
Page 1 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

Introduction

As applications of computation and machine learning (ML)
become ubiquitous in many areas of science, user interfaces
are being developed to allow users to draw meaningful
interpretations without extensive expertise in computational
methods (1-5). In medicine, clinical prediction calculators
are increasingly becoming a popular tool for decision
making, allowing clinicians and patients to utilize predictive
models in a way that is user-friendly and accessible (6-8).
Although many different software environments can be
used to create web-accessible user interfaces (UI) for these
prediction models, the R Shiny package, along with auxiliary
packages such as shinydashboard (9) and flexdashboard (10),
provides easy methods for researchers who are familiar with
R to build interactive online interfaces without extensive
web development knowledge. Our goal in this paper is to
provide a brief tutorial with examples to aid developers of
prediction models in making web-accessible interfaces.

An excellent tutorial on creating basic risk calculators
using the R Shiny package (11) has already been published
in this journal (12). We highly recommend that tutorial to
get started making calculators using Shiny. The purpose of
this tutorial is to build on that foundation for researchers
aiming to implement more complicated predictive models,
especially those developed with ML methods, and/or more
complex interfaces or visualizations. To achieve these goals,

we explain how to use .rds files to store R objects containing
complex statistic models that can be directly used by
Shiny apps to produce predictions. We also introduce the
R packages shinydashboard and flexdashboard which allow
for quick creation of engaging visual displays of clinical
predictions, as well as multi-tabular calculator applications.

Step 1: set-up the ui.R file to design the
collection of user supplied values

As prerequisites for this tutorial, we assume basic
knowledge of R and RStudio (13,14). For readers with
limited exposure, we suggest referencing https://www.
rstudio.com/training (15) prior to replicating the code in
this paper. We also suggest updating R and RStudio to their
most recent versions. Similarly to the previously published
tutorial by Ji and Kattan (12), we begin by creating a ui.R
and server.R file (Appendixes 1,2). The ui.R file, short for
‘user interface’ file, will contain code that dictates the layout
of the application’s web-interface, i.e., how input fields,
graphics, and application components appear to the user.
The server.R file, on the other hand, contains functions that
determine how the calculator functions, including using the
user inputs to create new predictions with the ML models.

Create a new file directory on your local computer
with the title of your project (e.g., ‘Tutorial Paper’) and
place both the server.R and ui.R files within it. You should

Tutorial

Tutorial: implementing and visualizing machine learning (ML)
clinical prediction models into web-accessible calculators using
Shiny R

Hyrum S. Eddington1^, Amber W. Trickey1^, Vaibhavi Shah1^, Alex H. S. Harris1,2^

1Stanford-Surgery Policy, Improvement Research, and Education Center, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA;
2Center for Innovation to Implementation, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA

Correspondence to: Hyrum S. Eddington, BS. 3145 Porter Drive MC5552, Palo Alto, CA 94304, USA. Email: hyrumedd@stanford.edu.

Submitted Feb 17, 2022. Accepted for publication Aug 16, 2022.

doi: 10.21037/atm-22-847

View this article at: https://dx.doi.org/10.21037/atm-22-847

7

	
^ ORCID: Hyrum S. Eddington, 0000-0003-4508-073X; Amber W. Trickey, 0000-0001-9993-3860; Vaibhavi Shah, 0000-0001-5576-9878;
Alex H. S. Harris, 0000-0001-7267-3077.

https://www.rstudio.com/training
https://www.rstudio.com/training
https://cdn.amegroups.cn/static/public/ATM-22-847-Supplementary.pdf
https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-847

Eddington et al. Tutorial: implementing and visualizing ML models in ShinyPage 2 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

then paste the code in the example documents into their
respective files. While it is possible to construct a Shiny
application using just one file with distinct sections for
your server and ui code, we highly recommend the two-
file approach, especially for calculators with many inputs
and complex dashboard schemas. When both files (must be
titled ‘server.R’ and ‘ui.R’) are placed in the same directory
and opened in R Studio, in the top righthand corner of
the console the user will see a ‘Run’ icon denoted by a
green play button that can be used in either file to start the
application (Figure 1).

