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MyD88 deficiency aggravates the severity of acute pancreatitis by 
promoting MyD88-independent TRIF pathway-mediated necrosis
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Background: With uncontrolled inflammatory progression, acute pancreatitis (AP) can progress to severe 
acute pancreatitis (SAP). Inflammation and parenchymal cell death are key pathologic responses of AP. 
Toll-like receptor 4 (TLR4) plays a pro-inflammatory role in AP. Myeloid differentiation primary response 
protein 88 (MyD88) is the most essential utilized adaptor of TLR4, but its role in AP remains unclear. We 
investigated the potential role of MyD88 in the pathogenesis of AP.
Methods: An AP model was induced by administering either cerulein or L-arginine to wild-type or 
MyD88-deficient mice. Additionally, receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 
(Nec-1) was administered to the MyD88−/− mice. The severity of AP was determined by measuring serum 
amylase and lipase activities, quantifying pancreatic myeloperoxidase (MPO) activity, and histological 
examination. The effects of MyD88 deletion on cell death and the inflammatory response were determined 
by measuring apoptosis, necrosis, and inflammatory cytokines. Western blot was used to assess the necrotic 
mediators, RIP1 and RIP3. 
Results: The deletion of MyD88 resulted in more severe acute experimental pancreatitis as assessed by 
increased amylase and lipase activities, increased pancreatic MPO activity, a reduced anti-inflammatory 
response, reduced apoptosis, and increased necrosis. Additionally, Nec-1 treatment significantly reduced 
necrosis in the MyD88−/− mice.
Conclusions: The deletion of MyD88 inhibited the TLR4/MyD88-dependent pathway mediated 
protective immune defense response and enhanced TLR4/MyD88-independent TRIF pathway-mediated 
pancreatic necrosis, which in turn aggravated the severity of AP. The critical role of MyD88 in immune 
defense response and cell death indicates that MyD88 represents a potential therapeutic target in the 
management of AP.
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Introduction

Acute pancreatitis (AP) is an inflammatory disease with 
an increasing incidence rate worldwide (1). Severe acute 
pancreatitis (SAP) has a high mortality rate of up to 
40% (2). During AP, a key initiating event is premature 
activation of zymogens, resulting in pancreatic acinar cells 
damage. These damaged pancreatic acinar cells release pro-
inflammatory mediators and recruit inflammatory cells (3). 
In the progression of AP, inflammation and parenchymal 
cell death are 2 pivotal pathologic responses that determine 
the severity of the AP (3). Necrosis and apoptosis are the 
main forms of parenchymal cell death, and the severity of 
AP has been shown to be directly correlated with necrosis 
and inversely correlated with apoptosis (4-7).

Apoptosis is a highly coordinated process that may be 
activated by intrinsic and extrinsic pathways. It is executed 
by the activation of caspases (8). Conversely, necrosis is 
dependent on the activities of receptor-interacting protein 
kinase 1 (RIP1) and RIP3, which form a pronecrotic 
complex with a homotypic interaction motif upon the 
activation of the tumor necrosis factor (TNF) receptor and 
related receptors (9). It has been reported that necrosis/
necroptosis plays a prominent role in the pathological 
progress of AP. The mechanisms by which pancreatitis 
are initiated are not clear; however, it is thought that the 
disease originates from injury to the acinar cells, which 
leads to uncontrolled inflammation, which in turn, and 
more importantly, contributes to parenchymal necrosis. At 
present, there is no specific medical therapy targeting the 
inflammatory storm of AP that has been proven to have 
any clinical benefit (2). The discovery of new therapeutic 
targets requires a better understanding of the regulatory 
inflammatory pathways in AP.

