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Introduction

Esophageal cancer is one of the most serious diseases 
threatening human health (1) and esophageal squamous cell 
carcinoma (ESCC) is the predominant histological type, 
accounting for ≈90% of esophageal cancers worldwide (2).  
The etiology of ESCC mainly comprises of cigarette 

smoking, alcohol drinking, hot food and beverages, pickled 
vegetables, radiation damage, and genetic factors (3).  
Generally, ESCC is diagnosed at an advanced stage due 
to the low sensitivity and efficiency of endoscopy and 
barium swallow techniques (4). The 5-year overall survival 
(OS) rates of ESCC are <20%, due to tumor recurrence, 
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extensive invasion and metastasis (5). The liver is the major 
distal metastasis site of ESCC and ≈20% of ESCC patients 
develop liver metastasis. 

Extraordinary advances have been made in the 
diagnosis and treatment of ESCC. PD-1 antibodies such 
as pembrolizumab and nivolumab have been used in 
clinical trials to treat patients with advanced ESCC (6), 
but the prognosis of ESCC remained poor, and only subtle 
improvement was achieved in OS compared with traditional 
chemotherapy (7); for the liver metastasis patients especially, 
the median survival time is only 5 months. Therefore, the 
tumor microenvironment (TME) of ESCC to profile the 
immune status for elucidation the mechanism of ESCC liver 
metastasis, and development of innovative immunotherapies 
for ESCC.

Single-cell RNA sequencing (scRNA-seq) is widely 
utilized for analysis of the heterogeneity of complex 
biological systems (8). Currently, single-cell transcriptomic 
analysis provides a strategy for synthetically elucidating 
intercellular relationships in complex TMEs (9). The types 
and status of tumor-infiltrating immune cells have been 
well distinguished and dissected by scRNA-seq in lung  
cancer (10), hepatocellular carcinoma (11) and breast  
cancer (12). In this study, high-dimensional scRNA-seq 
obtained from a Gene Expression Omnibus (GEO) dataset 
combined with an RNA-Seq dataset were used to describe 
the immune landscape of ESCC. Furthermore, we identified 
gene signatures by gene set variation analysis (GSVA) score 
to explore the relationship between specific cell subsets and 
survival probability. 

Briefly, major cell populations such as B and T 
lymphocytes, granulocytes, natural killer (NK) cells and 
macrophage (MΦ) were clustered and redefined. We found 

several unique cell subsets correlated to patient prognosis 
and liver metastasis, and the C1QA/B+ tumor-associated 
macrophages (TAMs) were likely to be the central regulator 
in the ESCC TME. Furthermore, analysis indicated 
that the key molecules in immune regulation included 
TNFSF9, CD40, and CD47, mediated by the C1QA/B+ 
TAMs. Therefore, our results comprehensively revealed 
the landscape of tumor-infiltrating immune cells associated 
with ESCC prognosis and metastasis, and provided a novel 
strategy for developing immunotherapies for ESCC liver 
metastasis targeting C1QA/B+ TAMs. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-5351/rc).

Methods

scRNA-seq data analysis

Raw sequencing data were preprocessed by Cell Ranger 
3.0.1, then unique molecular identifier (UMI) count 
data were generated by inputting the fastq files into the 
Cellranger count. Single-cell data analysis was conducted 
using R package Seurat (http://satijalab.org/seurat) (13). 
Briefly, high-quality cells (>200 genes and <6,000 genes/cell,  
<10% mitochondrial genes) were kept for downstream 
analysis. Datasets were integrated using the Seurat package 
to eliminate batch effects, followed by principal component 
analysis, and Uniform Manifold Approximation and 
Projection (UMAP) visualization. Graph-based clustering 
was applied to identify clusters using default parameters. 

The Cancer Genome Atlas (TCGA) data analysis

ESCC RNAseq data were downloaded from TCGA 
database,  accompanied by corresponding cl inical 
information. GSVA was performed based on the cluster-
specific gene sets derived from scRNA-seq to assign cell 
type signature scores per sample ranging from −1 to +1 (14). 

