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Background: Coronary angiography (CAG) is usually performed in patients with coronary heart disease 
(CHD) to evaluate the coronary artery stenosis. However, patients with iodine allergy and renal dysfunction 
are not suitable for CAG. We try to develop a radiomics machine learning model based on rest 13N-ammonia 
(13N-NH3) positron emission tomography (PET) myocardial perfusion imaging (MPI) to predict coronary 
stenosis.
Methods: Eighty-four patients were included with the inclusion criteria: adult patients; suspected CHD; 
resting MPI and CAG were performed; and complete data. Coronary artery stenosis >75% were considered 
to be significant stenosis. Patients were randomly divided into a training group and a testing group with a 
ratio of 1:1. Myocardial blood flow (MBF), perfusion defect extent (EXT), total perfusion deficit (TPD), 
and summed rest score (SRS) were obtained. Myocardial static images of the left ventricular (LV) coronary 
segments were segmented, and radiomics features were extracted. In the training set, the conventional 
parameter (MPI model) and radiomics (Rad model) models were constructed using the machine learning 
method and were combined to construct a nomogram. The models’ performance was evaluated by area 
under the curve (AUC), accuracy, sensitivity, specificity, decision analysis curve (DCA), and calibration 
curves. Testing and subgroup analysis were performed.
Results: MPI model was composed of MBF and EXT, and Rad model was composed of 12 radiomics 
features. In the training set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, and 
the nomogram were 0.795/0.778/0.937/0.511, 0.912/0.825/0.760/0.936 and 0.911/0.865/0.924/0.766 
respectively. In the testing set, the AUC/accuracy/sensitivity/specificity of the MPI model, Rad model, 
and the nomogram were 0.798/0.722/0.659/0.841, 0.887/0.810/0.744/0.932 and 0.900/0.849/0.854/0.841 
respectively. The AUC of Rad model and nomogram were significantly higher than that of MPI model. The 
DCA curve also showed that the clinical net benefit of the Rad model and nomogram was similar but greater 
than that of MPI model. The calibration curve showed good agreement between the observed and predicted 
values of the Rad model. In the subgroup analysis of Rad model, there was no significant difference in AUC 
between subgroups.
Conclusions: The Rad model is more accurate than the MPI model in predicting coronary stenosis. This 
noninvasive technique could help improve risk stratification and had good generalization ability.
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Introduction

Coronary heart disease (CHD) is characterized by 
myocardial ischemia, hypoxia, and necrosis due to coronary 
artery stenosis or occlusion, and is often accompanied by 
symptoms of chest distress and chest pain, posing a serious 
hazard to human health (1-3). Severe coronary stenosis 
often requires revascularization (4,5). Comprehensive 
preoperative examination is of great importance for correct 
decision-making and improving the curative effect and 
prognosis.

Coronary stenosis is often evaluated using coronary 
angiography (CAG) or coronary computed tomography 
(CT) angiography, of which CAG is the gold standard (6-8). 
Both methods use iodine contrast agents, which can cause 
allergic reactions or kidney damage (9,10). In addition, 
CAG is expensive, complex, and invasive and may lead to 
various complications (11).

Myocardial positron emission tomography (PET) 
imaging can be used to qualitatively or quantitatively 
evaluate pathological changes in the myocardium in CHD 
patients (12). For example, resting 13N-ammonia (13N-NH3) 
PET myocardial perfusion imaging (MPI) is commonly 
used, and it can be combined with stress MPI and used in 
the diagnosis of myocardial ischemia and infarction. It can 
also be combined with 18F-FDG PET myocardial metabolic 
imaging (MMI) and used for the assessment of myocardial 
vitality (13).

A study has reported that stress MPI can be used to 
predict coronary artery stenosis (14). A study in our center 
also confirmed that resting MPI-MMI parametric results 
can be used to predict coronary stenosis (15). However, 
stress MPI has certain risks, and the preparation process 
of MMI is complicated. Additionally, it may be affected by 
diabetes, blood glucose level, and other factors. Moreover, 
the image quality is not ideal in some cases (16). Therefore, 
it is necessary to develop a safe, noninvasive, and accurate 
method for predicting coronary stenosis.

Severe coronary stenosis results in reduced myocardial 
blood flow (MBF) and microstructural damage (13,17-19).  
This  change af fects  grayscale  patterns  and pixel 
interrelationships in the image, which may not be detected 
by the naked eye. Currently, it can be quantitatively 

evaluated using radiomics (20,21). In recent years, several 
studies have evaluated the application value of myocardial 
radiomics in CHD, but there are few studies on the 
prediction of coronary artery stenosis using myocardial 
radiomics (22-24). 