Toll-like receptor 4 (TLR4) is one of the best-known 
toll-like receptors (TLRs) that respond to both pathogen-
associated molecular patterns and tissue damage-
related signals (10,11). TLR4 activation can also drive 
inflammation. Recent research on AP has shown that a 
lack of TLR4 ameliorates pancreatic inflammation in mice 
(12,13). TLR4 activates 2 distinct intracellular signaling 
pathways via the adaptor molecules myeloid differentiation 
primary response protein 88 pathway (the MyD88-
dependent pathway) and the Toll-interleukin receptor 
domain-containing adaptor-inducing interferon-β (TRIF; 
the MyD88-independent pathway) (14). MyD88-dependent 
signaling triggers the classical inflammatory cascade, leading 
to the activation of nuclear factor-κB (NF-κB) and mitogen-

activated protein kinases (MAPKs), which in turn lead to 
the production of pro-inflammatory and anti-inflammatory 
cytokines. MyD88 can also mediate apoptosis, and 
mostly does so indirectly through the production of pro-
apoptotic intermediates, such as TNF-α (15). Conversely, 
the MyD88-independent TRIF signaling pathway leads 
to the activation of interferon regulatory factor 3 (IRF3) 
and interferon β (IFN-β) production, can mediate delayed 
NF-κB and MAPK activation (16), and has also been 
implicated in the RIP1/RIP3-mediated necrosis signaling  
pathways (9,17).

Based on these findings, we postulated that the Myd88-
dependent and Myd88-independent signaling pathways 
play a role in the pathogenesis of AP. We found that 
the deletion of MyD88 inhibits the MyD88-dependent 
pathway-mediated protective immune defense response and 
enhances the MyD88-independent TRIF pathway, which, 
surprisingly, increases the severity of experimental AP 
mainly by promoting pancreatic necrosis via the MyD88-
independent TRIF-mediated necrotic signaling pathway. 
Our findings improve understandings of the complex role of 
MyD88 in the TLR4-mediated immune defense response 
and cell death in AP, and may lead to innovative therapies 
in the treatment of SAP. We present the following article in 
accordance with the ARRIVE reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-5134/rc).

Methods

Animals and reagents

Wild-type C57BL/6 mice and MyD88-deficient mice 
were obtained from the Model Animal Research Center of 
Nanjing University (Nanjing, China). All the mice were 
maintained on a 12-h light/dark cycle with free access to 
water and food and acclimatized for at least 1 week. Simple 
random sampling was used to allocate the mice to the 
control and experimental groups. The mice were fasted 
for 18 h and only provided water ad libitum before the 
experiment. The genotype of MyD88-deficient mice was 
validated before each experiment.

Experiments were performed under a project license 
(2021737A) granted by Ethics Committee of West China 
Hospital Sichuan University, in compliance with the 
institutional guidelines for the care and use of animals. 
The protocol was prepared before the study, and it was not 
registered anywhere. 

https://atm.amegroups.com/article/view/10.21037/atm-22-5134/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5134/rc
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Cerulein and L-arginine hydrochloride were purchased 
from Sigma Chemical (Sigma, St. Louis, Missouri, 
USA). Antibodies against RIP1, RIP3, and β-actin were 
purchased from Cell Signaling Technology (CST, Danvers, 
Massachusetts, USA). Other items were purchased from 
standard suppliers or as indicated in the text.

Induction of AP

A cerulein pancreatitis model was induced in the mice 
(weight: 20–25 g) by 7-hourly intraperitoneal (IP) injections 
of 50 μg/kg of cerulein (Sigma) in saline, while the control 
mice were given saline as previously described (18). In 
addition, 1.65 mg/kg of RIP1 inhibitor necrostatin-1 (Nec-
1; Santa Cruz Biotechnology, California, USA) was injected 
intraperitoneally 10 min before the cerulein injection, every 
2 h later for 6 h in total; one-fourth of the above-mentioned 
concentration was applied to the MyD88−/− mice. The 
mice were killed 0, 8, and 24 h after the first injection of 
cerulein. For L-arginine induced pancreatitis, L-arginine 
hydrochloride (8%; Sigma) was prepared (pH: 7.0). The 
mice (weight: 20–25 g) received IP injections of L-arginine 
(4.0 g/kg) every 2 h, and the control mice received IP 
injections of saline as previously describe (19). The mice 
were killed at 0, 48, and 72 h after the first injection 
of L-arginine. The blood samples were centrifuged at  
2,000 ×g for 20 min, and the serum was stored at –80 ℃. 
The pancreas was removed, frozen in liquid nitrogen, and 
stored at –80 ℃. There were 10 mice in each group, and the 
experiments were repeated 3 times to confirm the results. 
Pathological evaluation was done by two pathologists.