Although a basic app layout is easily achievable with
the default functions provided in Shiny, the package
shinydashboard implements an intuitive framework for
creating apps that utilize multiple tabs for inputs, results,
and other information. For this tutorial, we will implement
a calculator which uses a truncated version of a model from
our previous work (16) with only five input variables: age
(continuous), sex (M/F), sepsis (None/SIRS/Sepsis/Septic
shock), dyspnea (None/Moderate exertion/At rest), and
function health status (Independent/Partially dependent/
Totally dependent). This calculator is for didactic purposes
only and is not for clinical use.

Open the ui.R file. Lines 2–6 of ui.R list the packages
required for the user interface portion of the application.
Running these 5 lines will load the packages if they have
already been installed. If not already installed, you can
use the code install.packages (“shiny”,”shinythemes”,
“shinydashboard”, “flexdashboard”, “htmltools”) before
loading the packages.

The Shiny user interface using shinydashboard centers
around three functions: dashboardSidebar (lines 8–14),
dashBoardBody (lines 29–33), and dashBoardPage
(lines 35–41). Once lines 8–14 are run, the dashboardSidebar
object named “menu_sidebar” will contain the tabs
(menuItems) that will be used to organize the app’s content.

Once lines 29–33 are run, the dashBoardBody object named
“body” will contain tabItems (e.g., “predictors” that will
be displayed on that tab. Both the menu_sidebar and body
are contained within dashboardPage. Figure 2 illustrates
visual aspects associated with these code segments in a live
application.

Two additional objects are contained in ui.R: input_box
and display_gauge (lines 16–27). These objects contain the
code for patient characteristics input fields and the display of
the model results in a gauge-style visual which is referenced
and integrated into the body of the app (lines 31–32).

The numericInput and selectInput lines in the code
[19–23] are associated with the variables to be entered by
the user of the app. For categorical variables, the “choices”
parameter in the selectInput function specifies the different
categories of the variable to be displayed as a drop-down
menu. For consistency and simplicity, we will use selectInput
for all categorical input variables. As an alternative to
selectInput, readers may choose other options for displaying
variable inputs, such as checkBoxInput. For a more
comprehensive overview on this topic see the “Inputs and
outputs” tutorial at https://shiny.rstudio.com/tutorial/ (17).

Step 2: store statistical model objects as .rds
files

When you create a prediction model in R, it is contained
in a R model object. Prediction models in R can take
the form of a simple linear regression or more complex
models such as LASSO and boosted regression. This R
model object contains information about how the model
calculates predictions based on new underlying data, which
is then used to make predictions on new datasets. For less
complicated models with a small number of inputs, it is
reasonable to extract this information, which often takes
the form of variable coefficients, from the R model object

Figure 1 The ‘Run’ button in RStudio becomes a ‘Run App’ play button when the server.R and ui.R files are correctly configured.

https://shiny.rstudio.com/tutorial/

Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 3 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

and hard code the formula into the server.R file of the
Shiny calculator. However, this quickly becomes unwieldy
with many inputs and/or if the underlying model has a
complex method for translating inputs into predictions.
Using the R model object directly to produce predictions
has several advantages over manually copying model
coefficients into the Shiny server.R file. First, using the
object directly reduces a source of error created when
coefficients are copied manually. Second, many complex
ML models, such as neural nets and boosted regression, are
impossible to render with a simple formula. Therefore, we
will demonstrate how to export your models from R and
reference them appropriately within the application so they
can be deployed with the other project files in Step 4.

