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Background: Atherosclerosis (AS) seriously affects human health. The role of microRNAs (miRNAs) 
in the pathogenesis and progression of AS has become a focus of research. Our goal was to identify the 
biological effect of differentially expressed miRNAs (DE-miRNAs) in AS. 
Methods: To analyze differentially expressed genes (DEGs), including differentially expressed mRNAs 
(DE-mRNAs) and DE-miRNAs, in AS by using the Gene Expression Omnibus (GEO) database and 
limma package. DEGs protein-protein interaction (PPI) network and functional enrichment analysis were 
constructed by using the search tool for the retrieval of interacting genes/proteins (STRING) database, 
Cytoscape software and Cytoscape plugin “ClueGO2.5.6”. We established a coexpression network of 
dysregulated miRNAs and mRNAs to predict the function of miRNAs by using miRWalk database and 
Pearson correlation coefficient (PCC) analysis. Cellular experiments were used to validate the results of 
bioinformatics.
Results: First, 69 common DEGs were obtained from datasets GSE43292 and GSE97210 using the limma 
package in R. Next, a DEG PPI network was constructed. Functional enrichment analysis of DEGs showed 
that 11 functional pathways were significantly enriched, such as positive regulation of monocyte chemotaxis. 
Seven common DE-miRNAs were obtained from the GSE99685 dataset and DE-mRNAs predicted 
miRNAs through the miRWalk database. The miRNA-mRNA network constructed using Cytoscape 
software suggested that miR-148a-3p targeted contactin 4 (CNTN4). Quantitative real-time polymerase 
chain reaction (qRT-PCR) assay results indicated that miR-148a-3p was downregulated and CNTN4 was 
upregulated in the THP-1 + phorbol 12-myristate 13-acetate (PMA) + oxidized low-density lipoprotein 
(oxLDL) group compared with the THP-1 + PMA group. qRT-PCR, flow cytometry, and enzyme-linked 
immunosorbent assay (ELISA) found that upregulated miR-148a-3p significantly inhibited the expression of 
CNTN4, cell apoptosis, and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) concentrations 
in oxLDL-induced THP-1 macrophages. In addition, a dual-luciferase reporter assay demonstrated that 
CNTN4 was a target gene of miR-148a-3p.
Conclusions: Overall, these findings suggested that miR-148a-3p inhibited oxLDL-induced cell apoptosis 
and inflammation via targeting CNTN4 in THP-1 macrophages.
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Introduction

Atherosclerosis (AS) is the main cause of cardiovascular 
diseases, including coronary heart disease, cerebral 
infarction, and peripheral vascular disease (1). It is also 
a systemic disease with immune components, triggering 
an inflammatory response and angiogenesis and vessel 
narrowing, ultimately leading to plaque instability and 
thrombosis (2-4). AS has a high incidence and disability rate 
and seriously threatens human health, especially for elderly 
people (5). Therefore, finding the molecular mechanism of 
AS is important for prevention, diagnosis, and treatment.

With the development of microarray and RNA 
sequencing (RNA-seq) technology, research on differentially 
expressed genes (DEGs) between diseases and normal 
tissues has improved our understanding of the molecular 
mechanisms of different diseases (6). To improve the 
standard of early diagnosis and treatment in AS, it is crucial 
to identify biomarkers and understand their molecular 
functions. Mounting evidence has shown that the analysis 
of DEGs could help identify important biomarkers (7,8), 
which can provide more opportunities for personalized 
treatment. MicroRNAs (miRNAs) are involved in the 
physiological functions and molecular mechanisms of AS by 
regulating the expression of DEGs (9). In AS, miR-181a-5p  
inhibits vascular inflammation and nuclear factor (NF)-
κB activation by targeting TAB2 (10). A Previous study 
has reported that miR-155 promotes the oxidized low-
density lipoprotein (oxLDL)-induced activation of NLRP3 
inflammasomes in THP-1 macrophages by regulating 
the extracellular signal-regulated kinase (ERK1/2)  
pathway (11). These findings are helpful for achieving a 
better understanding of the functional mechanism and 
clinical development of AS.

Here, we analyzed DEGs in AS and then performed a 
series of bioinformatics analyses and cell experiments to 
identify and verify the genes closely related to the onset 
of AS as therapeutic targets. We started with the function 
of DEGs and then constructed an miRNA-messenger 
RNA (mRNA) coexpression network. Next, we found 
AS-related miRNAs and predicted their targeted genes. 
Cellular experiments were used to validate the results of 
bioinformatics. The identification of biomarkers in AS can 
help achieve the goals of prevention and early diagnosis in 
AS. We present the following article in accordance with 
the MDAR reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-3768/rc).