Multiplex immunohistofluorescence (mIHC) assay

Tissues samples were obtained from the patients with ESCC 
liver metastasis from Fujian Cancer Hospital between 
January 2018 to August 2020. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the ethics committee 
of Fujian Cancer Hospital (No. 10104700) and informed 
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consent was taken from all individual participants. Multiplex 
staining of primary ESCC tissues and their corresponding 
liver metastasis was performed using OpalTM 7-color 
multiplex IHC kit (Akoya Biosciences, NEL861001KT, 
USA) according to the manufacturer’s instructions (15). 
Briefly, the slides were incubated for approximately 1 h at 
68 ℃ followed by deparaffinization and rehydration. For 
each staining cycle, the slides were treated with retrieval 
of antigen, blocking, and primary antibodies incubation, 
followed by horseradish peroxidase-conjugated secondary 
antibody incubation and Opal tyramide signal generation 
(detailed information of antibodies and corresponding 
Opal fluorophores are given in Table S1). The slides were 
stripped with retrieval solution as required before the next 
round of staining. The above process was repeated until all 
markers were completed. Once all markers were labeled, 
slides were counterstained with DAPI (Akoya Biosciences) 
and scanned using the PerkinElmer Vectra3® PolarisTM 
platform. The multispectral images obtained were unmixed 
using the inForm Advanced Image Analysis software 
(inForm 2.4.1; Akoya Biosciences). The antibodies and 
reagents are listed in Table S1. 

Statistical analysis

Kaplan-Meier survival plots were generated by survival 
and survminer package in R. The log-rank test was used 
to calculate the statistical significance between the survival 
curves. P<0.05 was considered significant. No data point 
was excluded from analysis. No blinding or randomisation 
was performed for statistical analysis. Sample size was 
determined to ensure the proper comparison between 
different groups. 

Results

Experimental scheme and single-cell transcriptomic 
landscape of ESCC 

To c la r i fy  the  potent i a l  e f f ec t  o f  d i f f e rent  ce l l 
subpopulations, the immune landscape of ESCC was 
established. The workflow of scRNA-seq analysis is shown 
in Figure 1A. First, the major cell subpopulations were 
clustered and annotated, and each major cell population was 
re-clustered (Figure 1A). The signature marker genes for 
each cell subset were identified using the Seurat toolkit (16). 
Next, the RNA-seq dataset for ESCC was acquired from 
TCGA database (Figure 1B), and the GSVA score of the 

gene signature specific to each cellular subset was calculated 
for each ESCC RNA-seq data set based on the gene 
signatures of each cellular subset (Figure 1C) to estimate the 
correlation between GSVA score and survival probability 
(Figure 1D). 

The scRNA-seq cluster numbers were assigned from the 
largest cell population (Cluster 0) to the smallest (Cluster 9) 
(Figure 1E). The characteristic gene markers in each cluster 
are shown in Figure 1F. The cell distribution Frequency is 
shown in Figure 1G. 

The largest single-cell constituent Cluster 0 cells were 
T lymphocytes with specific gene expression including 
BATF, IL32 and CTLA4 (Figure 1F) (17-19). Cluster 1 cells 
were MΦ, expressing SPP1, CXCL2 and CTSB (Figure 1F) 
(20-22). Cluster 2 represented B lymphocytes with high 
expression of IGHG1, IGHG2 and IGKC (Figure 1F) (23,24). 
Cluster 3 represented NK cells that expressed GNLY, 
NKG7 and KLRD1 (Figure 1F) (25-27). Cluster 4 was 
tissue stem cells with special genes including HST1H4C, 
STMN1 and TUBA1B (Figure 1F) (28,29). Cluster 5 cells 
were granulocytes with special genes including PI3, CXCL8 
and SLPI (Figure 1F) (30-32). Cluster 6 cells were DC cells 
expressing HLA-DRA, HLA-DPA1, and CCL17 (Figure 1F)  
(33-35). Cluster 7 represented mast cells expressing 
TPSAB1, TPSAB2 and CPA3 (Figure 1F) (36-38). Cluster 
8 cells appeared to be a pDC (plasmacytoid dendritic cell) 
cell subset expressing IRF4, TCL1A and AREG (Figure 1F)  
(39,40). Cluster 9 cells represented endothelial cell 
expressing COL1A1, COL6A2 and S100A2 (Figure 1F)  
(41-43). In addition, the distribution frequency of each 
major cluster is showed in Figure 1G among the different 
patients and no cellular cluster was derived from a single 
patient. Overall, the major cellular clusters forming the 
ESCC TME were profiled.