Radiomics features usually have a large amount of data, 
and it is difficult to obtain ideal results by traditional 
methods. However, machine learning algorithms can 
improve the prediction performance and outperform 
the traditional one-dimensional statistical methods by 
specifically finding associations between data. Therefore, 
we extracted the radiomics features of 3 coronary 
segments of the left ventricular (LV) myocardium on 
resting MPI and constructed a model using the machine 
learning method to predict coronary stenosis. The 
radiomics model was comprehensively evaluated through 
comparison with the conventional parameter model and 
through subgroup analysis. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-4692/rc).

Methods

Owing to the particularity of cardiac research, in this 
work, we followed the recommendations of the European 
Association of Cardiovascular Imaging and the European 
Association of Nuclear Medicine to standardize the 
application of artificial intelligence in multimodal 
cardiovascular imaging (25).

Patients

This retrospective diagnostic study included patients 
who underwent resting 13N-NH3 PET MPI and CAG at 
Guangdong Provincial People’s Hospital from November 
2016 to December 2021 due to suspected CHD. 

The inclusion criteria were as follows: (I) adult patients; 
(II) suspected CHD due to chest tightness, chest pain, and 
abnormal electrocardiogram (ECG); (III) resting MPI and 
CAG performed successively with an interval of no more 
than 30 days; and (IV) complete clinical and imaging data. 

The exclusion criteria were as follows: (I) previous 
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Figure 1 Flow chart of the study population. “n=112/n=101/n=9/n=3/n=2/n=42” is the numbers of patients and “n=126” is the number of 
coronary segments. CHD, coronary heart disease; MPI, myocardial perfusion imaging; CAG, coronary angiography.

Suspected CHD (n=112)

MPI + CAG (interval <30 days) 
(n=101)

Exclusion criteria:
• Previous history of CHD (n=9)
• History of coronary revascularization (n=3)
• History of arrhythmia or pacemaker implantation (n=2)
• Image artifacts (n=3)

Study cohort (n=84)

Training group (n=42) Testing group (n=42)

Training set (n=126) Testing set (n=126)

history of CHD; (II) history of coronary revascularization; 
(III) history of arrhythmia or pacemaker implantation; 
and (IV) inability to evaluate the original image due to 
dislocation artifacts caused by poor breath-holding, body 
movement, and other reasons. 

The patient selection process is illustrated in Figure 1. 
The demographic and clinical information of the selected 
patients were recorded. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). This study was approved by the ethics committee 
of the Guangdong Provincial People’s Hospital (No. KY-
Q-2022-345-01), and individual patient consent for this 
retrospective analysis was waived.

PET/CT acquisition and data analysis

The resting MPI scans were performed in 3D list-mode 
on a Siemens Biograph 16 PET/CT scanner. In the resting 
state, the patient was intravenously injected with 15–25 mCi 
(555–925 Mbq) 13N-NH3 on the scanner, and continuous 
perfusion acquisition for 15 min was immediately initiated. 
ECGs were collected during the cardiac-gated triggering 
scan. The patients were instructed to breathe normally and 
to avoid deep breathing, speaking, and body movements to 

prevent image dislocation.
Data were reconstructed by an ordered subset expectation 

maximization algorithm with 2 iterations per 24 subsets, 
a matrix size of 168×168, a voxel size of 4.1×4.1×2.0 mm, 
and a gaussian filter at 5.0 mm full-width at half-maximum. 
MPI data were reconstructed into static and dynamic 
images, and the dynamic images were reconstructed into 21 
frames (12×10, 6×30, 2×60, and 1×180 seconds). A doctor 
(Doctor 1) with 10 years of experience who was blinded to 
original MPI measurements determined the LV contour 
and generated a polar map using the commercially available 
QPS/QGS software (Cedars-Sinai Medical Center, Los 
Angeles, CA, USA). Manual corrections of LV position, 
angle orientation, and valve plane position were performed 
when necessary. The LV image was divided into 3 coronary 
segments [left anterior descending coronary artery (LAD), 
left circumflex coronary artery (LCX), and right coronary 
artery (RCA)] on a polar map according to the American 
Heart Association criteria. The conventional parameters 
of each segment were obtained: MBF, perfusion defect 
extent (EXT), total perfusion deficit (TPD), and summed 
rest score (SRS) (Figure 2). MBF was obtained from 
dynamic imaging data and represented absolute blood flow 
quantification through a unit mass of myocardium per unit 
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Figure 2 Parameter analysis of MPI PET. A 59-year-old man presented with chest tightness for more than 1 month. Recent CAG suggested 
that the LCX had 30% stenosis and RCA occlusion. (A) The time/activity curves display radiotracer activity within 3 segments. (B) The polar 
map that is segmented into 3 shows rest MBF in mL/g/min. The MBFs of the LAD/LCX/RCA segment were 0.75/0.81/0.53 mL/g/min,  
respectively. (C,D) Hypoperfused myocardium is displayed in polar map coordinates (C) and 3D parametric surfaces (D) with 3 segments. 
TPD represents the EXT (black part) and the severity of the hypoperfused myocardium. The TPDs of the LAD/LCX/RCA segment were 
0%/10%/63%, respectively. The EXT of the LAD/LCX/RCA segment were 2%/16%/78%, respectively. (E) The polar map was scored 
based on a 17-segment model and a categorical scale of 0–4 (0= normal; 4= absent perfusion). The SRSs for LAD/LCX/RCA were 0/1/11, 
respectively. MPI, myocardial perfusion imaging; PET, myocardial perfusion imaging; CAG, coronary angiography; LCX, left circumflex 
coronary artery; RCA, right coronary artery; MBF, myocardial blood flow; LAD, left anterior descending coronary artery; TPD, total 
perfusion deficit; EXT, defect extent; SRS, summed rest score.