Methods

Data acquisition

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The high 
throughput sequencing dataset (GSE99685) for AS and 
2 microarray datasets (GSE43292 and GSE97210) were 
downloaded from the Gene Expression Omnibus (GEO) 
database. GSE43292 included 32 atheroma plaques and 32 
normal tissues. GSE97210 consisted of 6 samples, including 
3 AS samples and 3 normal samples. GSE99685 contained 
miRNA expression profiles of 3 controls and 3 which had 
been oxLDL-stimulated for 48 hours, resulting in foam cell 
formation.

DEGs between AS and normal tissue

The limma package in R was used to find DEGs in AS 
compared with normal samples (12). An absolute value of 
log2|fold change (FC)| ≥1 and P value ≤0.05 were used 
as the criteria for differentially expressed mRNAs (DE-
mRNAs) and miRNAs (DE-miRNAs).

Construction of DEG protein-protein interaction (PPI) 
network

The PPI network was constructed using the search tool 
for the retrieval of interacting genes/proteins (STRING) 
database and visualized by Cytoscape software (version 
v3.7.2, https://cytoscape.org/), which is a useful tool for 
analysis and visualization of molecular interaction networks. 

Functional enrichment analysis of DEGs

The Cytoscape plugin “ClueGO2.5.6” was used for 
signaling pathway enrichment analysis, with P value <0.05 
regarded as statistically significant. 

Construction of coexpression network of common DE-
miRNAs and DE-mRNAs 

The DE-mRNAs predicted miRNAs through the miRWalk 
database. Based on Pearson correlation coefficient 
(PCC) analysis, we established a coexpression network of 
dysregulated miRNAs and mRNAs to predict the function 
of miRNAs. PCC >0.9 and P value <0.01 were regarded 

https://atm.amegroups.com/article/view/10.21037/atm-22-3768/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3768/rc
https://cytoscape.org/
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statistically significant. Cytoscape software (13) was then 
used to construct the coexpression network. 

Cell culture

THP-1 cell line was obtained from American Type Culture 
Collection (ATCC, Rockville, MD, USA). The cells were 
maintained in Roswell Park Memorial Institute 1640 
(RPMI-1640) supplemented with 10% fetal bovine serum 
(FBS) and 1% penicillin/streptomycin solution in a 37 ℃  
humidified 5% CO2 incubator. The THP-1 cells were 
incubated with 100 nM phorbol 12-myristate 13-acetate 
(PMA) for 72 hours for differentiation into macrophage 
cells. The THP-1 macrophages were then induced by  
100 μg/mL oxLDL into foam cell formation.

Cell transfection

The miR-148a-3p mimics were synthesized by Generay 
Biotech Shanghai Co., Ltd. (China). The oxLDL-induced 
THP-1 macrophages were transfected with miR-148a-3p 
mimics or negative control and Lipofectamine 3000 for  
48 hours. 

Cell apoptosis assay

The cell apoptosis rate was analyzed by flow cytometry. 
Briefly, after transfection, cells were washed with phosphate-
buffered saline (PBS) and analyzed using an Annexin 
V-FITC kit. The cells were incubated with Annexin V in 

the dark for 15 minutes. Next, propidium iodide (PI) was 
added to the cells for 5 minutes in the dark. The stained 
cells were then detected by a flow cytometer.

Enzyme-linked immunosorbent assay (ELISA)

Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) 
were analyzed using ELISA kits (Proteintech, Wuhan, 
China) according to the manufacturer’s instructions.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from the THP-1 macrophages 
using TRIzol reagent (Invitrogen, Waltham, MA, USA). 
Subsequently, total RNA was synthesized to complementary 
DNA (cDNA) by TaqMan reverse transcription kit. To 
quantify the mRNA level of miR-148a-3p and contactin 4 
(CNTN4), 2 μL cDNA was amplified using TaqMan miRNA 
quantification kit with the ABI PRISM 7500 Sequence 
Detection System. The qPCR amplification conditions 
were: 95 ℃ for 10 minutes, 45 cycles of 95 ℃ for 45 seconds, 
and 60 ℃ for 30 seconds. Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) or U6 was normalized as an 
internal control. The relative quantification was determined 
using the 2−ΔΔCt method. The primer sequences are shown in 
Table 1.