Biochemical assays

The levels of serum amylase and lipase were measured by 
means of a commercially available kit (R&D System, MN, 
USA). The extent of neutrophil infiltration in the pancreas 
was quantitated by measuring tissue myeloperoxidase 
(MPO) activity (20). The enzyme activity was measured by 
a MPO kit (Nanjing Jiancheng Bioengineering Institute, 
Nanjing, China), and calculated as a percentage of the 
control.

Morphology assays

For the light microscopy, the pancreas was fixed in 4% 
paraformaldehyde, embedded in paraffin, and 5-mm 

sections were processed for hematoxylin and eosin (H&E) 
staining. The extent of necrosis was scored by 2 experienced 
morphologists.

Terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick-end labelling (TUNEL) assays

TUNEL assays were used to quantify the apoptosis of 
the pancreatic tissue sections. The sections were stained 
using TUNEL (Merck & Co., Inc., USA). Dark brown 
staining of the nucleus was observed in TUNEL-positive 
cells [containing labelled deoxyribonucleic acid (DNA) 
fragments]. The sections were counterstained with 0.3% 
methyl green. The numbers of positive apoptotic cells were 
counted in 10 high-power fields (×400 magnification) (21).

Quantitative real-time reverse transcription-polymerase 
chain reaction (RT-PCR)

The ribonucleic acids (RNAs) from the pancreas 
were prepared according to method described in 
Griffin’s study (22). Each tissue was lysed with TRIzol 
(Invitrogen, California, USA) for total RNA isolation. 
Next, a DNA reverse-transcription system (Invitrogen) 
was used for the reverse transcription. Polymerase 
chain reaction (PCR) was performed in the presence 
of specific primers. The following primers were used: 
TLR4, forward: 5'-CAGAACTTCAGTGGCTGGA-3', 
reverse :  5 ' -TAGGGTTTCCTGTCAGTATC-3' ; 
interleukin (IL)-1 receptor-associated kinase 4 (IRAK4), 
f o r w a r d :  5 ' - C G G C G A C G A C A G ATA C A AT ’ - 3 ' , 
r eve r se :  5 ' -CTTTTGACGGTTTGGGGAA-3 ' ; 
TRIF, forward: 5'-CAGGGACCGGGAGATCTA-3', 
reverse: 5'-CATGTTCCGAACCGACAGC-3'; TNF-α, 
forward:  5'-AGACCCTCACACTCAGATCAT-3' , 
reverse: 5'-AGTCACAGAAGGAGTGGCTAA-3'; IL-
6, forward: 5'-CACTAGGTTTGCCGAGTAGA-3', 
reverse: 5'-CGTGAAAAGATGACCCAGAT-3'; IL-
10, forward: 5'-CAACATACTGCTAACCGACTC-3', 
reverse: 5'-CCTGGGGCATCACTTCTAC-3'; β-actin, 
forward: 5'-CGTGAAAAGATGACCCAGAT-3', reverse: 
5'-ACCCTCATAGATGGGCACA-3'. The 40-cycle 
program (94 ℃ for 20 s, 53 ℃ for 30 s, and 72 ℃ for 30 s) 
conditions were used for all PCRs on an iCycler IQ (Bio-
Rad) system. β-actin was used as the internal control in 
each reaction, and relative quantitative gene expression was 
calculated using the 2−ΔΔCt method (23). Each sample was 
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analyzed in triplicate.

Western blot analysis

The total protein of the pancreas tissues was extracted. 
First, portions of the frozen pancreas tissue were rapidly 
homogenized in liquid nitrogen, and then reconstituted in 
ice-cold radioimmunoprecipitation assay buffer containing 
1 mmol/L of phenylmethanesulfonylfluoride and a cocktail 
of protease inhibitors (1:100 dilution) (Sigma, St. Louis, 
Missouri, USA). The tissue lysates were rotated for  
40 min at 4 ℃ and centrifuged at 4 ℃ for 15 min at  
16,000 ×g. The supernatants were recovered, and total 
amounts of protein were measured using the bicinchoninic 
acid assay method (Pierce, Rockford, Illinois, USA). Twenty 
micrograms of protein was subjected to 12% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis. Then, 
transferred onto polyvinylidene difluoride membranes 
(Millipore, Massachusetts, USA). The membranes 
blocked with 5% milk powder solution for 1 h at room 
temperature and incubated at 4 ℃ overnight with rabbit 
monoclonal anti-RIP1 antibody (1:1,000 dilution), anti-
RIP3 antibody (1:1,000 dilution) and anti-β-actin antibody 
(1:1,000 dilution). Membranes were washed for 10 min  
3 times. Then, it incubated with goat polyclonal anti-rabbit 
immunoglobulin G secondary antibody (Cell Signaling) 

conjugated to horseradish peroxidase (1:5,000 dilution) for 
1 h at room temperature. Finally, the antibody binding was 
visualized using the enhanced chemiluminescence system 
(Pierce, Rockford, USA).