time (mL/min/g). The EXT, TPD, and SRS were obtained 
from static images. EXT represents the percentage of the 
perfusion defect extent, TPD comprehensively reflects the 
percentage of the extent and severity of perfusion defects, 
and SRS is a semi-quantitative parameter used to evaluate 
the severity of perfusion defects. This was the sum of the 
tracer uptake scores in each segment (0: normal, 1: slight 

reduction, 2: moderate reduction, 3: severe reduction, 4: no 
distribution).

CAG

All the patients underwent CAG within 30 days of the 
myocardial PET scan. A doctor (Doctor 2) reviewed the 
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CAG report and determined the degree of stenosis of 
the left main coronary artery (LM) and the 3 coronary 
arteries. LM lumen stenosis >50%, LAD, LCX, and RCA 
lumen stenosis >75% were considered to be significant 
stenosis and were used as the standard for obstructive 
CHD.

Segmentation and radiomics feature extraction

The myocardium of the LV coronary segments was 
segmented using a semi-automatic segmentation algorithm 
based on the Carimas version 2.10 software (Turku PET 
Center, Finland) by Doctor 1 who was blinded to patient 
characteristics and CAG results. First, the DICOM image 
of the static image was loaded. Second, 3 locations of the 
heart (the apex of the LV, base of the LV, and RV) were 
repositioned. Third, the software automatically searched 
ventricular boundaries to obtain the initial 3D-volume 
of interest (VOI) and generate a MASK, which could be 
manually adjusted to improve quality. Finally, LAD, LCX, 
and RCA segment masks were delineated based on the LV 
MASK for feature extraction (Figure 3).

Radiomics features were extracted using the PyRadiomics 
package on Feature Explorer Pro (FAE version 0.4.4), an 
open-source machine learning platform based on Python. 
Three feature categories were extracted: (I) first-order 
(statistics) features; (II) shape-based features; and (III) 
texture features [including gray-level co-occurrence matrix 
(GLCM), gray-level run-length matrix (GLRLM), gray-
level size zone matrix (GLSZM), gray-level dependence 
matrix (GLDM), and neighborhood gray-level difference 
matrix (NGTDM)]. In addition, 9 filters [including wavelet 
transform, square, square root, Laplacian of Gaussian, 
logarithm, exponential, gradient, local binary pattern (2D), 
and local binary pattern (3D)] were applied to the original 
images to obtain derived images. Except for the shape-
based images, all the other features were calculated for the 
original and derived images.

Reproducibility of radiomics features

Thirty patients were randomly selected, and image 
segmentation of 90 coronary segments was performed again 
by 2 nuclear medicine doctors (Doctor 1 with 10 years 
of experience and Doctor 3 with 20 years of experience). 
Intraclass correlation coefficients (ICCs) for each radiomics 
feature were calculated after segmentation to assess inter-
observer repeatability. 

Modeling

All patients were randomly divided into the training and 
testing groups at a 1:1 ratio, and their coronary segments 
were used as the training and testing sets, respectively. The 
training set was used for feature and parameter selection 