Exhausted CD4+ T (ExhCD4T) cells correlated with poor 
prognosis and liver metastasis

T cells regulate the ESCC TME by secreting specific 
cytokines and interacting with other immune cells (44,45), 
so they were further re-clustered to investigate the effect of 
the T cell subsets in the prognosis and liver metastasis of 
ESCC patients.

There were 6 T-cell subsets from Cluster 0 to Cluster 5 
(Figure 2A,2B). UMAP of scRNA-seq data visualizing the 
special gene markers is showed in Figure 2C). Cluster 0 cells 
were cytotoxic T (CytT) cells expressing CCL5, NKG7 and 
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Figure 1 scRNA-seq clustering analysis for ESCC. (A) Overview of the workflow; (B) TCGA dataset analysis; (C) heatmap of the 
distribution of the assigned gene sets by GSVA scores; (D) survival curves for Low/High GSVA score groups; (E) UMAP of scRNA-seq 
data visualizing 10 cell clusters marked 0–9; (F) heatmap of differentially expressed genes in each cluster, yellow to dark purple: high to 
low expression; (G) distribution frequency of cluster cells. scRNA-seq, single-cell RNA sequencing; TCGA, The Cancer Genome Atlas; 
GSVA, gene set variation analysis; UMAP, Uniform Manifold Approximation and Projection; NK, natural killer; DC, dendritic cell; pDC, 
plasmacytoid dendritic cell; ESCC, esophageal squamous cell carcinoma.

GZMB (46,47) (Figure 2B), and CD8A (Figure 2 C3) (48).  
Cluster 1 cells represented regulatory T cells (Tregs) with 
TNFRSF4, BATF and FOXP3 expression (Figure 2B, Figure 2  
C4) (49-51), and CD4 (Figure 2 C2) (52). Cluster 2 cells 

were resident CD4 T (ResCD4+ T) cells with IL7R, KLRB1 
and FOS expression (Figure 2B) (53-55). Cluster 3 cells 
were naïve CD4+ T cells expressing SELL, PASK and LEF1 
(Figure 2B) (56), and CCR7 (Figure 2 C6) (57). Cluster 4 
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Figure 2 Analysis of cell subset of T cells. (A) UMAP of scRNA-seq data visualizing 6 cell clusters marked 0–5; (B) heatmap of differentially 
expressed genes in each cluster, Yellow to dark purple: high to low expression; (C) UMAP of scRNA-seq data visualizing the special gene 
markers; (D) distribution frequency of cluster cells; (E) expression values of cluster cells in normal and tumor groups; (F) survival curves for 
low/high expression group; (G) feature plot of CD69 (resident T cell marker), TIGIT (exhausted T cell marker), and FoxP3 (regulatory 
T cell marker), shown in UMAP; (H) multiplex immunohistofluorescence assays for TIGIT, CD69 and FOXP3. Scale bar =250 μm. ***, 
P<0.001. UMAP, Uniform Manifold Approximation and Projection; CytT, cytotoxic T; Treg, regulatory T cell; NaiveCD4T, naive CD4+ 
T cell; TNF, tumor necrosis factor; ExhCD4T, exhausted CD4+ T cell; ResCD4T, resident CD4+ T cell; FOV, field of view; scRNA-seq, 
single-cell RNA sequencing.
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cells were TNF+ CytT cells with specific genes including 
CCL4L2, TNF and CCL4 (Figure 2B, Figure 2 C7) (58,59). 
Cluster 5 cells were ExhCD4+ T cells expressing CXCL13, 
CH25H and ICA1 (Figure 2B) (60,61). We found that 
the frequency of Cluster 0 (CytT) and Cluster 1 (Tregs) 
was higher in the tumor group than in the normal group  
(Figure 2D,2E). 

Next, we calculated the T-cell subset specific score 
based on the feature genes belonging to each subset. We 
found the CytT-specific and Treg-specific GSVA scores 
did not correlate with patients’ prognosis. Only the Cluster 
5 (ExhCD4+ T) cell subset was negatively related to the 
ESCC patients’ prognosis (Figure 2F). Furthermore, mIHC 
staining was used to confirm some of the marker genes 
representing the key cellular subsets. CD69, TIGIT and 
FoxP3 were not only detected in the specific subsets based 
on scRNA-seq data (Figure 2G), these genes were signature 
markers as well. CD69 is the key marker for resident T  
cells (62). TIGIT could be used to identify exhausted T 
cells (63) and FoxP3 is the master transcription factor for  
Tregs (64).

