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Microbiome and metabolome analysis to clarify the interaction 
between the urine microbiota and serum metabolites in Chinese 
patients with immunoglobulin A nephropathy
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Background: The bacterial and metabolic networks in immunoglobin A nephropathy (IgAN), the most 
common type of primary chronic glomerulonephritis worldwide, have not been extensively studied. To help 
develop better methods for the diagnosis, treatment, and prognosis of IgAN, we characterized the alterations 
of the urinary microbiome and serum metabolome in patients with IgAN. 
Methods: We analyzed serum and urine samples from Chinese patients with IgAN and healthy controls 
(HCs) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S ribosomal RNA gene 
sequencing.
Results: Patients with IgAN had a higher relative abundance of Actinomyces and a lower relative abundance 
of Lactobacillus. The elements of metabolism have been affected, including free amino acids, polyunsaturated 
fatty acids, and oligopeptides. We also identified the 9 metabolites that might be the core metabolites, 
including guanidinoacetic acid, apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)], and 
diethanolamine, which linked the metabolic networks between the urinary tract (UT) and blood. Other 
core metabolites, such as homocitrulline, apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-
forming)], butyrylcarnitine, formiminoglutamic acid (FIGLU), diethanolamine, and prolylhydroxyproline, 
were positively correlated with urinary mili-total protein (MTP). Conversely, Lactobacillus was negatively 
correlated with MTP.
Conclusions: We verified the connection between the disruption of the microbiota and serum metabolites, 
along with the clinical parameters, in patients with IgAN, which may help provide a tool for IgAN 
interventions.
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Introduction

Immunoglobin A nephropathy (IgAN) is recognized as the 
most common form of primary chronic glomerulonephritis 
worldwide. IgAN is responsible for approximately 45.26% 
of total primary glomerular disease cases in China. About 
10–20 years after diagnosis, one-third of patients with IgAN 
progress to end-stage renal disease (ESRD). These patients 
require renal replacement therapies (including hemodialysis 
or peritoneal dialysis or transplantation) for survival (1-3). 
Currently, an accurate diagnosis of IgAN depends almost 
completely on percutaneous renal biopsies (4). Meanwhile, 
IgAN’s etiology and pathogenesis remain unknown but it is 
generally accepted that the deposition of galactose-deficient 
IgA1 (Gd-IgA1) (5). A previous study has found that genes, 
environment, living habits and patterns play an important 
role in the pathogenesis of IgAN (6) and that systematic 
changes in cellular metabolism are caused by these intrinsic 
and extrinsic factors. In recent studies, some metabolites, 
such as urinary glycine, have been shown to be protective 
biomarkers for IgAN (7,8). Moreover, the alteration of fatty 
acids and amino acids has been shown to activate the unique 
metabolic pathway of IgAN (9). These metabolites were 
found to be changed in connection with changes in the 
microbiome and discovered because of the recent rise of gut/
kidney axis research. Altered fecal microbiota has also been 
identified as a possible tool to distinguish between patients 
with IgAN and healthy controls (HCs) (10). An increasing 

amount of research points to the close relationship 
between microbiota and metabolites as being critical in the 
occurrence and development of diseases. IgAN therapy 
currently depends on treatments supported by only low-
level evidence, mainly relating to immunosuppressants and 
the renin-angiotensin system (RAS). Emerging research, 
however, has reported that probiotic supplements such as  
Lactobacillus (11) and polyunsaturated fatty acids are integral 
to both the prevention and treatment of IgAN.

While previously considered sterile, the urinary 
tract (UT) now hosts a range of bacteria in healthy  
individuals (12). At present, there are many studies related 
to gut microbiota, but we currently know little about the 
role of UT microbiota and its mechanism. Several studies 
have found specific bacterial communities in the healthy 
UT based on advances in molecular biology techniques 
(13,14), and we can observe changes in the UT microbiome 
in some urinary system diseases, such as chronic pelvic 
pain syndrome, urologic cancers, neurogenic bladder 
dysfunction and urinary incontinence (12,13). The network 
of the urinary microbiome and the serum metabolome has 
not thus far been analyzed, and yet the close relationship 
between microbiota and metabolites may likely have 
considerable relevance for therapy. This study thus aimed 
to clarify the network of different serum metabolites and 
urinary bacteria and to provide some means for clinical 
diagnosis and treatment. We present the following article in 
accordance with the MDAR checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-5334/rc).

Methods

Patient information and sample collection

A total of 14 patients diagnosed with IgAN according to 
renal biopsies and 15 healthy people were recruited at 
the First Affiliated Hospital of Jinan University. These 
participants were informed of the study and signed an 
informed consent form. The basic clinical information of 
the participants, including gender, age, body mass index 
(BMI), fasting blood glucose, hypertension, liver and renal 
functions, and pathological data of IgAN, were recorded 
using the Oxford classification system. Patients were 
excluded if they had malignant tumors, infectious diseases, 
diabetes mellitus, severe liver dysfunction, cardiac disease, 
other immune diseases, a history of excessive alcohol 
intake, or received any anti-inflammatory or probiotics 
treatment within the past 3 months (15). Participants in 
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the HCs group were also excluded if they had a history of 
autoimmune disease. 

Serum and urine samples from all volunteers were 
collected on the morning before a recent renal biopsy. 
Before collection, the volunteers had to thoroughly wash 
their hands and clean their external genital area with water 
and soap. Women washed the area around the external 
urethral orifice and vaginal introitus, then dipped 4 cotton 
swabs in iodophor, and moved them back and forth to 
wipe the genitals. The men were asked to disinfect the 
area around the urethral orifice after the foreskin had 
been withdrawn and the glans of the penis exposed. 
Without interrupting the micturition, the volunteers 
urinated into the toilet and then into a sterile container. 
The self-collected midcourse clean urine specimens were 
quickly transferred to the biological sample laboratory. 
These samples were stored in sterile Eppendorf (EP) 
tubes at –80 ℃. Blood samples were taken in the morning 
after volunteers had fasted all night. Volunteers with 
hemolysis present in their serum samples were excluded 
from the study. The collected supernatants, which were 
centrifuged at 3,000 rpm at 4 ℃ for 10 minutes, were then 
transferred to a –80 ℃ refrigerated cabinet for long-term 
storage. This study was authorized and reviewed by the 
institutional review board of the First affiliated Hospital 
of Jinan University (No. KY-2020-034) and conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

Metabolite extraction and liquid chromatography-tandem 
mass spectrometry analysis

A total of 400 μL of extract solution (acetonitrile: methanol 
=1:1; containing isotopic labeled internal standard mixture) 
was added to the 100 μL sample in an EP tube. After the 
samples were rotated for 30 s, we sonicated them in an 
ice-water bath for 10 min and cultured them at –40 ℃ for 
1 h to precipitate. The samples were then centrifuged at 
12,000 rpm at 4 ℃ for 15 min. We collected the resulting 
supernatant in a clean bottle for analysis. We then mixed 
the aliquots from all samples and analyzed the samples 
with liquid chromatography-tandem mass spectrometry  
(LC-MS/MS; UHPLC system with UPLC BEH amide 
column and Q Exactive HFX mass spectrometer, Thermo 
Fisher Scientia) and subjected them to multivariate analysis. 
The detailed experimental methods we used are outlined in 
previous papers published by our research group (9).