A
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Figure 3 Workflow of myocardial segmentation of MMI PET. 
(A) Load image. (B) Reposition the 3 positions of the heart (LV 
apex, LV base, and RV). (C) Search the ventricular boundaries and 
generate the VOI and MASK. (D) Three coronary segments were 
outlined on the LV polar map. (E) Generated VOI and MASK 
of the LAD/LCX/RCA segment. MMI, myocardial metabolic 
imaging; PET, myocardial perfusion imaging; LV, left ventricular; 
RV, right ventricular; VOI, volume of interest; LAD, left anterior 
descending coronary artery; LCX, left circumflex coronary artery; 
RCA, right coronary artery.
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and model development, while the testing set was used for 
model evaluation and subgroup analysis. In the training 
set, FAE software was used to implement the machine 
learning algorithm according to the process of “balance 
data” - “normalization” - “preprocess” - “feature selection” 
- “classifier”, and the conventional parameter (MPI 
model) and radiomics (Rad model) models for predicting 
significant coronary stenosis (>75%) were established. The 
synthetic minority oversampling technique was used to 
balance positive and negative samples. Z-scores were used 
for normalization. If the Pearson correlation coefficient 
value of the feature pair was larger than 0.9, one of them 
was randomly removed. The maximum number of features 
was 20, the feature selection method was recursive feature 
extraction (RFE), and the classifier was a support vector 
machine (SVM). A 5-fold cross-validation was applied to 
the training set for model evaluation. The model with the 
largest area under the curve (AUC) in the cross-validation 
set was selected as the best model and tested in the testing 
set. After the best MPI and Rad models were selected, 
the MPI and Rad scores of each segment were calculated. 
The 2 models were combined to establish a nomogram, 
and the risk score for each segment was calculated. The 
discriminant ability of the models was evaluated using the 
AUC, accuracy, sensitivity, and specificity. The net clinical 
benefit of the models was assessed using decision curve 
analysis (DCA). The agreement between the observed and 
predicted values of the model was demonstrated by the 
calibration curves. 

Subgroup analysis

To evaluate whether the selected models had good 
and stable performance under different conditions, we 
conducted multiple subgroup analyses in the testing set 
including the following: (I) different myocardial segments 
(LAD, LCX, RCA); (II) number of stenotic vessels (0–1, 
2–3 coronary stenoses); (III) presence of LM stenosis; (IV) 
different cardiac risk factors (hypertension, diabetes); (V) 
the total injection dose of 13N-NH3 (15–20, 20–25 mCi); 
and (VI) the unit injection dose of 13N-NH3 (0.20–0.30, 
0.30–0.50 mCi/kg). The performance of the models was 
evaluated using the AUC. 

Statistical analysis

Classification variables are presented as frequency 
(percentage), and normally distributed continuous variables 

are presented as mean ± standard deviation. Continuous 
variables with a non-normal distribution are presented as 
median (interquartile range). The independent-sample 
t-test, χ2 test, or Mann-Whitney U test were used to 
evaluate the differences between sets. The differences 
between AUCs were assessed using the DeLong test. The 
matching degree of the calibration curves was evaluated 
by the unreliability test. Statistical significance was set 
at P<0.05, and bilateral tests were used. SPSS (version 
20.0; IBM Corporation, Armonk, NY, USA) was used 
for all statistical analyses. R (version 4.0.3, R Foundation 
for Statistical Computing, Vienna, Austria) with RStudio 
(version 1.4.1717) was used to draw parts of the figures.

Results

Patients and coronary segments

This study included 84 patients (42 in the training 
group and 42 in the testing group). The average age was 
57.3±10.1 years old, and 91.7% of the patients were male. 
CAG confirmed that 75 (89.3%) patients had CHD and 
9 (10.7%) did not. Among them, 15 (17.9%), 34 (40.5%), 
and 26 (31.0%) patients had 1-, 2-, and 3-vessel stenosis, 
respectively, and 22 (26.2%) had LM stenosis. The baseline 
characteristics and CAG results of patients are shown 
in Table 1. The results showed no significant difference 
between the training and testing groups (P>0.05). There 
were 252 coronary segments in 84 patients (both the 
training and testing sets included 126 coronary segments). 
CAG showed 161 coronary artery stenoses (63.9%) and 
61 (72.6%), 38 (45.2%), and 62 (73.8%) stenoses of the 
LAD, LCX, and RCA, respectively. Quantitative analysis 
of resting MPI showed that the medians (interquartile 
ranges) of MBF, EXT, TPD and SRS of all segments were 
0.61 mL/g/min (0.47–0.76 mL/g/min), 22% (8–49%), 
20% (7–45%), and 6 [2–10], respectively. The CAG and 
resting MPI results of the segments are shown in Table 2. 
No significant differences were observed between the 2 
sets (P>0.05).

Modeling

We extracted 1,781 radiomics features from the original 
and derived images of the resting MPI. After excluding 
features with a variance close to 0, 1,206 features were 
obtained. After removing features with an ICC <0.9, 996 
features remained. After “balance data”, “normalization”, 
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Table 1 Patient characteristics (n=84)

Variables Training group, n=42 Testing group, n=42 P value

Demographic

Gender

Male 37 (88.1) 40 (95.2) 0.430

Female 5 (11.9) 2 (4.8)

Age (years) 56.2±9.8 58.4±10.5 0.335

Body mass index (kg/m2) 23.3±2.6 24.0±3.2 0.268

Cardiac risk factors

Smoking

Yes 19 (45.2) 20 (47.6) 0.827

No 23 (54.8) 22 (52.4)