We found there were more TIGIT+ ExhCD4+ T cells, 
CD69+ ResCD4+ T cells and FoxP3+ Tregs in the ESCC liver 
metastasis site than in the primary site and the quantification 
was also added for key cell signatures (Figure 2H).  
Thus, we identified key T-cell subsets associated with the 
prognosis and liver metastasis of ESCC patients.

Increased TolPlaB cells in liver metastasis associated with 
poor prognosis of ESCC patients

B lymphocytes are primarily responsible for basic functions 
such as antibody production (65). However, the phenotypic 
and functional diversity of B lymphocytes also results in 
independent regulatory roles in the immune response (65). 
To explore the role of B-cell subpopulations in ESCC 
patients’ prognosis and liver metastasis, B cells were re-
clustered. Firstly, the B cells were divided into 4 cell subsets 
(Figure 3A,3B). UMAP of scRNA-seq data visualizing 
the special gene markers is showed in Figure 3C Cluster 
0 cells were active B (ActB) cells expressing CD69, CD83 
and HLA-DRA (Figure 3B, Figure 3 C3) (66,67). Cluster 
1 cells were plasma B (PlaB) cells with IGHG1, IGHG2 
and IGKV3-20 expression (Figure 3B, Figure 3 C1, C2). 
Cluster 2 cells were proliferating B (ProlB) cells expressing 
TUBA1B, H2AFZ, HIST1H4C and MKI67 (Figure 3B, 
Figure 3 C5). Cluster 3 cells were TCL1A+ tolerance plasma 
B (TolPlaB) cells expressing TCL1A, LRMP and PRPSAP2 

(Figure 3B, Figure 3 C4) (68,69). The results showed that 
the number of Cluster 1 (PlaB) and Cluster 3 (TolPlaB) cells 
were upregulated in the tumor group compared with the 
normal group (Figure 3D,3E), although only the TCL1A+ 
TolPlaB-specific GSVA score was associated with poor 
prognosis (Figure 3F). We found TCL1A+ TolPlaB cells 
were also increased in the liver metastasis site compared 
with the ESCC primary site (Figure 3G). Thus, increased 
numbers of TolPlaB cells (Cluster 3) in the ESCC liver 
metastasis site was associated with poor prognosis.

Contribution of CMTM2+ neutrophil cell subset in ESCC 
liver metastasis site to shorter survival time in ESCC 
patients 

Granulocytes participate in a series of tightly controlled 
molecular processes to regulate tumor immunity (70). To 
analyze the effect of granulocyte cell subsets in ESCC 
and its clinical significance, the cell populations were re-
clustered and analyzed. The granulocyte cells included 3 
cellular subsets (Figure 4A,4B). UMAP of scRNA-seq data 
visualizing the special gene markers is showed in Figure 4C.  
Cluster 0 cells were monocyte cells with CCL3L1, PI3 
and CCL3 expression (71,72) (Figure 4B). Cluster 1 cells 
represent S100A10+ neutrophil cells with S100A9, S100A2 
and SFN expression (Figure 4B, Figure 4 C3, C4) (73,74). 
Cluster 2 cells were CMTM2+ neutrophil cells with 
CMTM2, S100A9 and S100A12 expression (Figure 4B, 
Figure 4 C1, C2, C5). 

Please note that myeloid cells, including monocytes 
and neutrophils, in the tumor site are also referred to as 
myeloid-derived suppressor cells (MDSCs) (75). Therefore, 
MDSCs can be categorized as monocytic MDSCs 
(M-MDSC) and polymorphonuclear MDSCs (PMN-
MDSCs) (75). Neutrophils and PMN-MDSCs share the 
same origin and many morphological and phenotypic 
features (75). Thus S100A9+ neutrophil cells defined here 
may also represent the so-called MDSCs, which could 
perform their immune-suppressive activity through S100A8 
and S100A9 (76).