Metabolomics data preprocessing and annotation

The original data was converted to the mzXML format 
using ProteoWizardsoftware. The peak extraction, 
calibration, and integration based on XCMS were 
performed using an internal program written in R. A 
further processing of the data matrix was carried out by 
removing more than 50% of the peaks of the missing values 
in the samples using half of the minimum of the simulation 
method as a simulation and filling in some gaps in the 
data.The new data matrices were standardized by internal 
standards, and 3 databases were applied to metabolite 
annotation: an in-house MS2 database (BiotreeDB), the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (www.genome. jp/kegg),  and the Human 
Metabolome Database (HMBD) online database (www.
hmdb.ca). The cutoff value for comments was set as 0.3. 
We used a multivariate statistical analysis that included a 
principal component analysis and an orthogonal projection 
to latent structures discriminant analysis (OPLS-DA) to 
compare HCs and IgAN metabolomic characteristics.

Urine DNA extraction and 16S sequencing

The Mobio Powersoil DNA Isolation Kit (Qiagen) 
was used to extract genomic DNA from urine samples 
according to the manufacturer's instructions. The V3 
and V4 regions of the 16S ribosomal RNA (rRNA) genes 
were amplified with the following primers: F-primer: 
5'-ACTCCTACGGGAGGCAGCA-3'; and R-primer: 
5'-GGACTACHVGGGTWTCTAAT-3'. With the Illumina 
HiSeq, we analyzed the samples using a paired-end sequencing 
strategy after purifying the polymerase chain reaction products 
using ampoule XP magnetic beads (Beckman Coulter, UK).

Sequencing data analysis

Filtered paired-end reads were modified using Trimmomatic 
v. 0.33 software (Illumina, USA) (16). Using Cutadapt 
(version 1.9.1), the merging primer sequences were identified 
and removed. The reads were next combined using FLASH 
1.2.11 software (17), and the chimeric sequences were 
removed using UCHIME 8.1 (18). The high-quality 
sequences that were obtained were then used for subsequent 
analysis. USEARCH software version 10.0 classified 
sequences with a similarity level of 97% as operational 
taxonomic units (OTUs) (19). We then annotated the 

http://www.genome.jp/kegg
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http://www.hmdb.ca/
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taxonomic information based on the Silva database (20), and 
different phylogenetic levels (phylum, class, order, family, 
genus, and species) were assigned to the OTUs. We used 
QIME2 (https://qiime2.org/) to analyze alpha diversity and 
the Wilcoxon rank sum test to compare the amount of data 
and statistical difference diversity. In order to identify the 
bacterial taxa whose sequences were differentially abundant 
between the IgAN and control groups, we used linear 
discriminant analysis (LDA) and effect size (LEfSe). All 
sequencing data can be found in the National Center for 
Biotechnology Information (NCBI) database (accession No. 
SUB11247081).

Statistical analysis

We used the Student’s t-test and the Wilcoxon rank sum 
test to conduct the differential analysis of the measured 
data. We assessed the correlations between UT bacteria 
and serum metabolites using Spearman correlation analysis 
and found a correlation between the microbiome and 
metabolome and clinical indicators. Statistical calculations 
were performed with the SPSSAU project, an online 
software application (https://www.spssau.com). Metabolites 
were identified that had a variable importance in the project 
(VIP) >1 and a P value <0.05 that indicated a significant 
difference. The plot was optimized using GraphPad Prism 9  
(GraphPad Software) and the OmicStudio tools (https://
www.omicstudio.cn/tool). We calculated the specificity and 
sensitivity of the core metabolites, microbiome, and clinical 
symptoms using the receiver operating characteristic  
(ROC) curve. 

Results

Summary of clinical characteristics

A total of 29 participants, including 14 patients with 
IgAN (mean age 36.50±13.83 years) and 15 HCs (mean 
age 31.00±12.14 years), were enrolled in the study at the 
First Affiliated Hospital of Jinan University. We used 
independent sample t-tests to compare the two groups. 
There was a statistical difference in the serum albumin, 
24-h proteinuria, full blood count, urea nitrogen, creatine, 
and uric acid (P<0.05) between the two groups. However, 
no significant differences were found in age, BMI, alanine 
aminotransferase (ALT), or aspartate transaminase (AST). 
Although the systolic blood pressure of those with IgAN 

was in the normal range (90–130 mmHg) according to 
the guidelines of the American College of Cardiology 
(ACC) and the American Heart Association (AHA), it was 
significantly higher than that of the HCs group. Detailed 
descriptions of the IgAN patients and HCs can be found in 
Tables S1,S2.

OTUs and diversity analyses in bacteria

The urinary bacteria of 14 patients with IgAN and 15 
HCs were analyzed using 16S rRNA gene sequencing. 
In this study, we obtained an average of 74,399 valid tags 
(average length: 418 bp) and 2,157,579 total reads. We 
then identified 1,464 OTUs in the HC group and 1,466 
OTUs in the IgAN group, including 1,463 shared OTUs, 
indicating a 97% similarity between the two groups  
(Figure 1A). The sequencing samples obtained were 
sufficient for further taxon identification on the basis of 
the rarefaction curve (Figure 1B) and species accumulation 
curve (Figure 1C). We found no significant difference in 
species diversity (Shannon and Simpson indices) or species 
richness [Chao1 and abundance-based coverage estimator 
(ACE)] in the Student’s t tests. 

We also identified 10 main bacterial phyla (Figure 1D), 
among which Firmicutes, Bacteroidetes, Proteobacteria, 
Acidobacteria, Actinobacteria, and Verrucomicrobia 
constituted over 93% of the bacteria in all 16S rRNA 
sequence groups. Our data also showed that the relative 
abundance of Acidobacteria was higher in patients with 
IgAN (control: 9%; IgAN: 11%; P=0.04; Figure 1E), 
and that Lactobacillus (control: 16%; IgAN: 10%) levels 
decreased in the IgAN group at the genus level according to 
the Wilcoxon rank sum test (P=0.00776183; Figure 1F).