Alcoholism

Yes 3 (7.1) 4 (9.5) 1.000

No 39 (92.9) 38 (90.5)

Diabetes mellitus

Yes 17 (40.5) 15 (35.7) 0.653

No 25 (59.5) 27 (64.3)

Hypertension

Yes 17 (40.5) 16 (38.1) 0.823

No 25 (59.5) 26 (61.9)

Dyslipidemia

Yes 6 (14.3) 4 (9.5) 0.736

No 36 (85.7) 38 (90.5)

Family history of CHD

Yes 2 (4.8) 2 (4.8) 1.000

No 40 (95.2) 40 (95.2)

Number of stenotic vessels

0–1 vessel 13 (31.0) 11 (26.2) 0.629

2–3 vessels 29 (69.0) 31 (73.8)

Left main trunk stenosis

Yes 10 (23.8) 12 (28.6) 0.620

No 32 (76.2) 30 (71.4)

Dose of 13N-NH3

Total dose (mCi) 19.7±2.8 20.8±3.4 0.101

15–20 21 (50.0) 18 (42.9) 0.512

20–25 21 (50.0) 24 (57.1)

Unit dose (mCi/kg) 0.32±0.073 0.32±0.081 0.801

0.20–0.30 18 (42.9) 19 (45.2) 0.826

0.30–0.50 24 (57.1) 23 (54.8)

Classification variables are presented as n (%), and normally distributed continuous variables are presented as mean ± SD. CHD, coronary 
heart disease. 
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Table 2 MPI parameters of segments and CAG results of coronary arteries

MPI parameters and CAG results Training set Testing set P value

Number of segments, n 126 126

MBF (mL/g/min) 0.57 [0.46–0.76] 0.65 [0.48–0.79] 0.336 

EXT (%) 21 [9–50] 25 [8–48] 0.989 

TPD (%) 20 [8–46] 21 [6–44] 0.977 

SRS 6 [2–10] 6 [2–10] 0.877 

Number of LAD/LCX/RCA, n 42/42/42 42/42/42

Vascular stenosis of 3 vessels

Yes 79 (62.7) 82 (65.1) 0.694 

No 47 (37.3) 44 (34.9)

Vascular stenosis of LAD

Yes 31 (73.8) 30 (71.4) 0.807 

No 11 (26.2) 12 (28.6)

Vascular stenosis of LCX

Yes 18 (42.9) 20 (47.6) 0.661 

No 24 (57.1) 22 (52.4)

Vascular stenosis of RCA

Yes 30 (71.4) 32 (76.2) 0.620 

No 12 (28.6) 10 (23.8)

Continuous variables with a non-normal distribution are presented as median [interquartile range], and classification variables are 
presented as n (%). MPI, myocardial perfusion imaging; CAG, coronary angiography; MBF, myocardial blood flow; EXT, defect extent; 
TPD, total perfusion deficit; SRS, summed rest score; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; 
RCA, right coronary artery.

and “preprocess” (Pearson correlation analysis), 211 
features remained (Figure 4). Through the SVM-RFE 
machine learning process of 5-fold cross-validation, 20 
radiomics models were generated, and the model with 
the largest AUC (0.788) in the cross-validation set was 
selected as the Rad model (Figure 5A). The Rad model 
was composed of 12 radiomics features. The selected 
features and their corresponding coefficients are shown in  
Figure 5B. The radiomics score of each segment, calculated 
using the Rad model, is shown in Figure S1. After 
approximately the same modeling process, the obtained 
MPI model was composed of 2 parameters: MBF and EXT. 
The model selection process and parameter coefficients are 
shown in Figure 5C,5D. The Rad model was combined with 
the MPI model to establish a combined model in the form 
of a nomogram (Figure 6).

Machine learning model performance

The AUC, accuracy, sensitivity, and specificity of the MPI 
model were, respectively, 0.795, 0.778, 0.937, and 0.511 in 
the training set and 0.798, 0.722, 0.659, and 0.841 in the 
testing set. The AUC, accuracy, sensitivity, and specificity 
of the Rad model were, respectively, 0.912, 0.825, 0.760, 
and 0.936 in the training set and 0.887, 0.810, 0.744, and 
0.932 in the testing set. The AUC, accuracy, sensitivity, and 
specificity of the nomogram were, respectively, 0.911, 0.865, 
0.924, and 0.766, in the training set and 0.900, 0.849, 0.854, 
and 0.841 in the testing set. The results are shown in Table 3 
and Figure 7A,7B. The DeLong test showed that the AUCs 
of the Rad model and nomogram were significantly higher 
than that of the MPI model, but there was no significant 
difference between the AUC of the Rad model and 

https://cdn.amegroups.cn/static/public/ATM-22-4692-supplementary.pdf
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Figure 4 Heat map chart between radiomics features. Red indicates a positive correlation and blue indicates a negative correlation. The 
darker the color, the higher the correlation between the 2 features. (A) Cross-correlation of 996 features. (B) The cross-correlation of the 
remaining 211 features after Pearson correlation analysis.