The counts of Cluster 0 (monocyte) and Cluster 1 
(S100A10+ neutrophils) were elevated in the tumor group 
compared with the normal group (Figure 4D,4E), but 
only the CMTM2+ neutrophil-specific GSVA score was 
associated with patients’ poor prognosis. The monocytes 
and S100A10+ neutrophil-specific GSVA scores were 
not correlated with patients’ prognosis (Figure 4F). 
Furthermore, we found there were more CMTM2+ 
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Figure 3 Analysis of cell subset of B cells. (A) UMAP of scRNA-seq data visualizing 4 cell clusters marked 0–3; (B) heatmap of differentially 
expressed genes in each cluster. Yellow to dark purple: high to low expression; (C) UMAP of scRNA-seq data visualizing the special gene 
markers; (D) distribution frequency of cluster cells; (E) expression values of cluster cells in normal and tumor group; (F) survival curves for 
low/high expression groups; (G) multiplex immunohistofluorescence assay for TCL1A+ B cells. Scale bar =250 μm. ***, P<0.001. UMAP, 
Uniform Manifold Approximation and Projection; ActB, active B; PlaB, plasma B; ProlB, proliferating B; TolPlaB, tolerance plasma B; FOV, 
field of view; scRNA-seq, single-cell RNA sequencing.
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Figure 4 Analysis of cell subset of granulocytes. (A) UMAP of scRNA-seq data visualizing 3 cell clusters marked 0–2; (B) heatmap of 
differentially expressed genes in each cluster. Yellow to dark purple: high to low expression; (C) UMAP of scRNA-seq data visualizing the 
special gene markers; (D) distribution frequency of cluster cells; (E) expression values of cluster cells in normal and tumor groups; (F) survival  
curves for low/high expression groups; (G) multiplex immunohistofluorescence assay for CMTM2+ neutrophils. Scale bar =250 μm. ***, 
P<0.001. UMAP, Uniform Manifold Approximation and Projection; Mono, monocyte; Neu, neutrophil; FOV, field of view; scRNA-seq, 
single-cell RNA sequencing.
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neutrophil cells in the liver metastasis site than in the 
ESCC primary site (Figure 4G). Therefore, the increased 
CMTM2+ neutrophil cell proportion in the liver metastasis 
may contribute to shorter survival time and worse 
prognosis.

Effect of elevated natural killer T (NKT) cell subset in the 
primary site on prognosis in ESCC patients

NK cells, as cytotoxic lymphocytes of the innate immune 
system, can effectively kill cancerous cells. However, they 
are highly heterogeneous in the TME (77). Hence, the cell 
subset of NK cells was re-clustered to explore the role of 
the diverse NK cell subpopulation in ESCC. 

The  NK ce l l s  were  re-c lus tered  to  5  subse t s  
(Figure 5A,5B). UMAP of scRNA-seq data visualizing the 
special gene markers is showed in Figure 5C. Cluster 0 
cells were NK cells expressing KH2D1B, HIR2DL3 and 
INC02446 expression (Figure 5B) (78,79). Cluster 1 cells 
were ILC3b cells with KRT81 expression (Figure 5B) (80). 
Cluster 2 cells were NKT cells with PRSS23, FGFBP2 and 
GZMH expression (Figure 5B) (81). Cluster 3 cells were 
spondin 2 (SPON2)+ NK cells with SPON2 expression 
(Figure 5B) (81). Cluster 4 cells were γδNKT cells 
expressing TRDV2, TRGV9 and CD3E (Figure 5B, Figure 5  
C4) (82,83).  In addition, the distribution frequency of 
each NK cell subsets was shown in Figure 5D among the 
different patients and no subset was derived from a single 
patient. However, we did notice NKT and SPON2+ NK 
subsets were quite obvious in patient S134 para-tumoral site 
(Figure 5D).

Cluster 2 (NKT), Cluster 3 (SPON+ NK) and Cluster 4 
(γδNKT) cells were higher in the tumor group than in the 
normal group (Figure 5E), but it seemed that only Cluster 2 
(NKT) cells were associated with better prognosis of ESCC 
patients (Figure 5F). 

In the liver metastasis site, there were also fewer Cluster 
2 (NKT) cells than in the primary ESCC site (Figure 5G), 
which suggested that an increased NKT cell subset in 
the primary site may induce a better prognosis in ESCC 
patients.