 We used a Metastats analysis to predict the core 
microbiota at different levels of bacterial classification 
between the IgAN and control groups (P<0.05; LDA 
>4; Figure 2A; Table 1) and cladograms to describe the 
evolutionary relationship between microorganisms 
based on LDA >4 (Figure 2B). The results showed that 
the abundance of the phylum Acidobacteria increased 
in patients with IgAN. By contrast, patients with IgAN 
exhibited a loss of Lactobacilli (order: Lactobacillales; 
family: Lactobacillaceae; genus: Lactobacillus) and Bacilli at 
the class level. In summary, the microbiome of patients 
with IgAN compared with HCs expressed a disorder of the 
microbial community which may lead to the disorder of 
immune mechanisms (21).

https://qiime2.org/
https://www.spssau.com
https://www.omicstudio.cn/tool).
https://www.omicstudio.cn/tool).
https://cdn.amegroups.cn/static/public/ATM-22-5334-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5334-Supplementary.pdf
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Figure 1 Microbiota diversity analysis. (A) 1,464 OTUs in the healthy control group and 1,466 OTUs in the IgAN group. (B) Rarefaction 
curves of microbiota from urine samples. (C) Species accumulation curve of microbiota from urine samples. (D) Relative abundance of 
dominant groups at the phylum level of each specimen. (E) Compared with the proportion of relative bacterial abundance from the IgAN 
and HC groups at the phylum (E) and genus level (F). *, P<0.05; **, P<0.01. HC, healthy control; IgAN, immunoglobin A nephropathy; 
OTUs, operational taxonomic units.
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Changes of serum metabolites in patients with IgAN 

We performed an LC-MS/MS analysis of the serum 
metabolite alterations in patients with IgAN (VIP >1; 
P<0.05), and found 168 differential metabolites (Table S3), 
divided into several classes, such as peptides, lipids, amino 
acids, and carbohydrates. Amino acids, peptides, organic 
heterocyclic compounds, and lipids accounted for the 
majority of major alterations in the differential metabolites 
of IgAN. We also found that amino acids and peptides 
showed an upward trend (Figure 3A), while lipids and lipid-
like molecules in the serum metabolites of patients with 

IgAN showed a descending trend (Figure 3B). Cellobiose, 
homocitrulline, apo-[3-methylcrotonoyl-CoA:carbon-
dioxide ligase (ADP-forming)], prolylhydroxyproline, 
24-epibrassinolide, butyrylcarnitine, guanidinosuccinic 
acid, formiminoglutamic acid, and diethanolamine were the 
metabolites with a VIP >2 and log fold change >2, and thus 
were suspected to be the core metabolites in patients with 
IgAN (Figure 3C). In addition, we found that the histidine 
metabolism pathway was statistically different (P<0.05; 
impact value >0.1) through an enrichment analysis in 
Metaboanalyst v. 5.0 (Figure 3D). 
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Figure 2 The LDA and LEfSe. (A) Influence of differences between the IgAN group and HC group. (B) Cladogram of the phylogenetic 
distribution of microbes. HC, healthy control; IgAN, immunoglobin A nephropathy; LDA, linear discriminant analysis; LEfSe, linear 
discriminant analysis effect size. 

Table 1 Differential microbes at different levels of biological classification in Metastats and LEfSe analyses

Bacteria
Metastats analysis

Wilcoxon test
LEfSe analysis

HC (mean) IgAN (mean) HC (LDA value) IgAN (LDA value)

Phylum

Acidobacteria 8.64% 10.70% 0.04024279 0.036180617 4.00270126

Class

Bacilli 17.50% 12% 0.04468533 4.547905826 0.04468533

Order 

Lactobacillales 17.20% 11.60% 0.04024279 4.551476082 0.04024279

Family

Lactobacillaceae 15.70% 10.10% 0.00776183 4.544844194 0.00776183

Genus

Lactobacillus 15.70% 10.10% 0.00776183 4.543791671 0.00776183

LEfSe, linear discriminant analysis effect size; HC, healthy control; IgAN, immunoglobin A nephropathy; LDA, linear discriminant analysis.

https://cdn.amegroups.cn/static/public/ATM-22-5334-Supplementary.pdf


Annals of Translational Medicine, Vol 10, No 22 November 2022 Page 7 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(22):1230 | https://dx.doi.org/10.21037/atm-22-5334

0.0

0.2

0.4

0.6

0.8

1.0

HC IgAN
0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0

50

100

150

200

✱

0

5

10

15

20

HC IgAN
0.0

0.5

1.0

1.5

HC IgAN
0.0

0.5

1.0

1.5

0.0

0.5

1.0

2.0

HC IgAN
0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

HC IgAN
0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0

50

100

150

200

✱

0

5

10

15

20

HC IgAN
0.0

0.5

1.0

1.5

HC IgAN
0.0

0.5

1.0

1.5

0.0

0.5

1.0

2.0

HC IgAN
0

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

HC IgAN
0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0

50

100

150

200

✱

0

5

10

15

20

HC IgAN
0.0

0.5

1.0

1.5

HC IgAN
0.0

0.5

1.0

1.5

0.0

0.5

1.0

2.0

HC IgAN
0

2

4

6

8

Carbohydrates and hydrocarbon 
Organic Heterocyclic Compounds 
Carboxylic Acids 
Amino acids and Peptides Amines 
Others

Carbohydrates and hydrocarbon 
Organic Heterocyclic Compounds 
Lipids and lipid-like molecules 
Carboxylic Acids 
Amino acids and Peptides Amines 
Others

Up

Down

8.99% 12.35%

30.34%

15.73%

11.24%

11.25%

2.5%

6.25%

13.75%

40%

10%

16.25%

21.35%

2.5

2.0

1.5

1.0

0.5

0.0
-l

og
 (P

)

0.0 0.1 0.2 0.3 0.4 0.5
Pathway impact

Linoleic acid metabolism

Histidine metabolism

Glycerophospholipid metabolism
Pyrimidine metabolism

Arginine biosynthesis

Ascorbate and aldarate metabolism

A D

B

B
1.0

0.8

0.6

0.4

0.2

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

200

150

100

50

0

8

6

4

2

0

20

15

10

5

0

0.08

0.06

0.04

0.02

0.00

0.15

0.10

0.05

0.00
HC

HC HC HC HC

HC HC HC HCIgAN

IgAN IgAN IgAN IgAN

IgAN IgAN IgAN IgAN

*

*
*

*
*

*

**

**

**

Cellobiose Homocitrulline 24-Epibrassinolide

Guanidinosuccinic acid Formiminoglutamic acid Diethanolamine Prolylhydroxyproline

Butyrylcarnitine
Apo-[3-methylcrotonoyl-CoA: 

carbon-dioxide ligase] C

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

R
el

at
iv

e 
qu

an
tit

at
iv

e 
va

lu
e

Figure 3 The analysis in changes of serum metabolite and pathway enrichment. (A) An increase in the serum metabolites of patients with 
IgAN. (B) A decrease in the serum metabolites of patients with IgAN. (C) The 9 core metabolites in serum samples were differentially 
expressed. (D) Metabolic pathway enrichment of serum samples. *, P<0.05; **, P<0.01. HC, healthy control; IgAN, immunoglobin A 
nephropathy.