After generating an R model object using a function such
as lm() or glmnet(), you can save the model to your local
computer with the saveRDS() function:

saveRDS(your_model, “your_path/demo_model.rds”)
Following this, you should place the R model object file

in the same directory as your server.R and ui.R files. For
this calculator, you can download the ‘tutorial.rds’ file at
the following link: https://github.com/S-SPIRE/clinical_
calculators/blob/main/tutorial_model.rds. This file is then

referenced in the following code, and will be deployed with
the other application files at a later step:

mort_model <- readRDS(‘./tutorial_model.rds’)
If you are using GitHub (18) to store your project files,

it is also possible to reference the GitHub location where
your .rds file is stored from within the application (see
commented code in server.R lines (9-12). This may be
useful in instances where you have many applications that
reference the same models. In this case, each application
would reference the same repository link, and updating the
model at that GitHub location would effectively update
each calculator without the need to redeploy each calculator
individually (as long as calculator inputs have not changed).
However, for most users, placing the .rds file within the
project directory where it can be deployed with the other
project files is the simplest and most effective way to
reference your R model object.

Step 3: design the server.R file to translate user
inputs into predictions and display the results

This calculator implements a logistic regression model for
30-day mortality following total hip replacement utilizing

Figure 2 The layout of a Shiny app using shinydashboard is dictated by the sidebar and the content in the body associated with each
sidebar tab.

https://github.com/S-SPIRE/clinical_calculators/blob/main/tutorial_model.rds
https://github.com/S-SPIRE/clinical_calculators/blob/main/tutorial_model.rds

Eddington et al. Tutorial: implementing and visualizing ML models in ShinyPage 4 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

5 variables. While not all methods presented here will be
directly applicable to all models, the principles of choosing
variables corresponding to user input, and adjusting these
variables based on user input, are the same regardless of
model type. For additional resources regarding user input
and Shiny interfaces see https://shiny.rstudio.com/tutorial/.

The server.R code is mostly contained within the
shinyServer function (line 14). The import line [6–7]
directly precedes shinyServer such that the model is
imported only once and saved.

Model inputs and reactive functions

In order for the application to be dynamic and refresh its
displays whenever user input is changed, the logic that
determines what values are passed to the R model object
must be contained within a reactive{()} function, which in
our calculator is inputData().

The model used in this application uses 0/1 encoding
for binary variables, so each categorical user input must
be translated programmatically to 0 if absent, and 1 if
present. The code from lines 19–33 assigns each model
input variable an initial value of 0. Following this is code
implementing logic to change the value to 1 if the user input
indicates the presence of the associated patient characteristic
[35–70]. After placing these inputs and the corresponding
logic, the variables to be passed to the model will change
dynamically based on the selectInput objects contained in
ui.R. These variables are then used to create a dataframe
called userPredictData (lines 72–79) which the function then
returns. Dynamic variable input is enabled by containing the
assignment of user input in a ‘reactive’ function (line 16),
whereby the expressions are frequently re-evaluated by the
server and values are updated based on new user input.

When constructing this data.frame() code segment for
your own app, you must use the original variable names
of the model. Remember that because you are giving
new user input to your source model, the table this code
segment creates must match the format of an entry in the
original data from which the source model was created. If
done correctly, this code will return a single row dataframe
containing the user information used in the generate_model
function (lines 88–86) to obtain an accurate prediction.
Note that the function inputData is called within generate_
model to obtain the relevant patient information. In
addition, generate_model also accepts as a parameter the R
model object needed to calculate the patient’s risk of post-
surgical mortality.

Risk gauge visual

Gauges are a useful, compelling visual to display information
associated with risk. The R package flexdashboard provides
a built-out gauge object which can be configured to
dynamically display the risk associated with the patient
characteristics input by the user. Code for constructing
the gauge visual is located on lines 88–92 of server.R, and
execution of the visual on lines 26–27 of ui.R.