Statistical analysis

The highest and lowest values of each group’s results were 
removed, and the rest of the values were averaged. The 
results are expressed as the mean ± standard error of the 
mean (SEM). The data were analyzed using a one-way 
analysis of variance with the Tukey-Kramer post-hoc test. A 
P value <0.05 was considered statistically significant.

Results

Effect of MyD88 deletion on cerulein-induced AP

We assessed the severity of AP in the cerulein-administered 
wild-type and MyD88−/− mice. The morphological changes 
observed in pancreatitis included acinar cell vacuolization, 
edema, and necrosis, all of which were significantly more 
severe in the MyD88−/− mice than the wild-type mice  
(Figure 1). The levels of serum amylase (Figure 2A) and 
lipase (Figure 2B) of the MyD88−/− mice were significantly 
higher than those of the wild-type mice. Compared to the 
wild-type mice, the MyD88−/− mice had increased pancreatic 

Wild-type

MyD88–/–

Control 8 h 24 h

50 μM

Figure 1 MyD88 deletion changes the morphology of cerulein-induced pancreatitis. Representative micrographs of H&E-stained pancreas 
tissue. The results revealed a significant increase in necrosis and inflammation in pancreatic tissue in the MyD88−/− mice induced by cerulein 
compared to the wild-type mice. MyD88, myeloid differentiation primary response protein 88; H&E, hematoxylin and eosin.
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tissue MPO activity (Figure 2C). 

Effect of MyD88 deletion on the TLR4-mediated MyD88-
dependent and MyD88-independent pathways in cerulein-
induced AP

We assessed TLR4 expression in the cerulein-induced wild-
type and MyD88−/−mice. The results revealed an increase in 
TLR4 messenger RNA (mRNA) expression in the cerulein-
treated wild-type mice compared to the control animals, 
and this increase was significantly more enhanced in the 
MyD88−/− mice than the wild-type mice (Figure 3A). We 
then assessed the expression of interleukin-1 receptor-
associated kinase 4 (IRAK4), which is the downstream 

molecule of MyD88, and found that IRAK4 expression in 
the MyD88−/− mice did not change after cerulein treatment, 
but its expression in the wild-type mice increased 24 h 
after cerulein treatment compared to that of the control 
mice (Figure 3B). We also measured the expression of 
TRIF, which represents the MyD88-independent pathway, 
and noted a slight increase in TRIF mRNA expression in 
the cerulein-treated wild-type mice. The MyD88−/− mice 
were significantly more enhanced than the wild-type mice 
(Figure 3C). These findings indicate that the activation 
of IRAK4 was dependent on MyD88, and the MyD88-
dependent pathway was blocked in the cerulein-induced 
MyD88−/− mice. Conversely, the TLR4-mediated MyD88-
independent TRIF pathway was significantly enhanced in 
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Figure 2 MyD88 deletion changes the severity of cerulein-induced pancreatitis. Serum amylase (A), lipase (B), and pancreatic MPO (C) 
were significantly higher in the MyD88−/− mice than the wild-type mice. The data are shown as the mean ± SEM. * P<0.05, vs. wild-type. 
MyD88, myeloid differentiation primary response protein 88; MPO, myeloperoxidase; SEM, standard error of the mean.
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Figure 3 Effects of MyD88 deletion on expressions of TLR4, IRAK4, and TRIF in cerulein-induced pancreatitis. The expressions of TLR4 
(A), IRAK4 (B), and TRIF (C) were determined by real-time RT-PCR. The results showed that compared to the wild-type mice, there was 
a significant increase in the TLR4 and TRIF levels of the MyD88−/− mice, while IRAK4 was not activated and remained at the base line level 
in the MyD88−/− mice. The data are shown as the mean ± SEM. *, P<0.05, vs. wild-type. MyD88, myeloid differentiation primary response 
protein 88; TLR4, Toll-like receptor 4; IRAK4, interleukin-1 receptor-associated kinase 4; TRIF, Toll-interleukin receptor domain-
containing adaptor-inducing interferon-β; RT-PCR, reverse transcription-polymerase chain reaction; SEM, standard error of the mean.
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the cerulein-induced MyD88−/− mice.