Correlation between altered microbiome and metabolism

We clarified the relationship between the microbiome and 
differential metabolites through a Spearman correlation 
analysis (Figure 4A) and found that 12 different metabolites 
were negatively correlated with Lactobacillus and 19 different 
metabolites were positively correlated with Lactobacillus 

(Table S4). Interestingly, Lactobacillus, which was positively 
correlated with guanidinoacetic acid, has a negative 
correlation with apo-[3-methylcrotonoyl-CoA:carbon-
dioxide ligase (ADP-forming)] and diethanolamine in core 
metabolites (r>0.5; P<0.05). The disturbance of Lactobacillus 
number may affect the changes of these metabolites.

https://cdn.amegroups.cn/static/public/ATM-22-5334-Supplementary.pdf
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Correlation analysis between metabolites, microbiome, and 
clinical symptoms

Using Spearman correlation analysis, we assessed the 
relationship between metabolites, microbiome, and 
clinical indicators (Figure 4B). We found that some 
core metabolites including homocitrulline, apo-[3-
methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-
forming)], butyrylcarnitine, formiminoglutamic acid 
(FIGLU), diethanolamine, and prolylhydroxyproline had a 

positive correlation with mili-total protein (MTP), whereas 
cellobiose, butyrylcarnitine, and prolylhydroxyproline 
had a negative correlation with serum albumin, with 
24-epibrassinolide being negatively correlated with MTP 
(P<0.05; |rho| >0.5). Lactobacillus was also negatively 
correlated with MTP and urea nitrogen but positively 
correlated with serum albumin (Table S5). There was also 
no significant difference in core metabolites when the 
Oxford classification of IgAN was used. Lactobacillus and 
core metabolites were determined to be predictors of IgAN 
by an area under the curve (AUC) analysis. Lactobacillus 
showed an excellent prediction ability for the diagnosis of 
IgAN in the ROC curve (AUC >0.79; 95% CI: 0.6176–
0.9633; Figure 5). 

Discussion

Interactions between genetics and the environment are 
thought to determine IgAN’s development (22,23). The 
microbiome is currently recognized as a key environmental 
factor that contributes to the development and progression 
of the disease. While sequencing adds the comprehensive 
understanding of microorganisms, the metabolomics based 
on mass spectrometry is a pivotal technology of detect 
small molecules produced by microbiome (24). Through 
the correlation analysis of microbiome and metabolomics, 
we can provide broader ideas and information for the 
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screening of disease markers. Most existing multiomics 
studies elaborate on changes in the serum metabolome and 
gut microbiome, and a few studies have tried to examine 
the alterations in the serum metabolome and urinary 
microbiome. It has long been thought that the UT was 
a sterile environment, but the introduction of new high-
throughput sequencing technologies and improved culture 
schemes for microbiome research has proven that the 
UT is not sterile (12,25,26). It has also been reported that 
Limosilactobacillus urinaemulieris sp. nov. and Limosilactobacillus 
portuensis sp. nov. are present in the urine of healthy  
women (27). The complicated microbial communities of 
the human UT can now be analyzed using high-throughput 
molecular sequencing of bacterial 16S rRNA genes (28). 
Recent studies have reported that the bacterial taxa of the 
urinary microbiome have an important influence on diseases 
and homeostasis in the UT (29-31). For example, some 
studies indicated an association between lower urinary tract 
symptoms (LUTS), or incontinence, and the human urinary 
microbiome (32,33). The dysbiosis of several key urinary 
bacteria has also been found to be related to interleukin-8 
(IL-8) in type 2 diabetes mellitus (T2DM) (34). We 
hypothesized that urinary microbiota and metabolites might 
also be a feasible detection tool for IgAN. 

Based on alpha and beta diversity analyses, we found that 
bacterial species did not differ significantly between the 
IgAN group and the HC group, which is similar to findings 
in previous research (9). We also found that the amount and 
diversity of bacteria was different in patients with IgAN. It 
has been reported that the main bacterial taxa of healthy 
people (aged 22–51 years) are Lactobacillus, Aerococcus, 
Klebsiella, Staphylococcus, Corynebacterium, Gardnerella, 
Streptococcus, Escherichia, Prevotella, and Enterococcus (35). We 
found that the distributions of the major phyla in the UT 
(Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria) 
were roughly consistent with the results of previous human 
adult gut studies (36-38). There was a 1.24-fold increase 
in Acidobacteria at the phylum level (P<0.05), a 1.9-fold 
increase in Actinomyces in the genus level (P<0.05), and a 
2.6-fold decrease in Lactobacillaceae (P<0.05), but a 0.34-fold  
decrease in Lactobacillus (P<0.05) in our Wilcoxon rank sum 
test, which indicated that the specific species of urinary 
microbiota in patients with IgAN was altered. Our Metastats 
analysis found that Actinobacteria was more abundant at the 
phylum level in patients with IgAN and that Actinotignum 
was a notable differential microorganism at the genus 
level (P<0.01). A previous study using both 16S DNA and 
rRNA found that Actinobacteria of the main bacterial phyla 

significantly differed in the fecal microbiota of patients with 
IgAN (10). A study revealed that Actinotignum, known for 
its proinflammatory features, could be an early polybacterial 
biofilm colonizer. Actinotignum usually presents in the 
UT as an opportunistic pathogen and coagent of various 
polymicrobial infections, but it has not been found in  
feces (39). Studies have also shown that Actinotignum could 
be associated with noninfectious conditions and diseases, 
such as chronic inflammation, prostatism, and bladder 
cancer (31,40-43). Therefore, we speculate that the increase 
of Actinomyces in urinary flora may be related to IgAN.

We found that Lactobacillus at the genus level was 
lower in patients with IgAN compared to healthy 
controls, which is in agreement with a previous study that 
found that Lactobacillus genera to be higher in controls 
and Lactobacillaceae to be lower in patients with IgAN  
(P<0.05) (10). It has also been reported that Lactobacillus can 
reduce inflammation of the kidney and also reduce injury in 
renal tubular epithelial cells. Lactobacillus may also protect 
the kidney through an independent mechanism against 
the interference of the original bacterial flora. Lactobacillus 
can decrease oxidative stress, reduce the proinflammatory 
response, and increase kidney function in immune 
responses. We speculate that Lactobacillus supplementation 
may work as a preventive approach against chronic kidney 
disease (CKD) (44).