Dual-luciferase reporter assay

The sequences targeting 3'UTR of CNTN4 [wild type 
(WT): TCTGCAATGCACTGAAGACA, mutated type 
(MUT): TCTGCAAACAGACCGAGACA] were cloned 
into the pGL3 vector. The pGL3-CNTN4 3'UTR WT 
and pGL3-CNTN4 3'UTR MUT were synthesized by 
GenePharma (Shanghai, China). The oxLDL-induced 
THP-1 macrophages cells were cotransfected with 20 nM 
miR-148a-3p mimics and 0.2 μg pGL3-CNTN4 3'UTR 
WT or pGL3-CNTN4 3'UTR MUT using Lipofectamine 
2000. After 48 hours, the luciferase activity was analyzed. 

Statistical analysis

Data analysis was performed with GraphPad Prism 8.0. All 
experiments were performed at least 3 times. The data are 
expressed as mean ± standard error of mean (SEM). One-
way analysis of variance (ANOVA) test or Student’s t-test 
were used to determine statistical significance. P<0.05 was 

Table 1 Specific primers used for qRT-PCR analysis

Gene name Sequence

GAPDH F: GGAGCGAGATCCCTCCAAAAT

R: GGCTGTTGTCATACTTCTCATGG

CNTN4 F: AACGCAGAGCTTAGTGTTATAGC

R: TTTGGAGACGCTTTTGGCTTA

U6 F: GGGCCATGCTAATCTTCTCTGTA

R: CAGGTCCAGTTTTTTTTTTTTTT

MiR-148a-3p F: GGTCAGTGCACTACAGAACTTTG

R: GATGATGATAAGCAAATGCTGACTGAAC

qRT-PCR, quantitative real-time polymerase chain reaction; 
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; CNTN4, 
contactin 4.
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considered statistically significant.

Results

Identification of DEGs in AS

To explore changes at the gene transcription level of AS, 
we performed differential expression analyses between 
AS plaques and normal tissues. The “limma” R package 
was used to identify DEGs base on P value <0.05 and fold 
change ≥2. The volcano plot (Figure 1A) and heatmap 
(Figure 1B) for the AS group and normal group samples in 
dataset GSE97210 found 6,337 DE-mRNAs between the 
two groups. For the AS group and normal group samples 
in dataset GSE43292, the volcano plot (Figure 1C) and 
heatmap (Figure 1D) identified 112 DE-mRNAs between 
the two groups. 

Functional enrichment analysis and construction of PPI 
network of common DEGs

The Venn diagram exhibited 69 common DE-mRNAs 
in the GSE43292 and GSE97210 datasets, including 35 
upregulated DE-mRNAs and 34 downregulated DE-
mRNAs (Figure 2A). To enhance the reliability of this 
research, we constructed a PPI network based on the DE-
mRNAs of the 2 datasets. A network of the interactions 
between the DE-mRNAs was constructed using the 
STRING database and visualized by Cytoscape. The 
PPI network contained 28 upregulated DE-mRNAs and 
16 downregulated DE-mRNAs (Figure 2B). In order 
to uncover the potential biological functions of the 69 
common DE-mRNAs, we performed functional pathway 
and gene network enrichment analysis. The results showed 
that 11 functional pathways were significantly enriched, 
including positive regulation of monocyte chemotaxis, 
indolalkylamine metabolic process, circadian entrainment, 
extracellular matrix (ECM) disassembly, neurotransmitter 
biosynthetic  process ,  ECM-receptor interaction, 
peroxisome proliferator-activated receptor (PPAR) signaling 
pathway, and negative regulation of intracellular transport, 
among others. The 27 DEGs, including CD36, MMP 
family, TPH1, and CCR1, among others, were significantly 
enriched for the 11 functional pathways (Figure 2C). Based 
on these results, we believed that DE-mRNAs played a 
crucial role in the progression of AS.

Identification of DE-miRNAs in oxLDL-induced 
macrophage cells and AS

We then identified DE-miRNAs related to AS. Firstly, 
we analyzed the DE-miRNAs in the GSE99685 dataset. 
Volcano plot analysis identified 154 DE-miRNAs based 
on |log2 (FC)|>1 and P<0.05, including 69 upregulated 
miRNAs and 85 downregulated miRNAs (Figure 3A). The 
heatmap in Figure 3B shows DE-miRNA expression in 
the GSE99685 dataset. The Venn diagram in Figure 3C 
shows that there are 7 common DE-miRNAs between 
the predicted miRNAs of the targeting DE-mRNAs and 
DE-miRNAs in GSE99685. To investigate the interaction 
between DE-miRNAs and DE-mRNAs, an miRNA-mRNA 
network was constructed (Figure 3D). A total of 7 miRNAs, 
including 5 downregulated miRNAs (miR-92-2p, miR-
205-5p, miR-31-5p, miR-148a-3p, and miR-222-3p) and 2 
upregulated miRNAs (miR-26a-5p and miR-501-3p), and 9 
target genes (SCRG1, NPNT, TTLL7, PLD5, THRB, FRK, 
CNTN4, MPP6, and GRIA1) made up the miRNA-mRNA 
network.