Effect of MyD88 deletion on the inflammatory response in 
cerulein-induced AP

To assess the pancreatic inflammatory response, TNF-α, 
IL-6, and IL-10 levels were examined by real-time RT-
PCR. Both pro-inflammatory (TNF-α and IL-6) and anti-
inflammatory (IL-10) cytokines were increased in the wild-
type mice after cerulein treatment. TNF-α and IL-10 
mRNA levels were more decreased in the MyD88−/− mice 
than the wild-type mice (Figure 4A,4B). However, at the late 
stage (24 h), the IL-6 mRNA level of the MyD88−/− mice 
was significantly more increased than that of the wild-type 
mice (Figure 4C).

Effect of MyD88 deletion on cell death in cerulein-induced 
AP

We also investigated apoptosis during cerulein-induced 
AP (Figure 5A). The in-situ TUNEL assays showed that 
apoptosis was more increased in the wild-type mice treated 
with cerulein at the early stage (8 h) than the control mice. 
Additionally, few apoptosis positive cells were detected at 
the late stage (24 h) of the disease. However, the increase 
of apoptosis in the MyD88−/− mice was less than that in the 
wild-type mice at the early stage (Figure 5B). A quantitative 
analysis of acinar cell necrosis was undertaken by standard 
histological examination. The results revealed that there 
was significantly more necrosis in the MyD88−/− mice 

than the wild-type mice (Figure 5C). We then assessed the 
necrotic mediators of RIP1 and RIP3 using Western blot 
assays (Figure 6A). RIP1 revealed a marked degradation at 
the early stage (8 h), and RIP3 was slightly more increased 
in the cerulein-induced wild-type mice than the control 
mice (Figure 6B,6C). Conversely, the expression of RIP1 
and RIP3 was significantly more enhanced in the MyD88−/− 
mice than the wild-type mice (Figure 6B,6C).

Effect of Nec-1 on cerulein-induced necrosis in MyD88−/− 
mice

To examine the role of the RIP1 inhibitor Nec-1 on 
necrosis in AP in the MyD88−/− mice, we investigated the 
necrosis in the cerulein-induced MyD88−/− mice with or 
without Nec-1. The extent of necrosis was obtained by 
histological examination. Lactate dehydrogenase (LDH) 
was also tested to examine the severity of necrosis. The 
results showed that cerulein-induced acinar cell necrosis 
was significantly reduced by the additional Nec-1 treatment 
in the MyD88−/− mice (Figure 7).

Effect of MyD88 deletion on L-arginine induced AP

To confirm that the enhanced effects of the MyD88−/− mice 
were not cerulein-induced AP model-specific, a L-arginine 
induced AP model was examined. The morphological 
changes were more severe in the MyD88−/− mice than the 
wild-type mice (Figure 8). Further, there were significantly 
higher levels of serum amylase (Figure 9A) and lipase  
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Figure 4 Effects of MyD88 deletion on inflammatory cytokines in cerulein-induced pancreatitis. The levels of TNF-α (A) and IL-6 (B), and 
IL-10 (C) were determined by RT-PCR. The results showed that the TNF-α and IL-10 levels were significantly reduced in the pancreatic 
tissue of the MyD88−/− mice, while the IL-6 level was significantly increased at the late stage after cerulein treatment in the MyD88−/− mice 
compared to the wild-type mice. The data are shown as the mean ± SEM. *, P<0.05, vs. wild-type. MyD88, myeloid differentiation primary 
response protein 88; TNF-α, tumor necrosis factor α; IL, interleukin; RT-PCR, reverse transcription-polymerase chain reaction; SEM, 
standard error of the mean.
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Figure 5 Effects of MyD88 deletion on cell death during cerulein-induced pancreatitis. Apoptosis was determined by TUNEL assays; 
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and a significant increase in necrosis (C) in the MyD88−/− mice compared to the wild-type mice. The data are shown as the mean ± SEM. *, 
P<0.05, vs. wild-type. MyD88, myeloid differentiation primary response protein 88; SEM, standard error of the mean.