Metabolites play an important role in the development 
and progression of renal diseases as mediators of bacterial 
functional activities (9). Previous studies have reported the 
alteration of amino acids, such as Met, Glu, and Pro, in the 
serum samples of patients with IgAN (45,46). This finding 
is in line with our research, which showed both increased 
differential metabolites (amino acids, oligopeptides, and 
amines) and decreased differential metabolites (medium-/
long-chain fatty acids; Figure 3A). We hypothesize that 
the level of amino acids in serum was changed through the 
alteration of the tricarboxylic acid cycle and the increased 
hydrolysis of proteins in cell necrosis (10). We found that 
an increase of oligopeptides, rather than polypeptides, 
demonstrated bacterial proteolytic fermentation. Several 
studies have reported that protein assimilation, such as 
digestion and absorption, are impaired in patients with 
ESRD, suggesting that oligopeptides are more easily 
absorbed due to noncompetitive transport and low energy 
consumption (47-49). In addition, we found a decrease in 
lipids, especially in unsaturated fatty acids (e.g., arachidonic 
acid). Studies have shown that long-chain polyunsaturated 
fatty acids (LCPUFA) play a preventive and deferring role 
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in renal patients with cardiovascular disease (CVD), and that 
LCPUFA supplementation can extend the life of patients on 
long-term dialysis (50,51). A low dose of LCPUFA can also 
help lower estimated glomerular filtration rate (eGFR) (52). 
In our study, we found changes in differential metabolites 
in the serum samples of patients with IgAN as compared to 
healthy controls.

A previous study reported that the dysbiosis of urinary 
microbiota is related to proinflammatory chemokine  
IL-8 (34). Here, we studied the relationship between serum 
metabolites and urinary microbiota (Figure 4A). We found 
that some serum metabolites, such as trimethylamine-
N-oxide (TMAO) and D-mannose, were related to 
Lactobacillus (P<0.05; |rho| >0.5). Several researchers 
reported that atherosclerosis, mediated by TMAO, could 
be an important cause of kidney and heart disease from 
dietary phosphatidylcholine (53). TMAO concentration 
is also associated with eGFR, prognosis, and even long-
term survival in CKD (54,55). Some probiotics, such as 
Lactobacillus, have been shown to inhibit the synthesis of 
TMAO, reducing inflammatory signaling and improving 
renal function in CKD (56,57). Some studies suggest that 
D-mannose can inhibit bacterial adherence to uroepithelial 
cells (58,59). We speculate that Lactobacillus and D-mannose 
may work together to aid urethral immunity. KEGG 
analysis showed that histidine pathway was enriched in the 
serum of patients with IgAN. The microbiota can produce 
L-histidine through the histidine metabolic pathway, 
which is a potential biomarker of septic acute kidney injury  
(AKI) (60).

In this study, Spearman correlation analysis indicated 
a correlation between core metabolites, the microbiome, 
and clinical indicators in patients with IgAN. Similarly, 
homocitrulline, involved in CKD progression, has been 
found to be related to MTP (61); Butyrylcarnitine, which 
is positively correlated with MTP, was also shown to be a 
predictive biomarker in the diagnosis of renal cell carcinoma 
(RCC) (62); meanwhile, prolylhydroxyproline, which has 
also been positively correlated with MTP, may be a marker 
for cognitive impairment in patients receiving long-term 
maintenance dialysis (63). We also found that Lactobacillus 
was negatively correlated with urea nitrogen and MTP but 
positively correlated with serum albumin. This is consistent 
with previous studies which found that some Lactobacilli can 
reduce urea nitrogen and upregulate albumin levels (64,65). 
Our research still needs to be verified with larger samples, 
but using an ROC model, we found that Lactobacillus is a 
good predictor of IgAN (AUC >0.79; Figure 5).

Urine, a waste product, is created through the various 
metabolic endpoints, which eventually reach the bladder 
and kidneys. Urethral microbiota are affected by external 
factors, such as lifestyle, diet, and the environmental, and 
has ample time to interact with and alter these metabolisms 
filtered by blood through kidneys (7,31). Urethral 
microbiota affects the kidney through a host of mechanisms 
in this process, such as evading the protective factors of 
the host or inhibiting host IgA transport (66). Moreover, a 
study on sterile mice have shown that microbial deficiency is 
associated with an impaired immune system and behavioral 
or neurological diseases (67). Therefore, the changes in the 
urethral microbiota of patients with IgAN as compared with 
healthy controls may increase the risk of alterations in renal 
pathologies. We found a close relationship between urethral 
microbiota and serum metabolites. There may be a similar 
mechanism in the human body that causes the deposition 
of polymeric and hypogalactosylated IgA1 (Gd-IgA1) in the 
glomerular mesangium or capillary wall, leading to IgAN. 
Renal insufficiency changed the composition of serum 
metabolites, so we hypothesize that urethral microbiota 
interacts with serum metabolites.

Current ly,  the  main  t reatments  for  IgAN are 
immunosuppressive drugs and systemic corticosteroids, but the 
minimal therapeutic effects and risk of side effects limit their 
value and application. Our research may provide a therapeutic 
approach including targeting microbiota modulation or 
restoration and maintenance of metabolic balance. A recent 
study of the identification of urinary microbiota using 16S 
rRNA and culturomics, proposed that the 64% of species in 
urinary microbiota, which originates from the gut, overlap 
with gut microbiota (68). The gut microbiota is helpful in 
maintaining the diversity of prokaryotes in the UT and this 
study highlighted reduction in recurrence of urinary tract 
infections after fecal microbiota transplantation (FMT) (69).  
Perhaps changing the imbalance of metabolites and microbiota 
could delay the occurrence of IgAN and reduce the impact 
of the disease. Some researchers have reported that the 
preventive supplement of D-Mannose and Lactobacillus 
effectively prevented UT infection (70-72). Furthermore, 
adjunctive probiotic supplementation may mitigate the 
increase of TMAO in proteolytic fermentation and decrease 
the risk of CVD and dementia (73). A reasonable supplement 
of probiotics and polyunsaturated fatty acids may be a key tool 
for preventing and treating IgAN.

 Our study had some limitations. Our combined 
microbiome and metabolome analysis results would be 
more robust if the urinary differential metabolites had 
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been added to the experiment. The results of our study 
should also be verified on more samples. Now, with more 
convenient and faster sequencing technologies, we can 
detect the size and grandeur of microbial communities. 
Application of the microbiome and metabolome will 
become a powerful non-invasive target for precision 
medicine. However, we still lack understanding of the 
molecular functions encoded by microbial genes. In 
addition, the joint analysis of multi-omics will be a major 
trend. We will use the expanded quantitative urine culture 
(EQUC) to detect the low-abundance uropathogens or 
bacteria in the future (74,75). EQUC associates with 
sequencing tools, such as targeted amplicon sequencing, 
metagenomic sequencing and long-read sequencing, 
to further describe the urine microbiota and build an 
expanded genome sequencing isolate banking.

