea National 
Health and Nutrition Examination Survey-derived 
nonalcoholic fatty liver disease) score, which detects the 
presence of NAFLD based on sex, waist circumference 
(WC), systolic blood pressure (SBP), fasting serum glucose 
(FSG), triglyceride (TG), and alanine aminotransferase 
(ALT) (13). This score is unique in that it excludes variables 
such as fasting serum insulin which hampered availability 
and cost-effectiveness, thereby enhancing its diagnostic 
applicability. The K-NAFLD was developed with an area 
under the curve (AUC) value of 0.929 in the Korea National 
Health and Nutrition Examination Survey (KNHANES) 
database, which is a Korea-representative cohort, and the 
positive and negative predictive values were 0.990 and 0.860, 
respectively (13).

In particular, many studies have clearly demonstrated 
that NAFLD is responsible for roughly doubling the 
incidence of DM, regardless of obesity or other common 
risk factors (15). For example, a meta-analysis of 20 
observational studies including over 115,000 nondiabetic 
people found that NAFLD was associated with a 1.6- to 
2.0-fold elevated risk of DM over a median follow-up of 
5 years (16). Another large-scale prospective study, which 
includes more than 130,000 Asian nondiabetic people, 
had shown that NAFLD was significantly associated with 
a 2.0-fold increase in incident DM risk independently of 
confounding factors (17). 

Diabetes is a debilitating chronic epidemic, so early 
detection, diagnosis, and treatment are important. 
Identifying those at high risk for diabetes is key to 
preventive strategies (18). Several studies have shown 
that early detection and treatment of diabetes can delay 
the progression of the disease and prevent complications 
(18-20). Therefore, it is essential to develop a feasible 
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Figure 1 Flow diagram for the inclusion of the study population. Training (A) and validation (B) cohorts consisted of participants who 
underwent health examinations in 2017–2018 and 2019–2020, respectively. DM, diabetes mellitus.

and accurate screening tool to identify those at high risk 
of diabetes onset, which will aid in diabetes prevention 
programs. Risk prediction models can contribute to the 
clinical management of a patient. Models can screen 
individuals to identify those at an increased risk of 
having an undiagnosed condition, allowing for earlier 
diagnosis, management, and treatment, improving patient  
outcomes (19). Yet, most current prediction models are for 
western populations (18), and there are few diabetes risk 
nomograms for Korean population. Also, the presence of 
NAFLD has largely been alienated in earlier prediction 
models. Moreover, the existing diabetes risk prediction 
models incorporate a large number of laboratory variables 
that are inconvenient to apply (18).

Therefore, in this cross-sectional study, we explored the 
predictive impact of NAFLD on DM, testified NAFLD-
based prediction model for DM, and simplified the 
NAFLD-based prediction model by excluding laboratory 
variables that require a hospital visit. Considering 
that most Korean adults are aware of the presence of 
NAFLD by undergoing biennial health screening of the 
Korean National Health Insurance Service, NAFLD-
based prediction of DM may be a novel approach for the 
development of a self-diagnosis tool for DM. In addition, 
we evaluated the difference in predictive performance for 
the diagnosis of DM between the full and simplified models. 
We present the following article in accordance with the 

TRIPOD reporting checklist (21) (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2195/rc).

Methods

Study population

The study population was derived from the KNHANES 
(http://knhanes.cdc.go.kr) dataset, which is a nationally 
representative cross-sectional surveillance system that 
has been evaluating the health and nutritional status of 
noninstitutionalized Korean civilians residing in Korea since 
1998 (22). The training cohort consisted of participants 
aged 20 or older who underwent health examinations 
between 2017 to 2018 (n=16,119). We excluded participants 
who had missing information for medical doctor-diagnosed 
DM (n=791), age below 20 (n=3,025), missing information 
for potential covariates (n=807), and alcohol consumption 
at least 2 times per week (n=3,977). Finally, a total of 7,519 
participants were included in the training cohort (Figure 1).  
The validation cohort included 7,564 patients from 
KNHANES who underwent examination between 2019 
to 2020, using the same inclusion criteria. All participants 
provided informed consent to the KNHANES before 
participation. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institutional Review Board of Bundang 

Participants who underwent health examination 
between 2017–2018 (n=16,119)

Participants who underwent health examination 
between 2019–2020 (n=15,469)

Missing information for medical  
doctor-diagnosed DM (n=791)

Missing information for medical  
doctor-diagnosed DM (n=669)

Aged below 20 (n=3,025) Aged below 20 (n=2,704)

Missing information for potential covariates 
(n=807)

Missing information for potential covariates 
(n=724)

Alcohol consumption at least 2 times per 
week (n=3,977)

Alcohol consumption at least 2 times per 
week (n=3,808)

Training cohort (n=7,519) Validation cohort (n=7,564)

BA
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CHA Hospital (IRB No. CHAMC 2022-04-041).