nomogram (Figure 7C,7D). The DCA showed that the net 
clinical benefit of the Rad model and nomogram was similar 
but greater than that of the MPI model (Figure 7E,7F). 
The calibration curve showed good agreement between the 
observed and predicted values of the Rad model, and the P 
values of the unreliability test in the 2 sets were greater than 
0.05 (Figure S2). Based on these results, we conducted a 
subgroup analysis of the Rad model.

Subgroup analysis

Subgroup analysis in the testing set showed that the ability 
of the Rad model to distinguish coronary stenosis (ROC  
AUC) was not significantly different (DeLong test) among 
subgroups divided by myocardial segments, number of 
stenotic vessels, LM stenosis, CHD risk factors, and total 
and unit injection dose of 13N-NH3. The AUCs between 
the LAD and RCA subgroups showed the largest difference 
(0.939 vs. 0.806), but there was no statistical difference 
between them (P=0.096) (Table 4, Figure 8).

Discussion

In patients with CHD, resting MPI is rarely used alone. 
It is usually combined with stress MPI or MMI for the 

evaluation of ischemia, infarction, hibernation, and 
myocardial scarring, thus providing a basis for subsequent 
treatment decisions (13). If the resting MPI data can be used 
to accurately predict coronary stenosis and reduce the risk 
of injury caused by CAG, this will be of great significance.

Radiomics has been widely used in medical research as 
a novel, inexpensive, and noninvasive quantitative imaging 
technique (26,27). However, PET radiomics studies are 
mainly focused on 18F-FDG imaging of tumors, while there 
are few radiomics studies on cardiac PET imaging, let 
alone 13N-NH3 (25). Although there are many studies on 
cardiac MRI radiomics, most of them evaluated myocardial 
ischemia, infarction, or fibrosis, while there are none on the 
prediction of coronary stenosis (28). To our knowledge, this 
is the first study to predict coronary stenosis using 13N-NH3 
PET radiomics.

13N-NH3 is a fat-soluble substance that can pass 
freely through the cell membrane. 13N-NH3 enters and 
remains in cardiomyocytes via the cell membrane through 
passive diffusion (29). Myocardial uptake of 13N-NH3 was 
positively correlated with MBF. When coronary artery 
stenosis is severe, MBF is reduced and the myocardial 
microstructure is destroyed (13,17-19). Both factors 
change the distribution of 13N-NH3 in myocardial tissue 
and then change the radiomics features of MPI. Therefore, 

http://Figure S2
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Figure 5 Model selection and weights of features. (A) Rad model for feature selection; 12 radiomics features corresponding to the optimal 
validation AUC were selected. (B) Coefficients of 12 features in the Rad model. (C) MPI model for feature selection; 2 features that 
correspond to the optimal validation AUC were selected. (D) Coefficients of 22 features in the MPI model. Rad, radiomics; AUC, area 
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we attempted to establish a statistical association between 
radiomics features and coronary stenosis using machine 
learning methods. The Rad model is composed of first-
order and texture features without shape-based features. 
The first-order features mainly reflect changes in MBF, 
and the texture features mainly reflect changes in the 
myocardial microstructure. We believe that the Rad model 
reveals an association between the 2 categories of features 
and coronary stenosis.

Image segmentation has always been the focus and 
difficulty of radiomics (30). In the study of cardiac magnetic 
resonance radiomics, the combination of automatic contour 
drawing and limited manual correction is advocated, which 
has high efficiency and repeatability (20). Our segmentation 
task consisted of LV segmentation and coronary segment 

segmentation, which were completed using Carimas 
software. In LV segmentation, the MASK file of LV VOI 
could be obtained through the semi-automatic segmentation 
algorithm of the software and manual adjustment (31,32). 
In coronary segment segmentation, the VOI-MASK was 
further divided into MASK files of 3 coronary segments 
(LAD-MASK, LCX-MASK, and RCA-MASK) according to 
the American Heart Association standards. The advantages 
of this segmentation method are as follows: (I) the operation 
is convenient and fast, as it takes only 2–3 min to complete 
the segmentation of 3 coronary segments in a patient; (II) 
the obtained radiomics information is complete and rich 
because MASK files cover 3D and continuous layers of 
coronary segments, which is different from those studies 
that only analyze the maximum section or even polar map 
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Table 3 The performance of the models

Models AUC (95% CI) Cut off Accuracy Sensitivity Specificity

Training group

MPI model 0.795 (0.713–0.876) −0.777 0.778 0.937 0.511

Rad model 0.912 (0.862–0.962) 0.808 0.825 0.760 0.936

Nomogram 0.911 (0.860–0.962) 0.455 0.865 0.924 0.766

Testing group

MPI model 0.798 (0.721–0.875) 0.158 0.722 0.659 0.841

Rad model 0.887 (0.830–0.943) 0.705 0.810 0.744 0.932

Nomogram 0.900 (0.847–0.953) 0.641 0.849 0.854 0.841

AUC, area under the curve; CI, confidence interval; MPI, myocardial perfusion imaging; Rad, radiomics. 