MiR-148a-3p attenuates apoptosis and inflammation by 
targeting CNTN4 in oxLDL-induced THP-1 macrophages 

Next, we analyzed the mRNA level of miR-148-3p 
and CNTN4 in oxLDL-induced THP-1 macrophages. 
Compared with the THP-1 + PMA group, miR-148a-3p  
expression was significantly decreased and the level of 
CNTN4 was significantly increased in the THP-1 + PMA 
+ oxLDL group (Figure 4A). To elucidate the cell apoptosis 
and inflammation effect of miR-148-3p on oxLDL-
induced THP-1 macrophages, the miR-148-3p mimics 
were transfected to model cells. qRT-PCR assay revealed 
that miR-148-3p expression was remarkably increased and 
CNTN4 expression was remarkably decreased in the model 
+ miR-148a-3p mimics group compared with the model 
group (Figure 4B). Upregulated miR-148a-3p decreased 
cell apoptosis in oxLDL-induced THP-1 macrophages 
(Figure 4C). In addition, the expression of IL-6 and TNF-α 
were significantly reduced in the model + miR-148a-3p 
mimics group compared with the model group (Figure 4D).  
To further ensure that CNTN4 was the target gene of miR-
148a-3p, luciferase activity assay showed that miR-148a-3p  
mimics inhibited the luciferase activity in oxLDL-induced 
THP-1 macrophages transfected with CNTN4 WT 
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Figure 1 Identification of DE-mRNAs in AS. (A,B) Volcano plots (A) and heatmap (B) of the 6,337 DE-mRNAs associated with AS were 
analyzed by R software with the limma package loaded from datasets GSE97210. (C,D) Volcano plots (C) and heatmap (D) of the 112 DE-
mRNAs associated with AS were analyzed by R software with the limma package loaded from datasets GSE43292. Red dots and green dots 
represent upregulated genes and downregulated genes with |log2FC| ≥1 and P value ≤0.05, respectively. Blue column represents AS group 
and red column represents normal group. DE-mRNAs, differentially expressed mRNAs; AS, atherosclerosis. 

compared with oxLDL-induced THP-1 macrophages 
transfected with CNTN4 MUT (Figure 4E).

Discussion

Previous studies have shown that DEGs were involved 

in the pathogenesis of AS (14,15). Meng et al. identified 
TPM2 as a potential biomarker for the AS diagnosis and  
treatment (16). Huang et al. found 3 hub genes, including 
KDELR3, CD55, and DYNC2H1, which could be used as 
diagnostic and therapeutic biomarkers for AS (17). Here, we 
first identified 69 DE-mRNAs through the high throughput 
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datasets GSE43292 and GSE97210. (B) PPI network of DE-mRNAs. The red circles and blue circles represent up-regulated and down-
regulated DE-mRNAs, respectively. (C) Functional enrichment analysis was performed using Cytoscape. PPI, protein-protein interaction; 
DE-mRNAs, differentially expressed mRNAs.

sequencing dataset related to AS and normal vascular 
endothelial tissue. In order to have a better understanding 
of these differential genes, we performed functional 
pathway and gene network enrichment analysis, and 11 
functional pathways were significantly enriched, including 
negative regulation of vascular smooth muscle cell (VSMC) 
proliferation, PPAR signaling pathway, and monocyte 

chemotaxis. The 27 DEGs, including CD36, MMP family, 
TPH1, and CCR1, were significantly enriched for the 11 
functional pathways.

CD36 serves as a signaling hub protein at the crossroad 
of inflammation, fatty acid metabolism, and lipid 
metabolism (18,19). It has been reported that a lack of 
CD36 inhibited the development of AS in CD36-deficient 
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mice. Recent studies have reported the complex functions of 
PPAR as a therapeutic target during inflammation and lipid 
metabolism and energy homeostasis (20,21), while VSMC 
proliferation has been shown to significantly increase 
mortality and atherosclerotic plaque rupture in AS (22,23). 
A previous study suggested that miR-146b-5p suppressed 
VSMC proliferation and migration and atherosclerotic 
plaque formation in AS (24). Macrophages and monocyte 
chemotaxis are central to the development of AS (25). 