Outcome variable

DM was defined as a previous physician diagnosis of 
diabetes based on self-reports in the KNHANES cohort. 
KNHANES is a national surveillance system in Korea 
that has been assessing the health and nutritional status 
of the noninstitutionalized Korean population since. This 
consists of three surveys: a health interview survey, a health 
examination survey, and a nutrition survey. The survey 
is conducted annually by the Korea Centers for Disease 
Control and Prevention (22). DM is defined as answering 
“Yes” to the survey question “Have you ever been diagnosed 
with diabetes by a physician?”. In South Korea, the 
following criteria are used to diagnose DM: HbA1c level 
≥6.5% or FPG of ≥126 mg/dL for more than 8 hours or  
2 hours plasma glucose of ≥200 mg/dL during 75 g OGTT 
or classic symptoms of hyperglycemia (polyuria, polydipsia, 
unexplained weight loss) with a random plasma glucose of 
≥200 mg/dL (5). In addition, the doctor-diagnosed DM 
in the KNHANES database has been used in a number of 
studies (23,24).

Key variables

The presence of NAFLD was operationally defined 
when K-NAFLD >0.884 as defined previously (13). The 
K-NAFLD score is an estimation tool for diagnosis of 
NAFLD, which is calculated as follows: 0.913 × sex (2 if 
female; 1 if male) + 0.089 × WC + 0.032 (SBP + FSG) + TG 
× 0.007 + ALT × 0.105 − 20.929). The following variables 
were evaluated as a covariate for the development of 
prediction model: age (continuous; years), sex (categorical; 
male and female), body mass index (BMI) (continuous;  
kg/m2), WC (continuous; cm), SBP (continuous; mmHg), 
diastolic blood pressure (DBP) (continuous; mmHg), 
total cholesterol (continuous; mg/dL), TG (continuous;  
mg/dL), aspartate aminotransferase (AST) (continuous;  
IU/L), ALT (continuous; IU/L), blood urea nitrogen (BUN) 
(continuous; mg/dL), creatinine (continuous; mg/dL), 
urinary protein (categorical; −, ±, +, ++, +++, ++++), urinary 
glucose (categorical; −, ±, +, ++, +++, ++++), urinary pH 
(continuous), and NAFLD (categorical; yes and no). 

Statistical analysis

Data are presented with a mean [standard deviation (SD)] 

and number (%) for continuous and categorical variables, 
respectively. The logistic regression model was used for 
univariable and multivariable analyses, and the results were 
provided as odds ratio (OR) with 95% confidence interval 
(CI). Significant variables identified in the univariate 
analysis were considered significant predictors for DM, 
and were enrolled for the multivariable analysis. Significant 
variables in the multivariable analysis were considered 
independent predictors for DM, which formed the 
prediction model for DM. As for overlapping or correlated 
variables, such as SBP and DBP, only one variable with a 
higher C-index was chosen if both variables were found 
statistically significant. The full prediction model consisted 
of all independent predictors for DM, whereas a simplified 
model was developed using hospital visit-free variables.

To improve usability, nomograms for both the full 
model and the simplified model were presented. The 
total point derived from the nomogram was defined as the 
nomogram score. The performance of the nomograms was 
independently validated in receiver operating characteristic 
(ROC) curves with AUC values and in calibration curves. 
Furthermore, we then developed the prediction model 
based on the NAFLD Ridge Score (NRS)-defined NAFLD 
as a sensitivity analysis. The NRS has been found an 
adequate diagnostic strategy with an AUC value of 0.87 for 
NAFLD. The cut-off values for NAFLD and no NAFLD 
were NRS >0.44 and <0.24, respectively, as described in 
their study (25). Statistical significance was defined as a 
two-sided P value of <0.05. SAS version 9.4 (SAS Institute 
Inc.) and R Project for Statistical Computing (https://www.
r-project.org/) were used for all statistical analyses.