Control Control

Control Control

8 h 8 h

8 h 8 h

24 h 24 h

24 h 24 h

250

200

150

100

50

0

700

600

500

400

300

200

100

0

R
IP

1 
le

ve
l (

%
 o

f c
on

tr
ol

)

R
IP

3 
le

ve
l (

%
 o

f c
on

tr
ol

)

MyD88–/–

MyD88–/– MyD88–/–

Wild-type Wild-type Wild-type

RIP1

β-actin

RIP3

β-actin

*
*

*

*

A B C
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(Figure 9B), more pancreatic acinar cell necrosis (Figure 9C), 
and higher levels of LDH (Figure 9D) in the MyD88−/− mice 
than the wild-type mice.

Discussion

Inflammation and parenchymal cell death are characteristics 
of AP development (3). Once the premature intra-acinar 
digestive zymogens are activated, the injured acinar 
cells produce and release inflammatory mediators, and 
inflammatory cells are then recruited into the pancreas, 
which leads to systemic inflammation (24,25). TLRs 
are thought to be important receptors of the innate 

immune response. A previous study showed that TLR4, 
a typical TLR, plays a pro-inflammatory role in AP (12). 
MyD88 is the first and most essential utilized adaptor of  
TLR4 (26). The expression of Myd88 increases in AP 
pancreatic tissue (27). Previous studies have shown that 
Myd88 could affect the severity of AP. And Myd88 could 
mediate AP inflammation and SAP-related intestinal 
injury regulation (28,29). In addition, autophagy and 
oxidative stress play important roles in the pathogenesis of 
AP. MyD88 deficiency ameliorates oxidative injury in an 
autophagy-dependent mechanism (30). However, its role in 
AP remains unclear.

In the present study, MyD88-deficient mice were used to 
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establish a cerulein-induced AP model. The results showed 
that the severity of AP was increased in the MyD88−/− mice, 
which had increased levels of serum amylase and lipase, 
pancreatic MPO activity, and increased pancreatic acinar 
cell necrosis compared to the wild-type mice. Our findings 
that the MyD88−/− mice were likely to develop more severe 
pancreatitis may be surprising, as previous studies have 
reported that (12,13). As a downstream molecule of the 
TLR4 pathway, MyD88 should act concurrently with its 
upper stream regulator. To explain this unexpected finding, 
we measured the expression of TLR4, and found that the 
expression of TLR4 was significantly more enhanced in 
the MyD88−/− mice than the wild-type mice. Thus, we 
hypothesized that MyD88 was not the only pathway that 
acts with TLR4, and the other pathway may exert the 
opposite function in the progression of pancreatitis.

We then focused on both the MyD88-dependent and 
MyD88-independent TRIF signaling pathways. The 
MyD88-dependent signaling pathway was inhibited, which 
resulted in the inhibition of IL-10 in the MyD88−/− mice. 
IL-10 is the most potent anti-inflammatory cytokine, and 
research has shown that IL-10 protects the pancreas by 
stopping monocytes and macrophages from releasing pro-
inflammatory factors and regulating systemic immune 
reactions and inflammatory reactions (31). Thus, the 
induction of IL-10 mediated by the MyD88-dependent 
signaling pathway is a protective immune defense 
mechanism that occurs in response to pancreatic tissue 
damage. Conversely, TRIF expression was significantly 
more increased in the MyD88−/− mice than the wild-type 
mice, indicating that the TRIF signaling pathway was 
primarily activated in the absence of MyD88. TRIF can 
mediate NF-κB and MAPK activation (16), resulting in 
the release of inflammatory cytokines at the late stage of 
this disease. In our study, the level of the pro-inflammatory 
cytokine, IL-6, was significantly increased at the late stage 
in the MyD88−/− mice. In addition, increased IL-6 levels 
have been shown to be proportional to the increased 
severity of AP (32).