Points 
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Figure 6 Nomogram integrating the Rad and MPI models. The nomogram was developed from the data of the training set, which 
integrated the Rad and MPI scores. In the nomogram, we drew an upward vertical line according to the values of the Rad and MPI scores 
to determine the corresponding points. The sum of these 2 points was the total number of points. We drew a downward vertical line to 
determine the risk of coronary stenosis. Rad, radiomics; MPI, myocardial perfusion imaging.

(33,34); (III) the repeatability is good, and >80% (996/1,206) 
radiomics features show high inter-observer repeatability 
(ICC ≥0.9).

With the advent of the era of precision medicine, 
various types of “big data” have been applied in clinical 
research (35,36). For complex available data, algorithms 
can be specifically used to find correlations between data, 
improve the predictive power of the model, and provide 
clinically relevant and useful results (37). Therefore, 
machine learning is increasingly used in the cardiovascular 
field (38). The FAE software is a Python-based radiomics 

and machine learning modelling tool developed by Song 
et al. It integrates the processes of feature extraction, data 
cleaning, binary classification modelling, result analysis, 
and visualization (39). The FAE software provides 4 
classifiers and 10 feature selection methods, with a total 
of 40 combinations. To simplify the research process, only 
SVM-RFE was selected. SVM-RFE is a backward recursive 
elimination feature-selection algorithm that applies an SVM 
to high-dimensional data. It was first proposed by Guyon 
et al. for gene selection and achieved very good results (40).  
After continuous improvements, its performance and 
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Table 4 The performance of the Rad model in the subgroup analysis

Subgroups Number of patients Number of segments AUC (95% CI) Accuracy Sensitivity Specificity P value

Myocardial segment

LAD 42 42 0.939 (0.871–1.000) 0.905 0.867 1.000 0.258a

LCX 42 42 0.857 (0.733–0.980) 0.857 0.850 0.864 0.096b

RCA 42 42 0.806 (0.669–0.944) 0.786 0.781 0.800 0.594c

Number of stenotic vessels

0–1 11 33 0.895 (0.745–1.000) 0.879 0.875 0.880 0.931

2–3 31 93 0.888 (0.817–0.958) 0.785 0.743 0.947

Left main trunk stenosis

No 30 90 0.885 (0.817–0.953) 0.833 0.836 0.829 0.999

Yes 12 36 0.885 (0.772–0.997) 0.861 0.815 1.000

Cardiac risk factors

Hypertension 16 48 0.886 (0.795–0.978) 0.833 0.774 0.941 0.932

Diabetes 15 45 0.892 (0.799–0.985) 0.844 0.781 1.000

Total dose of 13N-NH3

15–20 mCi 18 54 0.895 (0.812–0.978) 0.852 0.844 0.864 0.823

20–25 mCi 24 72 0.882 (0.803–0.960) 0.819 0.760 0.955

Unit dose of 13N-NH3

0.20–0.30 mCi/kg 19 57 0.909 (0.834–0.984) 0.842 0.800 0.909 0.570

0.30–0.50 mCi/kg 23 69 0.877 (0.797–0.957) 0.783 0.702 0.955

The P value represents the result of the DeLong test of AUCs between subgroups. a, P value between the LAD and LCX subgroup; b, P 
value between the LAD and RCA subgroup; c, P value between the LCX and RCA subgroup. Rad, radiomics; AUC, area under the curve; 
CI, confidence interval; LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery.

efficiency continued to increase. Currently, it is also applied 
to proteomics, radiomics, and other fields to improve 
the prediction accuracy of models (41-44). In our study, 
SVM-RFE was used to screen out 12 radiomics features 
to construct the Rad model, as well as 2 MPI parameters 
to construct the MPI model. These 2 models were then 
combined to construct a nomogram.