Results

Participant characteristics

Detailed descriptive characteristics of the participants 
included in the training cohort are shown in Table 1. Briefly, 
there was a total of 7,519 participants with a mean age of 
50.4 years and a female distribution of 59.4% (n=4,464). In 
addition, 12.4% (n=929) of the participants had NAFLD.

For the validation cohort, there were 7,564 participants 
with a mean age of 50.6 years and a female distribution of 
58.2% (n=4,405). NAFLD was present in 14.4% (n=1,086) 
participants.

Identification of independent prognostic factors

In the univariable analyses, age, sex, BMI, WC, SBP, DBP, 

https://www.r-project.org/
https://www.r-project.org/
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Table 1 Baseline characteristics of the participants in the training 
cohort

Characteristics Participant (n=7,519)

Age, years 50.4 (16.3)

Sex, female, n (%) 4,464 (59.4)

Body mass index, kg/m2 23.9 (3.6)

Waist circumference, cm 81.5 (10.3)

Systolic blood pressure, mmHg 117.2 (16.6)

Diastolic blood pressure, mmHg 74.9 (9.9)

Total cholesterol, mg/dL 192.8 (37.8)

Triglyceride, mg/dL 125.9 (91.6)

Aspartate aminotransferase, IU/L 22.5 (9.9)

Alanine aminotransferase, IU/L 22.1 (17.2)

Blood urea nitrogen, mg/dL 14.7 (4.6)

Creatinine, mg/dL 0.8 (0.2)

Urinary protein, n (%)

Negative 6,390 (85.0)

Positive 1,129 (15.0)

Urinary glucose, n (%)

Negative 7,213 (96.2)

Positive 288 (3.8)

Urine pH 5.9 (0.8)

Nonalcoholic fatty liver disease, n (%)

Yes 929 (12.4)

No 6,590 (87.6)

Data are mean (standard deviation) unless indicated otherwise.

Table 2 Multivariable analysis of hospital visit-free independent predictors for diabetes 

Covariate Estimate OR (95% CI) P value

Intercept −8.222 – <0.001

Age, years 0.077 1.080 (1.072–1.088) <0.001

Sex, female (vs. male) −0.140 0.869 (0.723–1.045) 0.136

Waist circumference, cm 0.027 1.027 (1.016–1.038) <0.001

Systolic blood pressure, mmHg −0.009 0.991 (0.985–0.996) 0.001

NAFLD, yes (vs. no) 1.430 4.178 (3.318–5.260) <0.001

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. OR, odd ratio; CI, confidence interval; 
NAFLD, nonalcoholic fatty liver disease.

FSG, total cholesterol, TG, AST, ALT, BUN, creatinine, 
urinary protein, urinary glucose, urinary pH, and 
NAFLD were identified as significant predictors for DM  
(Table S1). In the multivariable analysis, age, sex, WC, SBP, 
total cholesterol, TG, AST, BUN, urinary protein, urinary 
glucose, and NAFLD were found as independent predictors 
for DM (Table S2).

Derivation of the full and simplified prediction models for 
DM

Results of the multivariable analysis of all independent 
predictors for DM are shown in Table S3. Age (OR, 1.072; 
95% CI: 1.062 to 1.081; P<0.001), female (OR, 1.350; 95% 
CI: 1.089 to 1.674; P=0.006), WC (OR, 1.026; 95% CI: 
1.014 to 1.039; P<0.001), SBP (OR, 0.992; 95% CI: 0.986 
to 0.998; P=0.013), total cholesterol (OR, 0.976; 95% CI: 
0.973 to 0.979; P<0.001), TG (OR, 1.002; 95% CI: 1.001 
to 1.003; P=0.002), AST (OR, 0.986; 95% CI: 0.975 to 
0.997; P=0.017), BUN (OR, 1.028; 95% CI: 1.007 to 1.048; 
P=0.007), urinary protein (OR, 1.238; 95% CI: 1.051 to 
1.458; P=0.011), urinary glucose (OR, 2.478; 95% CI: 2.215 
to 2.772; P<0.001), and NAFLD (OR, 3.063; 95% CI: 2.210 
to 4.244; P<0.001) consisted the full prediction model for 
DM. 

Among independent predictors for DM, age, sex, WC, 
SBP, and NAFLD were considered self-evaluable, which 
composed the simplified prediction model for self-diagnosis 
of DM (Table 2). 