Effect of elevated C1QA/B+ MΦ subset in liver metastasis 
site on prognosis in ESCC patients 

As an essential innate immune population, TAMs perform 
diverse functions to maintain homeostasis and ward off 
foreign pathogens. They are also pivotal for driving tumor 

progression, metastasis, and resistance to therapy (84). To 
elucidate the special function of different subsets, the MΦ 
subset was re-clustered. The results showed there were 
8 cell subsets from Cluster 0 to Cluster 7 (Figure 6A,6B).  
UMAP of scRNA-seq data visualizing the special gene 
markers is showed in Figure 6C. Cluster 0 cells were 
infiltrating MΦ (InfMΦ) with IL1B, CCL20 and G0S2 
expression (Figure 6B) (85,86). Cluster 1 cells were C1QA/
B+ resident MΦ (C1QA/B+ ResMΦ) cells with C1QA, C1QB 
and APOE expression (Figure 6B, Figure 6 C1, C2) (87,88). 
Cluster 2 cells were CD206+ MΦ cells with CD206 and 
GPR183 expression (Figure 6B) (89). Cluster 3 cells were 
CTSK+ resident MΦ (CTSK+ ResMΦ) cells with CTSK, 
APOC1 and CCL18 expression (Figure 6B, Figure 6 C3) 
(90,91). Cluster 4 cells were IDO1+ MΦ cells with IDO1, 
CXCL10, ISG15 and APOBEC3A expression (Figure 6B) 
(92,93). Cluster 5 cells were SPP1+ MΦ cells with SPP1, 
CXCL10, ISG15 and APOBEC3A expression (Figure 6B, 
Figure 6 C4). Cluster 6 cells were Mono cells with CXCL8 
and PI3 expression (Figure 6B) (94,95). Cluster 7 cells were 
proliferating MΦ (ProMΦ) with TUBA1B, STMN1 and 
HIST1H4C expression (Figure 6B, Figure 6 C5). 

The Cluster 0 (C1QA/B ResMΦ), Cluster 1 (CD206+ 
MΦ), Cluster 2 (CTSK+ MΦ) and Cluster 7 (Spp1+ MΦ) 
cells were higher in the tumor group than in the normal 
group (Figure 6D, Figure 6E). The GSVA score was 
calculated using bulk RNA-Seq data obtained from TCGA 
based on MΦ subset feature genes. The correlation between 
the subset-specific GSVA score and patients’ prognosis was 
investigated. We found survival time was shorter in the 
High group than in the Low group based on the GSVA 
score of the C1QA/B+ MΦ subset (Figure 6F). We also 
observed more C1QA/B MΦ in the liver metastasis site than 
in the primary ESCC site (Figure 6G). The results revealed 
that an elevated C1QA/B+ MΦ subset was associated with 
liver metastasis and poor prognosis in ESCC patients.

Role of C1QA/B+ TAMs in ESCC

To identify the key cell subset regulating the ESCC TME, 
cell-cell interactions were analyzed. The results showed 
that the C1QA/B+ MΦ subset was closely associated with 
other cell subsets (Figure 7A), and the absolute value of the 
correlation coefficient was maximum for C1QA/B+ MΦ 
(Figure 7B). 

To visualize the interrelationships among the different 
cell subsets, we first calculated the correlation coefficiency 
between any two subsets within TCL1A+ TolPlaB cells, 
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Figure 5 Analysis of NK cell subset. (A) UMAP of scRNA-seq data visualizing 5 cell clusters marked 0–4; (B) heatmap of differentially 
expressed genes in each cluster. Yellow to dark purple: high to low expression; (C) UMAP of scRNA-seq data visualizing the special gene 
markers; (D) distribution frequency of cluster cells; (E) expression values of cluster cells in normal and tumor groups; (F) survival curves for 
low/high expression groups; (G) multiplex immunohistofluorescence assay for SPON2+ NK cells. Scale bar =250 μm. ***, P<0.001. UMAP, 
Uniform Manifold Approximation and Projection; ILC2, type 2 innate lymphoid cells; NK, natural killer; NKT, natural killer T; SPON2, 
spondin 2; FOV, field of view; scRNA-seq, single-cell RNA sequencing.

CMTM2+ neutrophils, C1QA+/B+ MΦ ,  NKT cells, 
SPON2+ NK cells, Tregs, ResCD4+ T cells and ExhCD4+ T 
cells. A circular chord diagram was constructed to visualize 
the correlation ecoefficiency weight between the different 
cell subsets, and the results showed that C1QA/B+ MΦ 
had more connections with other cell subsets (Figure 7C). 
Other than C1QA/B+ MΦ, CMTM2+ neutrophils also had 

multiple connections, indicating that CMTM2+ neutrophils 
could also mediate important immune-suppressive roles in 
the ESCC TME, associated with worse prognosis. 