The call to generate_model within the renderGauge
function (line 90) computes the risk prediction from the
indicated model, and post-calculation formatting is provided
with round(). The “symbol” parameter appends “%” to
end of the calculated value. The cut-offs for the gauge
itself are dictated through the min, max, and gaugeSector
parameters, the latter of which are used to determine the
percentage thresholds for which the gauge progresses from
green to yellow to red. Note the max for the gauge does
not have to be set to 100; in fact, in risk models that tend
towards smaller percentages (e.g., mortality) it could be
advantageous to set the max to a lower level, for example,
three times the population mortality occurrence. In our
test gauge, however, we have set the max to a default of 100
and set the benchmarks for “warning” and “danger” at 5%
and 10%. Upon completion the gauge display tab of the
app should appear as in Figure 3. The app generated from
this code can also be accessed here with the addition of
the infoBox visual discussed next (https://s-spire-clintools.
shinyapps.io/tutorial/).

Other options to display risk predictions

Dynamic box
One alternative to the gauge visual is a shinydashboard box
object which displays a single number with formatted
text in a simple but engaging manner. Code for this
visual is located on lines 94–98 of server.r and line 32
(infoBoxOutput(“death_box”, width = 6) of ui.r. This will
display the predictions for the same mortality model but as
an infoBox (Figure 4).

The “tags” statement within the value parameter allows
the user to adjust the appearance of the display using html.
For more information on html tags in Shiny see https://
shiny.rstudio.com/articles/tag-glossary.html (19). To
explore valid icons for the “icon” parameter see https://
fontawesome.com/ (20). Please note that fontawesome is an
actively updated collection and that there is a small chance
for icons used within your calculator to be altered in name

https://shiny.rstudio.com/tutorial/
https://s-spire-clintools.shinyapps.io/tutorial/
https://s-spire-clintools.shinyapps.io/tutorial/
https://shiny.rstudio.com/articles/tag-glossary.html
https://shiny.rstudio.com/articles/tag-glossary.html
https://fontawesome.com/
https://fontawesome.com/

Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 5 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

or appearance in future updates. Dynamic info boxes can be
especially useful in conveying dashboard information when
several models are included and gauge visuals for all of them
would be visually overwhelming. An example of a more
complicated calculator using a mix of gauges and infoBoxes
can be found in our hip fracture prediction model (16)

(https://s-spire-clintools.shinyapps.io/hip_deploy/).

Step 4: deployment

When deploying a Shiny application, we recommend
hosting the app at shinyapps.io, although other alternatives

Figure 3 Landing page of tab “Calculator Results” once the app is configured (without optional dynamic box described below).

Figure 4 The Shiny dashboard infobox displays the same information as the flexdashboard gauge in a simpler format.

https://s-spire-clintools.shinyapps.io/hip_deploy/

Eddington et al. Tutorial: implementing and visualizing ML models in ShinyPage 6 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

are available. In brief, these alternatives include options to
host the app on-premises with either open source (Shiny
Server) or commercial software (RStudio Connect). While
any of these options might suit your individual needs,
shinyapps.io is the easiest option for quick deployment,
debugging, and user testing. See https://shiny.rstudio.com/
deploy/ (21) for more information on app deployment.

Before you deploy, double check to confirm that your
.rds files are located within your project directory and
referenced appropriately in your application per server line
7. To deploy your application to shinyapps.io, you must
create a shinyapps.io account (https://www.shinyapps.
io/) and install the rsconnect package in RStudio. To link
rsconnect and your shinyapps.io account, use the following
function: rsconnect::setAccountInfo(name=“<ACCOU
NT>”, token=“<TOKEN>”, secret=“<SECRET>”). The
token and secret are obtained from your shinyapps.io
account by accessing Profile->Tokens. Once this is done,
you can deploy your application by setting your working
directory using setwd() to the directory your server.R and
ui.R files are located and running the deployApp() function
from rsconnect in the RStudio console. For more detailed
instructions on shinyapps.io deployment see https://docs.
rstudio.com/shinyapps.io/index.html (22).

Discussion

The principles outlined in this work are derived from
our own experience in orthopedic procedures but can
also be applied broadly to other practices. If readers
desire an additional exercise beyond orthopedic surgery,
we recommend using the ‘heart’ dataset from R’s kmed
package (23) to create a model of heart disease using chest
pain, age, ECG, and gender as predictor variables. Using
the steps outlined in this paper, these predictor variables
would then map to calculator inputs, and the same methods
used in this hip fracture calculator could be applied to
visualize predicted risk of heart disease.