A calibration plot of the predicted and actual probabilities 
for DM and ROC curve (AUC, 0.902) revealed that the 
full prediction model was derived excellently (Figure S1). A 

https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
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Figure 2 Nomograms to predict DM. Nomograms were generated to provide an easy way to apply the prediction models. Drawing lines 
from the top for each variable and summation of the values directly allows estimation of the risk probability for DM. (A) A full prediction 
model for DM involving laboratory variables that require hospital visits. (B) A hospital visit-free simplified prediction model for DM. DM, 
diabetes mellitus; NAFLD, nonalcoholic fatty liver disease.

nomogram involving variables from laboratory tests is also 
shown in Figure 2A. A calibration plot and ROC curve of 
the simplified model are shown in Figure S2. The AUC was 
0.830, which is 0.072 lower than the full prediction model. 
The simplified nomogram is provided in Figure 2B.

Validation of the full and simplified prediction model for 
DM

The calibration plot (Figure 3A) and ROC curve (AUC, 
0.903; Figure 3B) of the full prediction model in the 

https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
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Figure 3 Performance of the full and simplified prediction models for DM in the validation cohort. (A) Calibration plot comparing 
predicted and actual probability of DM in the full prediction model. (B) Receiver operating characteristic curve for DM of the full prediction 
model. (C) Calibration plot comparing predicted and actual probability of DM in the simplified prediction model. (D) Receiver operating 
characteristic curve for DM of the simplified prediction model. DM, diabetes mellitus; AUC, area under the curve.

validation cohort had shown the excellent performance 
of the nomogram. In addition, the simplified model was 
revealed to be well-calibrated with a slope close to 1 in the 
calibration plot (Figure 3C) and satisfactorily predict DM in 
a ROC (AUC, 0.824; Figure 3D). 

Sensitivity analysis of the operational definition for 
NAFLD using the NRS

The full prediction model based on the NRS-defined 
NAFLD (Table S4) revealed that it was derived excellently, 
with an AUC value of 0.896. Also, the AUC value of the 
ROC curve for the simplified model (Table S5) was 0.811, 
indicating satisfactory performance. In the validation 
cohort, the calibration plot and ROC curve (AUC, 0.897; 
Figure S3) of the full prediction model had shown excellent 
performance. In addition, the simplified model was found to 
be well-calibrated, with a slope close to 1 in the calibration 
plot, and to predict DM satisfactorily in a ROC (AUC, 

0.810; Figure S4).
Consequently, we were able to confirm that the 

performance of both the full and simplified models 
was comparable to that of models developed using the 
K-NAFLD score. Further detailed information regarding 
the sensitivity analysis based on the NRS index is provided 
in the Supplementary section.

Discussion

This study has developed and validated a well-performing 
DM prediction model based on the following variables: 
age, sex, WC, SBP, total cholesterol, TG, AST, BUN, 
urinary protein, urinary glucose, and NAFLD. This study 
also highlights a unique and accurate simplified model that 
supports self-diagnosis of DM, which was developed based 
on the hospital visit-free data (i.e., age, sex, WC, SBP) and 
NAFLD. Given the growing population and high incidence 
of DM, as well as the clinical and socioeconomic burden 

https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2195-supplementary.pdf
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that it entails, the availability of self-diagnosis would be 
useful for early detection and management of DM. Both 
the full and simplified models were validated to be well-
calibrated and accurate. We further provided a nomogram, 
an easily adopted tool that allows direct estimation of DM 
risk without the need for complex calculation. The derived 
nomogram may be promising in promoting early diagnosis 
and reducing the socioeconomic burden of DM.

Although numerous DM risk prediction models have been 
established, the vast majority are developed in non-Asian 
populations and rely heavily on laboratory variables (18).  
Besides, the presence of NAFLD was not accounted for. 
However, other risk predictors included in our models, such 
as age, sex, BMI (or WC), SBP, total cholesterol, TG, and 
AST, have been widely recognized as attributes related to 
DM (19,20) and were thus commonly included in previous 
DM prediction models (1,19). Furthermore, after validation, 
our model demonstrated comparable performance to earlier 
models (1), with an AUC value greater than 0.80.