We wanted to investigate the interaction between C1QA/
B+ MΦ and other cell subpopulations. Firstly, the expression 
of myeloid immune checkpoints was portrayed in C1QA/
B+ MΦ. The results showed that CD274, PDCD1LG2, 
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Figure 6 Analysis for cell subset of macrophages. (A) UMAP of scRNA-seq data visualizing 8 cell clusters marked 0–7; (B) heatmap of 
differentially expressed genes in each cluster. Yellow to dark purple: high to low expression; (C) UMAP of scRNA-seq data visualizing the 
special gene markers; (D) distribution frequency of cluster cells; (E) expression value of cluster cells in normal and tumor groups; (F) survival 
curves for low/high expression groups; (G) multiplex immunohistofluorescence assay for C1QA/B+ CD68 macrophages. Scale bar =250 μm.  
***, P<0.001. UMAP, Uniform Manifold Approximation and Projection; InfMΦ, infiltrating macrophages; MΦ, macrophage; Mono, 
monocyte; ResMΦ, resident macrophage; ProlMΦ, proliferating macrophage; FOV, field of view; scRNA-seq, single-cell RNA sequencing.
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Figure 7 Role of C1QA/B+ tumor-associated macrophages in esophageal squamous cell carcinoma. (A) Principal component analysis; (B) 
absolute value of correlation coefficient; (C) circular chord diagram to describe the correlation; (D) UMAP of scRNA-seq data visualizing 
the special gene markers; (E) GSVA scores for different cell subsets. UMAP, Uniform Manifold Approximation and Projection; SPON2, 
spondin 2; NK, natural killer; NKT, natural killer T; Treg, regulatory T cell; ExhCD4T, exhausted CD4+ T; Neu, neutrophil; ResCD4T, 
resident CD4+ T; Mono, monocyte; GSVA, gene set variation analysis; scRNA-seq, single-cell RNA sequencing; InfMΦ, infiltrating 
macrophage; MΦ, macrophage; ResMΦ, resident macrophage; ProlMΦ, proliferating macrophage.

TNFSF9, CD40, LGALS9 and CD47 positively correlated 
to Cluster 8 (C1QA/B+ MΦ) (Figure 7D). Next, the gene 
signature was established based on these myeloid immune 
checkpoints, and the GSVA score was calculated. The score 
is the highest in the C1QA/B+ MΦ cell subset (Figure 7E), 
which indicated that C1QA/B+ MΦ may play a central role 
by expressing myeloid immune checkpoints to mediate the 
immune microenvironment of ESCC, and thereby influence 
patients’ prognosis.

Discussion

The TME is complex and continuously evolving, which 
plays a crucial role in tumor homeostasis (96). In this 
study, multi-omics profiling of the ESCC TME was 

performed using scRNA-seq and RNA-Seq data. The 
gene signatures were established, and the specific GSVA 
scores were calculated. Thereafter, the GSVA score was 
utilized to investigate the correlation between cell subset 
abundance and survival probability, and the crucial cell 
subsets were screened and identified. Generally, single-cell 
transcriptome analyses were conducted to assess the cellular 
heterogeneity in normal and tumor tissues. In this study, 10 
cell populations were identified such as T lymphocytes, B 
lymphocytes, granulocytes, NK cells, and MΦ. Major cell 
populations were re-clustered, the specific gene signature 
was described and the survivorship curve was draw to 
investigate the role of the cell subset in ESCC.

Tregs play a critical role in the maintenance of self-
tolerance and suppressing aberrant immune responses. 
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Treg infiltration promotes tumor growth and invasion in  
ESCC (97). Accumulating evidence suggests that the 
removal of Tregs could evoke and enhance an anti-tumor 
immune response (98). Our results also indicated that 
the higher the proportion of Tregs, the shorter survival 
time of the patient. The percentage of CD4+ T cells is an 
indicator of cellular immunity and they have a unique role 
in promoting tumor eradication, which implies CD4+ T 
cells could influence the prognosis of ESCC (99). However, 
our results showed that upregulation of the ResCD4+ T and 
ExhCD4+ T cell subpopulations resulted in worse prognosis 
in ESCC patients, which may identify the unique function 
of specific CD4 T-cell subsets. 