Conclusions

As risk calculators become increasingly more popular as
decision tools, attention must be given to not only creating
clinically accurate models, but also designing tools for
interfacing with these models that are both professional and
accessible for physicians and patients. By using the variety
of tools that Shiny has to offer, including accessory packages
such as shinydashboard and flexdashboard offer, user interfaces

with these models can become compelling aids to clinical
decision making.

Acknowledgments

Funding: This work was funded in part by a grant from the
VA HSR&D Service (RCS14-232; AHSH) and support
from the Stanford–Surgical Policy Improvement Research
and Education Center (S-SPIRE).

Footnote

Peer Review File: Available at https://atm.amegroups.com/
article/view/10.21037/atm-22-847/prf

Conflicts of Interest: All authors have completed the
ICMJE uniform disclosure form (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-847/coif).
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with
the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the
formal publication through the relevant DOI and the license).
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Ekiz HA, Conley CJ, Stephens WZ, et al. CIPR: a web-
based R/shiny app and R package to annotate cell clusters
in single cell RNA sequencing experiments. BMC
Bioinformatics 2020;21:191.

2.	 Danger R, Moiteaux Q, Feseha Y, et al. FaDA: A web
application for regular laboratory data analyses. PLoS One
2021;16:e0261083.

3.	 Ge SX, Son EW, Yao R. iDEP: an integrated web
application for differential expression and pathway analysis
of RNA-Seq data. BMC Bioinformatics 2018;19:534.

4.	 Jain S, Tumkur KR, Kuo TT, et al. Weakly supervised

https://shiny.rstudio.com/deploy/
https://shiny.rstudio.com/deploy/
https://www.shinyapps.io/
https://www.shinyapps.io/
https://docs.rstudio.com/shinyapps.io/index.html
https://docs.rstudio.com/shinyapps.io/index.html
https://atm.amegroups.com/article/view/10.21037/atm-22-847/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-847/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-847/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-847/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/

Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 7 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2022;10(24):1414 | https://dx.doi.org/10.21037/atm-22-847

learning of biomedical information extraction from curated
data. BMC Bioinformatics 2016;17 Suppl 1:1.

5.	 Samir J, Rizzetto S, Gupta M, et al. Exploring and
analysing single cell multi-omics data with VDJView.
BMC Med Genomics 2020;13:29.

6.	 Shipe ME, Deppen SA, Farjah F, et al. Developing
prediction models for clinical use using logistic regression:
an overview. J Thorac Dis 2019;11:S574-84.

7.	 Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/
AHA Guideline on the Assessment of Cardiovascular Risk.
Circulation 2014;129:S49-73.

8.	 Collins GS, Reitsma JB, Altman DG, et al. Transparent
reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): the
TRIPOD statement. BMJ 2015;350:g7594.

9.	 Chang W, Ribeiro BB, RStudio, Bootstrap) AS (AdminLTE
theme for, font) ASI (Source SP. shinydashboard: Create
Dashboards with “Shiny” [Internet]. 2021 [cited 2022
Feb 16]. Available online: https://CRAN.R-project.org/
package=shinydashboard

10.	 Iannone R, Allaire JJ, Borges B, RStudio, CSS) KI
(Dashboard, CSS) AA (Dashboard, et al. flexdashboard:
R Markdown Format for Flexible Dashboards [Internet].
2020 [cited 2022 Feb 16]. Available online: https://CRAN.
R-project.org/package=flexdashboard

11.	 Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke B,
Xie Y, et al. shiny: Web Application Framework for R
[Internet]. 2021 [cited 2022 Feb 15]. Available online:
https://CRAN.R-project.org/package=shiny

12.	 Ji X, Kattan MW. Tutorial: development of an online risk
calculator platform. Ann Transl Med 2018;6:46.

13.	 R Development Core Team. R: A language and
environment for statistical computing. R Found Stat
Comput Vienna Austria. 2018.