Conclusions

We observed a shift in the abundance of bacteria and 
metabolites in patients with IgAN. Our study clarified the 
relationship between serum metabolites, urine microbiota, 
and disease in those with IgAN, which will help to provide 
further research and develop new tools for preventing and 
delaying the occurrence of the disease. 
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Supplementary

Table S1 Clinical characteristics of the IgAN and healthy control groups

Characteristics Healthy control group (n=15) IgAN group (n=14)

Gender (male/female) 5/10 7/7

Age (years) 31.00±12.14 36.50±13.83

BMI (kg/m2) 21.34±1.84 23.68±4.76

Systolic pressure 116.20±9.81 128.29±13.34**

MTP (mg/L) 0.00±0.00 910.50±1,227.84*

ALT (U/L) 15.07±5.05 32.29±53.68

AST (U/L) 18.27±4.73 25.21±27.57

Serum albumin (g/L) 43.55±2.90 35.98±8.51**

FBG (mmol/L) 5.45±0.61 5.02±0.49*

Urea nitrogen (mmol/L) 4.56±0.35 10.33±8.02*

Creatinine (µmol/L) 71.13±9.79 128.98±66.12**

Uric acid (µmol/L) 302.00±31.00 438.86±144.86**

Cholesterol (mmol/L) 4.44±0.38 4.76±1.15

Triglyceride (mmol/L) 1.49±0.14 1.67±1.13

HDL (mmol/L) 1.21±0.08 1.09±0.21

LDL (mmol/L) 2.57±0.15 2.70±0.97

Data are presented as mean ± standard deviation. *, P<0.05; **, P<0.01. BMI, body mass index; ALT, alanine transaminase; AST, aspartate 
amino transferase; FBG, fasting blood glucose; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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Table S2 Pathological features of patients with immunoglobulin A nephropathy

Patients
Glomerular 

number
Endocapillary 
proliferation

Segmental 
sclerosis

Mesangial 
hypercellularity

Tubular 
atrophy

Crescent
Interstitial 
fibrosis

Inflammatory 
infiltration

IgG IgA IgM C1q C3 Lee
Oxford 

classification

1 15 × √ Moderate 60% 5% ++ ++ - +++ + - ++ V M1S1E0T2

2 19 × √ Light 0% 0% + + - ++ + - + III M0S1E0T0C0

3 / / / / / / / / / / / / / V /

4 21 × √ Light 5% 0% + + - +++ - - - III M0S1E0T0C0

5 44 √ √ Light 10% 0% ++ + - ++ - - - III M0S0E1T0C0

6 / / / / / / / / / / / / / IV /

7 35 × √ Light 1% 0% + + - +++ - - ++ III M0S1E0T0C0

8 / / / Moderate / / / / / / / / / III /

9 28 √ √ Light-moderate 55% 1% +++ +++ - ++ - - + V M1S1E1T2C1

10 3 × √ Severe 65% 0% ++ ++ - ++ + - + III M1S1E0T2

11 41 √ × Light 0% 6% + ++ - + - - - III M1S1E1T0C1

12 14 × √ Light 10% 0% + + - +++ - - + III M0S1E0T0C0

13 10 × × Moderate-severe 65% 0% +++ +++ - +++ + - ++ V M2S0E0T2C0

14 9 × × Light 50% 0% +++ + - ++ - - + III M1S0E0T1

+, varying degrees; -, negative results; /, missing value.
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Table S3 Differential metabolites in the serum samples of the HCs and IgAN

MS2 name Log FC Classification Ionization mode

3-Hydroxybenzyl alcohol -1.038555281 Alcohols NEG

(-)-Salsoline -1.188847988 Alkaloids POS

Piperine -4.036114253 Alkaloids and derivatives POS

Homoarecoline -0.976771374 Alkaloids and derivatives POS

Calystegin A3 1.514525805 Alkaloids and derivatives POS

Tyramine-O-sulfate 3.140989286 Amines POS

Trimethylamine N-oxide 1.303791777 Amines POS

Propionylcarnitine 1.268459529 Amines POS

Pivaloylcarnitine 1.277871013 Amines POS

Metenamine -0.208978683 Amines POS

L-Carnitine 0.237121528 Amines POS

Dopamine 3-O-sulfate 1.915483063 Amines POS

Diethanolamine 2.454014888 Amines POS

Decanoylcarnitine -1.158613053 Amines POS

Butyrylcarnitine 2.123463116 Amines POS

Betaine aldehyde 0.17572921 Amines POS

Betaine 0.945129253 Amines POS

Acetylcholine -1.219534748 Amines POS

3-Hydroxyisovalerylcarnitine 1.308969749 Amines POS

3-Dehydroxycarnitine 0.759795273 Amines POS

N-Acetylserine 1.608345108 Amino acid NEG

N-a-Acetyl-L-arginine 1.012741388 Amino acid POS

N6-Acetyl-L-lysine 0.872534004 Amino acid POS

L-Methionine 1.064617635 Amino acid POS

Homocitrulline 2.597834483 Amino acid POS

Guanidoacetic acid -0.657494334 Amino acid POS

D-Ornithine 1.318035906 Amino acid NEG

Citrulline 1.180349992 Amino acid POS

1-Methylhistidine 1.578313014 Amino acid POS

Glutaminyl-Gamma-glutamate 0.430095947 Amino acid derivatives POS

(2R,3R,4R)-2-Amino-4-hydroxy-3-methylpentanoic acid 0.723255646 Amino acid derivatives POS

L-Kynurenine 0.752112674 Aromatic amine POS

Toluene 0.377006076 Benzene derivatives POS

Ethylbenzene 0.330223918 Benzene derivatives POS

4-Dodecylbenzenesulfonic Acid -1.075797941 Benzenesulfonic acids NEG

Isopalmitic acid -0.684029669 Branched-chain fatty acid NEG

N-Palmitoylsphingosine 0.639738652 Carbohydrate POS

D-Xylitol 1.327322538 Carbohydrate NEG

D-Mannose 0.572438499 Carbohydrate NEG

D-Glucuronic acid 2.547482852 Carbohydrate NEG

Deoxyribose 5-phosphate 0.353321518 Carbohydrate NEG

D-Arabitol -1.889800039 Carbohydrate NEG

3-Phosphoglyceric acid 3.070823169 Carbohydrate NEG

1-Deoxy-D-glucitol 2.398706943 Carbohydrate POS

1-deoxy-1-(N6-lysino)-D-fructose 2.178163596 Carbohydrate NEG

apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-
forming)]