Function enrichment analyses confirmed that DE-mRNAs, 
whether up- or down-regulated genes, were involved the 
process of AS.

To date, the function of most dysregulated miRNAs 
in human diseases such as AS is still unclear (26). We 
know that miRNAs play a regulatory role on their co-
expressed mRNAs. Hence, we established a coexpression 
miRNA-mRNA network to explore potential regulatory 
re lat ionships .  A tota l  of  7  miRNAs,  including 5 
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Figure 4 MiR-148a-3p suppresses apoptosis and inflammation in oxLDL induced THP-1 macrophages cells by targeting CNTN4. (A) qRT-
PCR assay of miR-148a-3p and CNTN4 in the THP-1 + PMA group and THP-1 + PMA + oxLDL group. (B) qRT-PCR assay detected the 
mRNA level of miR-148a-3p and CNTN4 in the model and model + miR-148a-3p mimics groups. (C) Flow cytometry assay was performed 
to detect cell apoptosis. (D) ELISA assay was performed to detect IL-6 and TNF-α concentrations. (E) The dual-luciferase reporter assay 
was used to analyze the luciferase activity in the CNTN4 WT and CNTN4 MUT groups. Results are presented as the mean ± SEM, n=3.  
*, P<0.05; **, P<0.01 ***, P<0.001. oxLDL, oxidized low-density lipoprotein; CNTN4, Contactin 4; PMA, phorbol 12-myristate 13-acetate; 
qRT-PCR, quantitative real-time polymerase chain reaction; IL-6, interleukin-6; TNF-α, tumor necrosis factor alpha; WT, wild type; MUT, 
mutated type.

downregulated miRNAs (miR-92-2p, miR-205-5p, miR-
31-5p, miR-148a-3p, and miR-222-3p) and 2 upregulated 
miRNAs (miR-26a-5p and miR-501-3p), and 9 target genes 
(SCRG1, NPNT, TTLL7, PLD5, THRB, FRK, CNTN4, 
MPP6, and GRIA1) made up the miRNA-mRNA network. 
AS is a lipid-driven inflammatory disease, and inflammation 
has long been considered a marker of AS. Recent studies 
have found that miR-148a-3p plays a critical role in 
inflammatory diseases (27-29) and angiogenesis (30,31). 
The knockdown of SULT2B1b has been shown to inhibit 
the inflammatory response via increasing the miR-148a-3p 

level in macrophages (32). Moreover, CNTN4 was reported 
to be associated with the development of cardiovascular 
events (33).

The use of THP-1 cells as an AS model has been 
widely employed. In this study, THP-1 cells were 
induced with 100 nM PMA for 72 hours to differentiate 
into macrophage cells. The above studies found that 
oxLDL induced the inflammatory response. The THP-1  
macrophages were then induced by 100 μg/mL oxLDL 
into foam cell formation. It has been reported that miR-
148a-3p suppressed the expression of inflammatory factors 
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in oxLDL-induced human umbilical vein endothelial cells 
(HUVECs) via targeting KLF (29). Here, we revealed 
that miR-148a-3p was markedly decreased and CNTN4 
expression level was markedly increased in the THP-1 + 
PMA + oxLDL group, and the overexpression of miR-
148-3p remarkably increased the expression of CNTN4 in 
oxLDL-induced THP-1 macrophages. In the functional 
experiment, miR-148a-3p inhibited cell apoptosis and IL-6 
and TNF-α concentrations in oxLDL-induced THP-1 
macrophages. To further confirm the mRNA target of miR-
148a-3p, luciferase activity assay revealed that miR-148a-3p  
targeted CNTN4. Our results demonstrated that miR-148a-
3p attenuated apoptosis and inflammation by targeting 
CNTN4 in oxLDL-induced THP-1 macrophages.

Results of this study could help develop a better 
understanding of the pathogenesis of AS, and provide 
a new theoretical basis for the targeted therapy of 
AS inflammation and drug development. Follow-up 
experiments about whether the signaling pathways can be 
blocked by intervening with one or several miRNAs to 
inhibit or slow down the progression of AS are planned for 
the future.

Conclusions

In brief, our work provided a comprehensive analysis based 
on bioinformatics and cell function experiments showed 
that miR-148a-3p inhibited apoptosis and inflammation by 
targeting CNTN4 in AS. 
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