TRIF plays an important role in many diseases. It could 
mediate production protective natural tumor-reactive IgM 
by B1 cells (33). In addition, preventive effect of lycopene 
in ulcerative colitis mice also through the TLR4-TRIF 
Pathway (34). Microglia necroptosis was regulated by 
TLR4-TRIF Pathway (35). In AP, loss of TRIF accelerates 
AP. And the TRIF depletion favors acinar cell necrosis to 
apoptosis (36). Thus, TRIF could affect the severity of AP. 
The TRIF signaling pathway also has been known to be 

involved in cell death signaling pathways, as TRIF has a 
RIP homotypic interaction motif that can physically interact 
with death receptors RIP1 and RIP3 (9,17). Apoptosis is 
considered predominantly protective (4), while necrosis 
can lead to organ damage and death (37). Apoptosis is 
mediated by caspase activation. Caspase also protects the 
pancreas from necrosis (4,38). The MyD88-dependent 
pathway has been reported to induce apoptosis through 
the TNF-α mediated caspase-8 pathway (39,40). Thus, the 
deletion of MyD88 led to less NF-κB activation and TNF-α 
production, all of which resulted in the reduced induction 
of caspase 8-mediated apoptosis.

Consistent with previous research, we found that 
apoptosis was lower in the MyD88−/− mice than the wild-
type mice during cerulein-induced AP. Similarly, the level 
of TNF-α was more reduced in the MyD88−/− mice than the 
wild-type mice. The uncontrollable process was previously 
thought to be a characteristic of necrosis. However, recent 
research has shown that necrosis may occur as a controlled 
behavior (41). This so-called necroptosis is mediated by the 
2 death receptors, RIP1 and RIP3 (9). Several recent studies 
have reported that TLRs activate programmed necrosis 
through the TRIF-RIP3 pathway or RIP1-RIP3 necrotic 
pathway (9,42).

In this study, both RIP1 and RIP3 expressions were more 
enhanced in the MyD88−/− mice than the wild-type mice. As 
a result, necrosis was significantly increased in the pancreas 
of the MyD88−/− mice. In addition, the special inhibitor 
of RIP1 Nec-1 reduced cerulein-induced necrosis in the 
MyD88−/− mice, but some necrosis was still observed. This 
finding indicates that the special inhibition of RIP1 decreased 
necrosis during cerulein-induced AP in MyD88−/− mice. The 
residue of necrosis might be due to the RIP1-independent 
RIP3-mediated necrotic pathway. A previous study also 
observed that RIP3 knockout mice showed less tissue damage 
in cerulein-induced AP than wild-type mice (43). Overall, 
these findings suggest that the deletion of MyD88 promotes 
necrosis and aggravates AP by enhancing the TRIF-
mediated RIP1/RIP3 necrotic pathway.

A L-arginine induced AP model was adopted to confirm 
that the findings of the present study were not unique to the 
cerulean-induced AP model. The L-arginine-induced AP 
model was relatively more severe than the hyperstimulation 
cerulein model. It was also associated with a longer period 
(peak injury occurred in 72 h) than the cerulein model (44). 
In the present study, the necrosis of L-arginine-induced 
AP mice was significantly greater than that of the cerulein-
induced AP mice. Deleting MyD88 also significantly 
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enhanced necrosis in the pancreas and aggravated the 
severity of L-arginine induced AP. These results proved 
that MyD88 is a significant determinant of the severity of 
AP, and its effect is not model-specific but common to all 
models tested.

Conclusions

The present study showed that MyD88 acts as a key 
mediator of the TLR4-mediated immune defense response 
and cell death in AP through the MyD88-dependent/
MyD88-independent pathway. The deletion of MyD88 
in AP decreased the induction of IL-10 and TNF-α 
mediated apoptosis, and enhanced MyD88-independent 
TRIF pathway-mediated necrosis via the activation of 
RIP1/RIP3, all of which led to increased necrosis and 
inflammation in the pancreas, which in turn aggravated 
the severity of AP. Thus, a lack of MyD88 inhibited the 
TLR4-mediated protective immune defense response 
and enhanced the MyD88-independent TRIF pathway, 
surprisingly accelerating the severity of AP largely by 
promoting pancreatic necrosis via the TRIF-mediated 
necrotic signaling pathway. The critical role of MyD88 in 
the immune defense response and cell death indicates that 
MyD88 represents a potential therapeutic target in the 
management of AP.
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