2.014604677 Carboximidic acids POS

Vinylacetylglycine 0.326020208 Carboxylic acids POS

Urocanic acid 1.935293859 Carboxylic acids NEG

Succinic anhydride -0.960123404 Carboxylic acids NEG

Sinapyl alcohol -1.917093243 Carboxylic acids NEG

Phenyllactic acid 1.220289395 Carboxylic acids NEG

Phenoxyacetic acid -2.663724931 Carboxylic acids NEG

p-Aminobenzoic acid 1.203961608 Carboxylic acids POS

O-Phosphothreonine 0.67561737 Carboxylic acids NEG

L-Norleucine 0.20092195 Carboxylic acids POS

Isocitric acid -0.565960142 Carboxylic acids NEG

Guanidinosuccinic acid 2.429272401 Carboxylic acids POS

Gentisic acid 0.974913071 Carboxylic acids NEG

Formiminoglutamic acid 2.734173164 Carboxylic acids POS

Dibutyl phthalate -0.556182662 Carboxylic acids NEG

Caprylic acid -0.592996602 Carboxylic acids NEG

Alpha-dimorphecolic acid -0.729011166 Carboxylic acids NEG

5-Methoxysalicylic acid -1.388404875 Carboxylic acids NEG

2-Oxovaleric acid -0.221200116 Carboxylic acids NEG

2-Methylglutaric acid 0.442467014 Carboxylic acids NEG

(R)-3-Hydroxy-tetradecanoic acid -1.483801822 Carboxylic acids NEG

Cellobiose 3.791783559 Cellulose POS

Furcelleran -1.137636379 Cinnamic acids POS

3,4-Dimethyl-5-pentyl-2-furanheptanoic acid -1.635066795 Cyclic fatty acid POS

10-Hydroxycarbazepine -1.219742902 Dibenzazepines POS

9,10-epoxyoctadecanoic acid -0.843793562 Epoxy fatty acid NEG

12-HETE -2.170324378 Fatty acid derivatives NEG

13-Heptadecyn-1-ol -2.762082842 Fatty alcohol POS

Eupatilin 0.884361425 Flavonoids NEG

DG(18:4(6Z,9Z,12Z,15Z)/15:0/0:0) -1.971000367 Glycerolipid POS

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphate -2.551813657 Glycerophospholipids POS

3-(5-Methyl-2-furanyl)butanal 0.544015549 Heteroarene POS

2-Methyl-5-propyloxazole 0.82188415 Heteroarene POS

Quinoline -0.32623344 Heterocyclic compounds POS

Taurine -0.271939786 Hydrocarbon NEG

Perillic acid -1.605115328 Hydrocarbon NEG

Norambreinolide -2.059427774 Hydrocarbon POS

Maslinic acid -1.879288469 Hydrocarbon NEG

Esculentic acid (Diplazium) -2.119045591 Hydrocarbon NEG

2-Methoxyestrone 3-glucuronide -1.291484541 Hydrocarbon POS

2-Hydroxyethanesulfonate 1.50406308 Hydrocarbon NEG

(2E)-Decenoyl-ACP -0.725181751 Hydrocarbon POS

3-Hydroxycapric acid -0.919270039 Hydroxy acids NEG

Parabanic Acid -0.456964578 Imidazole NEG

Imidazoleacetic acid 0.787450251 Imidazole NEG

Imidazole-4-acetaldehyde -0.222753622 Imidazole POS

Creatinine 1.006033722 Imidazole NEG

Indoxyl sulfate 1.070545795 Indoles POS

Indolelactic acid 1.063468301 Indoles NEG

Indole-3-propionic acid -1.689892591 Indoles NEG

1-Phenyl-1,3-docosanedione -2.476656608 Ketone POS

1,1'-(Tetrahydro-6a-hydroxy-2,3a,5-trimethylfuro[2,3-d]-1,3-
dioxole-2,5-diyl)bis-ethanone

3.099844235 Ketone POS

Dodecanoic acid -1.894657876 Lauric acids NEG

(10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-dienoic acid -0.704592385 Lipid peroxides NEG

Arachidonic acid -1.307165087 Long-chain fatty acid NEG

16-Hydroxy hexadecanoic acid -0.725679066 Long-chain fatty acid NEG

Stearic acid -0.636240294 Long-chain fatty acid NEG

Palmitoleic acid -1.090330576 Long-chain fatty acid NEG

Oleic acid -0.985724009 Long-chain fatty acid NEG

12-Methyltridecanoic acid -0.882302848 Long-chain fatty acid NEG

(9xi,10xi,12xi)-9,10-Dihydroxy-12-octadecenoic acid -0.671515926 Long-chain fatty acid NEG

9-Decenoic acid -1.671133231 Medium-chain fatty acid NEG

4-Acetylbutyrate -0.275789368 Medium-chain fatty acid NEG

Naphthalene epoxide -0.641951291 Naphthalenes POS

Uridine -0.460050506 Nucleoside NEG

Pseudouridine 1.286520215 Nucleoside NEG

N6-Methyladenosine 0.558226581 Nucleoside POS

N4-Acetylcytidine 0.894833903 Nucleoside POS

N2,N2-Dimethylguanosine 1.116141813 Nucleoside POS

Deoxycytidine -0.5787741 Nucleoside POS

Cytidine -0.5543329 Nucleoside NEG

5'-Methylthioadenosine 0.965135169 Nucleoside POS

1-Methylguanosine 0.850270036 Nucleoside POS

6-Deoxodolichosterone -2.374225038 Organic hydroxy compound POS

4-(Methylthio)-1-butanol 1.366732321 Organic sulfide POS

2-[(5-Methylsulfinyl)-4-penten-2-ynylidene]-1,6-dioxaspiro[4.4]
non-3-ene

1.6650678 Organochalcogen compound POS

gamma-Calacorene 0.577145012 Other POS

Tromethamine -0.132506767 Oxynitride POS

N-Ornithyl-L-taurine -1.539949049 Oxynitride POS

Prolylhydroxyproline 4.514053166 Peptide NEG

Phenylalanyl-Tryptophan -0.891257876 Peptide POS

N-Ethylglycine 0.759507694 Peptide POS

N-Alpha-acetyllysine 1.633199779 Peptide POS

L-prolyl-L-proline 0.750334848 Peptide POS

Leucyl-phenylalanine -1.059561779 Peptide POS

L-Arginine 0.350357486 Peptide NEG

Glycylprolylhydroxyproline 2.600780267 Peptide POS

gamma-Glutamylleucine 2.043110934 Peptide POS

Epidermin 1.687231299 peptide POS

Alanyl-Leucine -0.885741942 Peptide POS

Hexylresorcinol -1.606649332 Phenols NEG

LysoPC(P-16:0) -0.573343184 Phosphatidic acids POS

LysoPC(16:0) -0.265181633 Phosphatidic acids POS

LysoPA(18:1(9Z)/0:0) -0.345652738 Phosphatidic acids NEG

LysoPA(16:0/0:0) -0.351329903 Phosphatidic acids NEG

PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:1(11Z)) 0.44059805 Phosphocholine POS