Tumor-infiltrating B lymphocytes play a pivotal role in 
shaping tumor development and promoting/suppressing 
tumor growth (100). Previous study indicated that enhanced 
TCL1A, an oncogene, results in an aggressive cellular and 
clinical phenotype (101). TCL1A is positively associated 
with various hematological malignancies by its effect on the 
infiltration of B cells and dendritic cells (102,103). TCL1A 
also plays an important role in promoting multi-modal 
tumor resistance (104). In this study, we also found the 
ESCC patients’ prognosis was worse when the proportion 
of TCL1A+ TolPlaB cells was significantly upregulated. 

Granulocytes, as the most abundant leukocytes in 
human blood, are involved in the immune response against  
cancer (70). Previous study showed that CMTM2 down-
regulation induces hepatocellular carcinoma metastasis 
by promoting the epithelial-mesenchymal transition  
process (105). In our study, the survival time was shorter 
when the CMTM2+ neutrophil cell proportion increased, 
which was in accord with previous reports conducted to 
predict the progression of ESCC.

TAMs promote tumor growth and metastasis by 
enhancing cancer cell proliferation, immunosuppression, 
and angiogenesis (106). In the ESCC TME, MΦ infiltration 
could promote tumor vascularity and chemoresistance via 
monocyte chemoattractant protein‐1 (MCP-1) and IL34, 
respectively (107,108). Macrophages could also contribute 
to ESCC tumor progression through the AKT and ERK 
signaling pathways via GDF15 (109) and the CCL3-CCR5 
axis (110). In addition, MΦ could also promote proliferation 
and invasion of ESCC via EGF (epidermal growth factor) 
production (111).

C1QA plays a significant role in the innate immune 
response by counteracting the C1Q receptor (112). 
Additionally, related research has revealed that C1QA and 
C1QB are potential indicators of the tumorigenesis and 

development of osteosarcoma (113). Interestingly, our 
results suggested that C1QA/B+ TAMs were the central 
regulator of the ESCC TME, closely associated with several 
key cell subsets. In terms of mechanism, several immune 
checkpoints, including CD40, CD47 and LGALS9, showed 
positive expression in C1QA/B+ MΦ. The CD47 protein 
plays a pivotal role in tumors by delivering a “don’t eat 
me signal”, and targeting CD47 regulates the cancer cell 
fate (114). Therefore, we speculate that C1QA/B+ TAMs 
may exert a central regulatory effect in immune evasion 
of ESCC via multiple immune checkpoint expressions. In 
addition, a previous report showed that tumor cells could 
hijack MΦ-produced complement C1Q molecules to 
promote tumor growth (115), and such a mechanism might 
also exist in the ESCC TME. Current immunotherapy 
mainly depends on the PD-1/PD-L1 axis, which targets T 
cell exhaustion. Immunotherapy relies on MΦ targets is still 
lacking. Here, we identified the C1QA+ MΦ as the central 
interacting immune cells during immunosuppression loop 
formation. C1QA+ MΦ carries many immune checkpoints, 
and future immunotherapy could target C1QA+ MΦ as an 
alternative option when T cells are spared in the tumor 
immune microenvironment.

We  m a i n l y  a p p l i e d  s c R N A - s e q ,  m I H C  a n d 
transcriptomic to study ESCC. Epigenetic landscape is very 
important for the ESCC study; however, our current tools 
setting is not able to capture the epigenetic landscape. In 
addition, C1QA+ MΦ subset distribution and contribution 
at various ESCC stages were not revealed since only few 
pairs of tissues were included for scRNA-seq analysis.

Conclusions 

Our results indicated that C1QA/B+ MΦ maybe a potential 
immunotherapy target for ESCC. Deletion of this cell 
subset may increase the efficacy of immunotherapy by 
mediating myeloid immune checkpoint expressions, and 
thereby influence the ESCC patients’ prognosis.
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Table S1 List of antibodies for multiplex immunohistofluorescence assay

Antibodies Source Identifier

CD3 Cell signaling technology Cat#: 85061s

CD11b Abcam Cat#: ab13357

Pan cytokeratin BioLegend Cat#: 914704

CD68 BioLegend Cat#: 916104

CD138 Invitrogen Cat#: 362900

CD4 Abcam Cat#: ab133616

CD8 BioLegend Cat#: 372902

CD69 Abcam Cat#: ab234511

Foxp3 Cell Signaling Technology Cat#: 12653s

CD57 BD Cat#: 555618

Ki67 BD Cat#: 556609

GAMMADELTA Novus Biologicals Cat#: NBP2-62225
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