DM has long been recognized as a complicated 
and multifactorial metabolic disease characterized by 
hyperglycemia caused by defects in insulin production, 
insulin action, or both (26). Abnormalities in carbohydrate, 
fat, and protein metabolism in DM are deficient action of 
insulin on target tissues (26), resulting in elevated levels of 
glucose and lipids within the blood (5). Chronic exposure 
to a high level of glucose and lipids triggers a number of 
pathways that result in impaired insulin secretion from 
the pancreatic β-cells, insulin resistance and decreased 
glucose utilization in peripheral tissues, and aberrant 
hepatic glucose production (27). Growing lines of evidence 
suggest that reactive oxygen species and oxidative stress 
are among the primary causal factors responsible for these  
pathogeneses (28). The predictive effects of the predictors 
for DM identified in this study have been evaluated in 
previous studies (1,29). Older age, for example, is a risk 
factor for the onset of DM since aging causes a decline 
of glucose sensitivity and impaired insulin secretion in 
pancreatic β-cells (18). In addition, obesity, as measured by 
higher WC or BMI, has been found to increase the liver 
and pancreatic fat content, damaging pancreatic β-cells 
and potentially leading to insulin resistance via metabolic 
derangements (18,30).

As high serum glucose levels, insulin resistance, and 
damaged islet cell function characterize DM, patients 
with NAFLD may be more vulnerable to the risk of 
incident DM (4,9,15). This owes to the disruption of key 
physiological functions of the liver, including glucose and 

lipid metabolism, in the setting of NAFLD, which may 
be accompanied with a systemic inflammation triggered 
in part by liver-secreted cytokines and molecules (4,31). 
According to the lipotoxic hypothesis, the influx of free 
fatty acid from the excessive adipose tissue to peripheral 
tissues would induce insulin resistance (10,32,33). Excessive 
intrahepatic fat content may deter muscle insulin sensitivity, 
leading to impaired peripheral insulin resistance (31,32). 
Also, the accumulation of lipid intermediates in the liver, 
such as diacylglycerol and ceramides, causes hepatic 
insulin resistance, increased hepatic gluconeogenesis, and 
exhaustion of pancreatic β-cells (34). Hence, NAFLD 
exacerbates hepatic/peripheral  insulin resistance, 
predisposes to atherogenic dyslipidemia and releases 
inflammatory mediators, such as interleukin-6, tumor 
necrosis factor-α, and fetuin-A, all of which can be provoked 
by increased oxidative stress (34). In addition, a variety of 
procoagulant, thrombogenic and profibrogenic factors may 
together engage in the onset of DM (31). Therefore, we 
attempted to apply the strong association between NAFLD 
and DM in development of a NAFLD-based hospital visit-
free self-diagnostic prediction model for DM since most 
individuals are aware of self-status regarding the presence of 
NAFLD.

To the best of our knowledge, this is the first study to 
develop and validate a NAFLD-based hospital visit-free 
self-diagnosis tool for DM. Unlike the majority of current 
predictive models that necessitates a hospital visit for the 
evaluation of DM, we could confirm that non-laboratory 
variables could also well-predict the risk of DM. The 
derived simplified model for DM may allow early diagnosis 
of DM, which is vital in reducing DM complications and 
economic burden. Especially in the pandemic era where 
clinical services have experienced a significant decline 
worldwide, digitalized health care such as telehealth has 
been advocated as one of the major solutions to overcome 
the lack of elective care (35). Thus, the use of self-diagnosis 
tool to predict the risk of DM would relieve the burden of 
hospital visits and could promote better management of the 
disease, regardless of the socioeconomic status of individuals 
or public health issues.

However, there are some limitations that need to be 
considered. First, because it is a cross-sectional study, we 
could not identify causal relationships. Second, NAFLD 
was operationally defined using the K-NAFLD score. 
Therefore, we have adopted the NRS as a sensitivity 
analysis for the operational definition of NAFLD. However, 
future studies with imaging or liver biopsy-based diagnosis 
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of NAFLD would still be helpful to support our results. In 
addition, since the presence of NAFLD was operationally 
defined using the K-NAFLD score after excluding those 
with alcohol consumption, some participants with NAFLD 
may had fatty liver. Further studies with information 
regarding medication use and history of diseases are 
required to confirm whether either NAFLD or fatty liver 
is better predictive of DM. Third, the derived prediction 
models lack external validation. Therefore, we have 
stratified the cohort into training and validation cohorts 
with independent participants to evaluate the performance 
of the prediction models. Fourth, individuals without 
a history of hospital visits may not be able to use the 
simplified prediction model for DM since it is based on the 
presence of NAFLD, which requires prior health screening 
that involved imaging modalities, such as ultrasound and 
computed tomography. Fifth, prognostic variables such 
as WC may vary depending on the location or method to 
measure waist or whether participants had meal. Therefore, 
variables such as BMI could be substituted in order to 
reduce bias and improve the diagnostic tool’s accuracy.