14.	 RStudio Team. RStudio: Integrated Development
Environment for R. RStudio Inc. 2016.

15.	 Training [Internet]. [cited 2022 Feb 15]. Available online:
https://www.rstudio.com/resources/training/

16.	 Harris AHS, Trickey AW, Eddington HS, et al. A Tool
to Estimate Risk of 30-day Mortality and Complications
After Hip Fracture Surgery: Accurate Enough for Some
but Not All Purposes? A Study From the ACS-NSQIP
Database. Clin Orthop Relat Res 2022. [Epub ahead of
print]. doi: 10.1097/CORR.0000000000002294.

17.	 Shiny - Tutorial [Internet]. [cited 2022 Feb 15]. Available
online: https://shiny.rstudio.com/tutorial/

18.	 GitHub. Home [Internet]. GitHub Resources. [cited 2022
Feb 15]. Available online: https://resources.github.com/

19.	 Shiny - Shiny HTML Tags Glossary [Internet]. [cited
2022 Feb 15]. Available online: https://shiny.rstudio.com/
articles/tag-glossary.html

20.	 Font Awesome [Internet]. [cited 2022 Feb 15]. Available
online: https://fontawesome.com

21.	 Shiny - Hosting and deployment [Internet]. [cited 2022
Feb 15]. Available online: https://shiny.rstudio.com/
deploy/

22.	 Team shinyapps io. shinyapps.io user guide [Internet].
[cited 2022 Feb 15]. Available online: https://docs.rstudio.
com/shinyapps.io/index.html

23.	 Budiaji W. kmed: Distance-Based k-Medoids [Internet].
2021 [cited 2022 Jun 2]. Available online: https://CRAN.
R-project.org/package=kmed

Cite this article as: Eddington HS, Trickey AW, Shah V,
Harris AHS. Tutorial: implementing and visualizing machine
learning (ML) clinical prediction models into web-accessible
calculators using Shiny R. Ann Transl Med 2022;10(24):1414.
doi: 10.21037/atm-22-847

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-22-847

Supplementary

Appendix 1

#Supplemental File 1: Shiny R file ‘server.R’
library(shiny)
library(shinydashboard)
library(glmnet)

#load model .rds packaged with shiny app deployment
mort_model <- readRDS('./tutorial_model.rds')

#alternate .rds file storage option; upload to github repository of choice and reference the download
link as follows:
#mort_model <- readRDS(gzcon(url("https://github.com/S-
SPIRE/clinical_calculators/raw/main/tutorial_model.rds")))

shinyServer(function(input, output, session){
 #reactive function assigns user input to variable table used in predictions
 inputData <- reactive({
 female <- 0

 age_74 <- 0
 age_79 <- 0
 age_84 <- 0
 age_89 <- 0
 age_90 <- 0

 fnstatus_partd <- 0
 fnstatus_totd <- 0

 dyspnea_atrest <- 0
 dyspnea_modexe <- 0

 prsepis_sirs <- 0
 prsepis_sepsis <- 0
 prsepis_shock <- 0

 if (input$Sex == "Female"){
 female <- 1
 }

 if (input$Age < 75 & input$Age >= 74){
 age_74 <- 1
 } else if (input$Age < 80 & input$Age >= 75){
 age_79 <- 1
 } else if (input$Age < 85 & input$Age >= 80){
 age_84 <- 1
 } else if (input$Age < 90 & input$Age >= 85){
 age_89 <- 1
 } else if (input$Age >= 90){