PC(18:2(9Z,12Z)/15:0) 0.483824848 Phosphocholine POS

PE(22:4(7Z,10Z,13Z,16Z)/14:0) 1.36007987 Phospholipid POS

PE(16:0/18:2(9Z,12Z)) 1.245909772 Phospholipid POS

Piperidine 0.186120799 Piperidine POS

3-Amino-2-piperidone 1.496275076 Piperidine POS

gamma-Tocopheryl quinone -2.158598802 Prenol lipids POS

Cryptoxanthin 5,6:5',8'-diepoxide -0.870779994 Prenol lipids POS

6,10,14-Trimethyl-5,9,13-pentadecatrien-2-one -0.892164349 Prenol lipids POS

N2-Methylguanine 0.307394561 Purines POS

Methylpyrazine 1.961248035 Pyrazines POS

Oxypurinol 10.70175259 Pyrazoles NEG

2-Hydroxypyridine 0.992470342 Pyridines POS

1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide 1.062176072 Pyridines POS

Uracil -0.852045255 Pyrimidine POS

FAPy-adenine 0.750606342 Pyrimidine POS

5-Methylcytidine 0.969468434 Pyrimidine NEG

4,5-Dihydroorotic acid 3.331037903 Pyrimidine NEG

1-(1-Pyrrolidinyl)-2-butanone 0.442780488 Pyrrolidines POS

Deoxycholic acid -1.655219881 Steroid NEG

Dehydroepiandrosterone sulfate -1.293433322 Steroid NEG

24-Epibrassinolide -2.060592217 Steroid NEG

(3beta,5alpha,6beta,7alpha,22E,24R)-Ergosta-8,22-diene-
3,5,6,7-tetrol

-1.682518016 Steroid POS

3-cis-Hydroxy-b,e-Caroten-3'-one 0.498915592 Tetraterpenoid POS

Undecylenic acid -0.814840829 Unsaturated fatty acids NEG

13-L-Hydroperoxylinoleic acid -1.756733287 Unsaturated fatty acids NEG

Hypogeic acid -0.632165645 Unsaturated fatty acids NEG

N-Methylnicotinamide -1.024426266 Vitamins POS
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Table S4 Correlation between serum metabolites and urine microbes in patients with IgAN 

Serum metabolites Bacteria Rho S value Relation

Alpha-dimorphecolic acid Lactobacillus -0.56 0.002 Negative

LysoPA(16:0/0:0) Lactobacillus -0.51 0.006 Negative

Isopalmitic acid Lactobacillus -0.55 0.002 Negative

PE(16:0/18:2(9Z,12Z)) Lactobacillus -0.6 8E-04 Negative

LysoPA(18:1(9Z)/0:0) Lactobacillus -0.54 0.003 Negative

apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase 
(ADP-forming)]

Lactobacillus -0.58 0.001

Trimethylamine N-oxide Lactobacillus -0.56 0.002 Negative

Diethanolamine Lactobacillus -0.58 0.001 Negative

Toluene Lactobacillus -0.54 0.003 Negative

3-Hydroxyisovalerylcarnitine Lactobacillus -0.7 3E-05 Negative

PE(22:4(7Z,10Z,13Z,16Z)/14:0) Lactobacillus -0.62 4E-04 Negative

N-Palmitoylsphingosine Lactobacillus -0.52 0.004 Negative

Perillic acid Lactobacillus 0.573 0.001 Positive

Oxypurinol Lactobacillus 0.588 1E-03 Positive

4,5-Dihydroorotic acid Lactobacillus 0.614 5E-04 Positive

1-Phenyl-1,3-docosanedione Lactobacillus 0.545 0.003 Positive

Uracil Lactobacillus 0.532 0.003 Positive

Norambreinolide Lactobacillus 0.549 0.002 Positive

3,4-Dimethyl-5-pentyl-2-furanheptanoic acid Lactobacillus 0.528 0.004 Positive

13-Heptadecyn-1-ol Lactobacillus 0.562 0.002 Positive

DG(18:4(6Z,9Z,12Z,15Z)/15:0/0:0) Lactobacillus 0.508 0.005 Positive

6-Deoxodolichosterone Lactobacillus 0.519 0.004 Positive

gamma-Tocopheryl quinone Lactobacillus 0.543 0.003 Positive

Guanidinooacetic acid Lactobacillus 0.601 7E-04 Positive

Caprylic acid Lactobacillus 0.576 0.001 Positive

9,10-epoxyoctadecanoic acid Lactobacillus 0.505 0.006 Positive

(10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-
dienoic acid

Lactobacillus 0.64 3E-04 Positive

Hypogeic acid Lactobacillus 0.553 0.002 Positive

Deoxycholic acid Lactobacillus 0.509 0.005 Positive

2-Hydroxyethanesulfonate Lactobacillus 0.528 0.004 Positive

D-Mannose Lactobacillus 0.509 0.005 Positive

Rho, degree of relationship between 2 variables.
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Table S5 Correlation between core metabolites and microbiome and clinical indicators in patients with IgAN 

Core metabolites Clinical indicators Rho P value Relation

24-Epibrassinolide MTP (mg/L) -0.51146 0.004572 Negative

Cellobiose Serum albumin (g/L) -0.57051 0.001231 Negative

Butyrylcarnitine Systolic pressure 0.571217 0.00121 Positive

Homocitrulline MTP (mg/L) 0.528436 0.003211 Positive

apo-[3-methylcrotonoyl-CoA:carbon-
dioxide ligase (ADP-forming)]

MTP (mg/L) 0.622875 0.000308 Positive

Butyrylcarnitine MTP (mg/L) 0.59847 0.000605 Positive

Formiminoglutamic acid MTP (mg/L) 0.663198 8.82E-05 Positive

Diethanolamine MTP (mg/L) 0.702459 2.16E-05 Positive

Prolylhydroxyproline MTP (mg/L) 0.761351 1.62E-06 Positive

Lactobacillus MTP (mg/L) –0.56451 0.001422 Negative 

Lactobacillus Urea nitrogen (mmol/L) –0.51681 0.004098 Negative 

Lactobacillus Serum albumin (g/L) 0.609188 0.000453 Positive