 This study found that age, sex, WC, SBP, total 
cholesterol, TG, AST, BUN, urinary protein, urinary 
glucose, and NAFLD were all good predictors of DM risk. 
The simplified model, which only included variables that 
did not necessitate hospital visits, had a marginally lower 
AUC value after validation, but its performance was still 
satisfactory. Consideration of the presence of NAFLD may 
have allowed for reliable prediction of DM in the simplified 
model. We believe that our model could alleviate the clinical 
and economic burden of DM by promoting its prevention 
and effective management. Future external validation is 
warranted for this self-diagnosis tool to be widely used in a 
real-world.
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Supplementary

Figure S1 Performance of the full prediction models for DM in the training cohort. (A) Calibration plot comparing predicted and actual 
probability of DM in the full prediction model. (B) Receiver operating characteristic curve for DM of the full prediction model. AUC, area 
under the curve; DM, diabetes mellitus.

Figure S2 Performance of the simplified prediction models for DM in the training cohort. (A) Calibration plot comparing predicted and 
actual probability of DM in the simplified prediction model. (B) Receiver operating characteristic curve for DM of the simplified prediction 
model. AUC, area under the curve; DM, diabetes mellitus.

Figure S3 Performance of the full prediction models for DM in the validation cohort using the NRS index. (A) Calibration plot comparing 
predicted and actual probability of DM in the full prediction model. (B) Receiver operating characteristic curve for DM of the full prediction 
model. AUC, area under the curve; DM, diabetes mellitus; NRS, NAFLD Ridge Score; NAFLD, nonalcoholic fatty liver disease. 
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Figure S4 Performance of the simplified prediction models for DM in the validation cohort using the NRS index. (A) Calibration plot 
comparing predicted and actual probability of DM in the simplified prediction model. (B) Receiver operating characteristic curve for DM 
of the simplified prediction model. AUC, area under the curve; DM, diabetes mellitus; NRS, NAFLD Ridge Score; NAFLD, nonalcoholic 
fatty liver disease.

Table S1 Univariable analysis of factors involved in the health examination

Variable Estimate OR (95% CI) P value C-index

Age, years 0.073 1.075 (1.068–1.083) <0.001 0.776

Sex, female (vs. male) −0.377 0.686 (0.583–0.808) <0.001 0.295

Measurement

Body mass index, kg/m2 0.101 1.106 (1.083–1.129) <0.001 0.626

Waist circumference, cm 0.062 1.064 (1.055–1.072) <0.001 0.692

Blood pressure

Systolic blood pressure, mmHg 0.024 1.025 (1.020–1.029) <0.001 0.640

Diastolic blood pressure, mmHg −0.031 0.970 (0.961–0.978) <0.001 0.562

Dyslipidemia test

Total cholesterol, mg/dL −0.025 0.975 (0.973–0.978) <0.001 0.725

Triglyceride, mg/dL 0.002 1.002 (1.002–1.003) <0.001 0.611

Liver function test

Aspartate aminotransferase, IU/L 0.019 1.019 (1.013–1.026) <0.001 0.568

Alanine aminotransferase, IU/L 0.010 1.010 (1.006–1.013) <0.001 0.614

Kidney function test

Blood urea nitrogen, mg/dL 0.104 1.109 (1.092–1.127) <0.001 0.617

Creatinine, mg/dL 1.228 3.415 (2.476–4.710) <0.001 0.558

Urine test

Urinary protein 0.579 1.785 (1.583–2.013) <0.001 0.214

Urinary glucose 1.011 2.747 (2.498–3.022) <0.001 0.289

Urinary pH −0.131 0.878 (0.792–0.973) 0.013 0.424

NAFLD, yes (vs. no) 1.579 4.852 (4.040–5.814) <0.001 0.320

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. OR, odd ratio; CI, confidence interval; 
NAFLD, nonalcoholic fatty liver disease.
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Table S2 Multivariable analysis of all significant predictors for diabetes