The 3 models calculated the risk score of each segment 
and predicted high-risk coronary arteries. In a study 
conducted at our center, MPI and MMI conventional 
parameters were combined to predict coronary stenosis 
using the machine learning method (15). The AUC of the 
best model was 0.856, which was better than that of the 
MPI model (AUC: 0.795) but inferior to the Rad model 
(AUC: 0.912) and nomogram (AUC: 0.911). In general, 
the nomogram showed better performance than the Rad 
model; however, there was no significant difference in the 

AUCs between them. This was because in the nomogram, 
the relative weights of the Rad model were far greater 
than those of the MPI model, and the nomogram was 
weighted heavily towards the Rad model, which produced 
better performance. Specifically, the radiomics features of 
the Rad model could have covered or even replaced the 
conventional parameters of the MPI model. Whether it 
indicates that radiomics features can predict conventional 
MPI parameters needs to be tested in future studies. The 
DCA for evaluating the net clinical benefit yielded similar 
results. Therefore, we chose the Rad model for subgroup 
analysis.

To ensure a sufficient sample size in each subgroup 
in the subgroup analysis, we divided the training and 
testing sets in a 1:1 ratio. As no relevant study has been 
conducted before, it was unclear which factors would 
affect the performance of the Rad model. Based on our 
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Figure 8 ROC for predicting coronary stenosis in the subgroup analysis. (A) Myocardial segment. (B) Number of stenotic vessels. (C) Left 
main trunk stenosis. (D) Cardiac risk factors. (E) Total dose of 13N-NH3. (F) Unit dose of 13N-NH3. LAD, left anterior descending coronary 
artery; LCX, left circumflex coronary artery; RCA, right coronary artery; ROC, receiver operating characteristic curve. 

experience, we selected specific factors for the subgroup 
analysis. First were the different myocardial segments 
(LAD, LCX, and RCA). Second was the injection dose 
of 13N-NH3, including total and unit doses. 13N-NH3 has 
a short half-life of approximately 10 min, making fixed-
unit dose injection difficult to achieve (29). Therefore, in 
clinical practice, the total dose is often controlled between 
10–30 mCi (13). The total dose in our study was within this 
range; however, the unit dose varied widely from 0.20 to 
0.50 mCi/kg. We divided them into 2 subgroups (0.20–0.30 
and 0.30–0.50 mCi/kg) for analysis and comparison. Third 
were the factors affecting hemodynamic status, including 
LM stenosis and the number of stenotic coronary arteries 
(45-47). For the former, we divided LM into stenosis and 
non-stenosis subgroups with >50% as the threshold, and 
the latter was divided into 2 subgroups: 0–1 vessel stenoses 
and 2–3 vessels stenoses. Fourth were the factors that may 

lead to microcirculatory lesions, including hypertension 
and diabetes (48-50), which were analyzed in separate 
subgroups. The final result showed that the AUC difference 
between the LAD and RCA subgroups was the largest (0.939 
vs. 0.806), but there was no statistical difference between 
them (P=0.096). There was no statistical difference between 
the other subgroups (Figure 8, Table 4). This shows that the 
Rad model is not affected by subgroup factors and has good 
generalization ability.

This study has some limitations. First, this was a single-
center, small-sample, retrospective study without external 
validation, and sampling error may affect the statistical 
results. Second, only patients with suspected CHD were 
included, excluding confirmed cases with a history of 
CHD. We speculated that the treatment process (drugs 
or surgery) of CHD might change myocardial radiomics 
characteristics and affect the prediction efficiency of the 
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model. Therefore, only suspected untreated patients were 
included in the study. However, this might lead to selection 
bias and render the prediction model unsuitable for the 
general population. Third, stress MPI was excluded in this 
study. The Rad model was not compared with stress MPI, 
Rad model + stress MPI, or even stress MPI radiomics 
models. Therefore, in future research, efforts should be 
made in several aspects: obtaining a prospective, external 
independent validation cohort; extending the model to 
general patients with CHD; and incorporating stress MPI 
into the evaluation system.

Conclusions

In patients with suspected CHD, the radiomics machine 
learning model based on resting MPI can accurately predict 
coronary stenosis, which is better than the resting MPI 
conventional parameter model. In clinical practice, this 
noninvasive tool can help improve risk stratification. In 
the subgroup analysis, the Rad model was not affected by 
grouping factors and had good generalization ability.
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Figure S1 Rad score of each segment calculated by the Rad model. In the training (A) and testing (B) sets, the Rad score of each segment 
is calculated by the Rad model. In this waterfall plot, the red bar represents the Rad score of the segment with significant coronary stenosis, 
and the green bar represents the Rad score of the segment without significant coronary stenosis.
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Figure S2 Calibration curves for the Rad model. The calibration curves indicate the goodness-of-fit of the Rad model. The p values of the 
unreliability test were >0.05 in the training (P=0.260) (A) and testing (P=0.463) (B) sets. The 45° gray line represents the ideal prediction, 
and the solid black line represents the predictive performance of the nomogram. The closer the solid line approaches the ideal prediction 
line, the better the predictive efficacy of the model.