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-22-847

 age_90 <- 1
 }

 if (input$healthStatus == "Partially Dependent") {
 fnstatus_partd <- 1
 } else if (input$healthStatus == "Totally Dependent") {
 fnstatus_totd <- 1
 }

 if (input$Dyspnea == "At rest") {
 dyspnea_atrest <- 1
 } else if (input$Dyspnea == "Moderate exertion") {
 dyspnea_modexe <- 1
 }

 if (input$Sepsis == "SIRS") {
 prsepis_sirs <- 1
 } else if (input$Sepsis == "Sepsis") {
 prsepis_sepsis <- 1
 } else if (input$Sepsis == "Septic Shock") {
 prsepis_shock <- 1
 }

 #function returns a single row data frame containing variables needed for model prediction
 #variable names in this data frame must match those of the original dataset used to train the model
 userPredictData <- data.frame("female" = female, "age_74" = age_74, "age_79" = age_79, "age_84" =
age_84, "age_89" = age_89, "age_90" = age_90, "fnstatus_partd" = fnstatus_partd, "fnstatus_totd" =
fnstatus_totd, "dyspnea_atrest" = dyspnea_atrest, "dyspnea_modexe" = dyspnea_modexe,
"prsepis_sirs" = prsepis_sirs, "prsepis_sepsis" = prsepis_sepsis, "prsepis_shock" = prsepis_shock)
 })

 #function takes an as argument the imported model object and returns the model prediction based on
data returned by inputData()
 generate_model <- function(m){
 dat <- as.matrix(inputData())
 p <- predict(m, newx = dat, type = "response", s = "lambda.1se")
 p
 }

 #render gauge with predicted value for display in ui.R
 output$mortality_gauge <-
flexdashboard::renderGauge(flexdashboard::gauge(round(generate_model(mort_model)*100, 1),
symbol = "%",min = 0, max = 100, sectors = gaugeSectors(success = c(0, 5), warning = c(5, 5*2), danger =
c(5*2, 100)), abbreviate = TRUE, abbreviateDecimals = 0))

 #render display box with predicted value for display in ui.R

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-22-847

 output$death_box <- renderInfoBox({infoBox("Mortality Risk", value = tags$p(style = "font-size:
35px;",paste0(round(generate_model(mort_model)*100, 1), "%")), icon = icon("skull"), color = "red", fill
= TRUE)})
})

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-22-847

Appendix 2

#Supplementary File 2: Shiny R file ‘ui.R’
library(shiny)
library(shinythemes)
library(shinydashboard)
library(flexdashboard)
library(htmltools)

#lists and creates navigational features in sidebar menu
menu_sidebar <- dashboardSidebar(
 sidebarMenu(id = "tabs",
 menuItem("Calculator Inputs", tabName = "predictors", icon = icon("calculator")),
 menuItem("Calculator Results", tabName = "risk", icon = icon("gauge-high"))
)
)

#input_box and display_gauge contain application features organized into task-relevant components
input_box <- box(title ="Patient characteristics", status = "danger", header = T, solidHeader = T, width =
12,
 numericInput("Age", "Age (yrs)", 50, min = 0, max = 120),
 selectInput("Sex", "Sex", choices = c("Male", "Female")),
 selectInput("Sepsis", "Systemic sepsis", choices = c("None", "SIRS", "Sepsis", "Septic Shock")),
 selectInput("Dyspnea", "Dyspnea", choices = c("No", "Moderate exertion", "At rest")),
 selectInput("healthStatus", "Function health status prior to surgery", choices =
c("Independent", "Partially Dependent", "Totally Dependent")))

display_gauge <- box(title = "MORTALITY RISK", align = "center", status = "primary", solidHeader = TRUE,
flexdashboard::gaugeOutput("mortality_gauge"))

#body takes the components created in previous items and assigns them to proper tab windows
body <- dashboardBody(tabItems(
 tabItem(tabName = "predictors", input_box),
 tabItem(tabName = "risk", display_gauge, infoBoxOutput("death_box", width = 6))
))

#dashboardPage combines all application content including the sidebar and body into one coherent UI
dashboardPage(
 dashboardHeader(title = span("Tutorial: Risk Calculator", style = "font-size:14px"), titleWidth = 300),

 menu_sidebar,
 body
)