Covariate Estimate OR (95% CI) P value

Intercept −3.731 – <0.001

Age, years 0.071 1.074 (1.064–1.084) <0.001

Sex, female (vs. male) 0.327 1.387 (1.114–1.727) 0.003

Waist circumference, cm 0.025 1.025 (1.013–1.038) <0.001

Systolic blood pressure, mmHg −0.008 0.992 (0.986–0.999) 0.017

Total cholesterol, mg/dL −0.024 0.976 (0.973–0.979) <0.001

Triglyceride, mg/dL 0.002 1.002 (1.001–1.003) 0.002

Aspartate aminotransferase, IU/L −0.022 0.978 (0.962–0.995) 0.012

Alanine aminotransferase, IU/L 0.008 1.008 (0.996–1.020) 0.204

Blood urea nitrogen, mg/dL 0.025 1.026 (1.005–1.047) 0.013

Urinary protein 0.216 1.241 (1.054–1.462) 0.010

Urinary glucose 0.903 2.466 (2.205–2.759) <0.001

Urinary pH −0.103 0.902 (0.799–1.018) 0.094

NAFLD, yes (vs. no) 1.017 2.765 (1.940–3.942) <0.001

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. OR, odd ratio; CI, confidence interval; 
NAFLD, nonalcoholic fatty liver disease.

Table S3 Multivariable analysis of independent predictors for diabetes

Covariate Estimate OR (95% CI) P value

Intercept −4.304 – <0.001

Age, years 0.069 1.072 (1.062–1.081) <0.001

Sex, female (vs. male) 0.300 1.350 (1.089–1.674) 0.006

Waist circumference, cm 0.026 1.026 (1.014–1.039) <0.001

Systolic blood pressure, mmHg −0.008 0.992 (0.986–0.998) 0.013

Total cholesterol, mg/dL −0.024 0.976 (0.973–0.979) <0.001

Triglyceride, mg/dL 0.002 1.002 (1.001–1.003) 0.002

Aspartate aminotransferase, IU/L −0.014 0.986 (0.975–0.997) 0.017

Blood urea nitrogen, mg/dL 0.027 1.028 (1.007–1.048) 0.007

Urinary protein 0.213 1.238 (1.051–1.458) 0.011

Urinary glucose 0.907 2.478 (2.215–2.772) <0.001

NAFLD, yes (vs. no) 1.119 3.063 (2.210–4.244) <0.001

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. OR, odd ratio; CI, confidence interval; 
NAFLD, nonalcoholic fatty liver disease.
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Table S4 Multivariable analysis of independent predictors for diabetes (NRS-defined NAFLD)

Covariate Estimate OR (95% CI) P value

Intercept −5.900 <0.001

Age, years 0.064 1.066 (1.057–1.075) <0.001

Sex, female (vs. male) 0.394 1.483 (1.200–1.834) <0.001

Waist circumference, cm 0.039 1.040 (1.028–1.052) <0.001

Systolic blood pressure, mmHg −0.004 0.996 (0.990–1.002) 0.181

Total cholesterol, mg/dL −0.024 0.976 (0.973–0.979) <0.001

Triglyceride, mg/dL 0.002 1.002 (1.000–1.003) 0.007

Aspartate aminotransferase, IU/L 0.002 1.002 (0.992–1.012) 0.660

Blood urea nitrogen, mg/dL 0.026 1.027 (1.007–1.047) 0.009

Urinary protein 0.237 1.267 (1.078–1.490) 0.004

Urinary glucose 0.991 2.694 (2.414–3.005) <0.001

NAFLD by NRS, yes (vs. no) 0.330 1.392 (1.052–1.841) 0.021

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. NRS, NAFLD Ridge Score; NAFLD, 
nonalcoholic fatty liver disease; OR, odd ratio; CI, confidence interval.

Table S5 Multivariable analysis of hospital visit-free independent predictors for diabetes (NRS-defined NAFLD) 

Covariate Estimate OR (95% CI) P value

Intercept −10.322 – <0.001

Age, years 0.070 1.073 (1.065–1.080) <0.001

Sex, female (vs. male) −0.054 0.947 (0.790–1.135) 0.556

Waist circumference, cm 0.050 1.052 (1.041–1.062) <0.001

Systolic blood pressure, mmHg −0.004 0.996 (0.991–1.002) 0.174

NAFLD by NRS, yes (vs. no) 0.404 1.498 (1.234–1.818) <0.001

OR calculated using logistic regression. All variables are continuous, unless indicated otherwise. NRS, NAFLD Ridge Score; NAFLD, 
nonalcoholic fatty liver disease; OR, odd ratio; CI, confidence interval.


