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Introduction 

As applications of computation and machine learning (ML) 
become ubiquitous in many areas of science, user interfaces 
are being developed to allow users to draw meaningful 
interpretations without extensive expertise in computational 
methods (1-5). In medicine, clinical prediction calculators 
are increasingly becoming a popular tool for decision 
making, allowing clinicians and patients to utilize predictive 
models in a way that is user-friendly and accessible (6-8). 
Although many different software environments can be 
used to create web-accessible user interfaces (UI) for these 
prediction models, the R Shiny package, along with auxiliary 
packages such as shinydashboard (9) and flexdashboard (10), 
provides easy methods for researchers who are familiar with 
R to build interactive online interfaces without extensive 
web development knowledge. Our goal in this paper is to 
provide a brief tutorial with examples to aid developers of 
prediction models in making web-accessible interfaces. 

An excellent tutorial on creating basic risk calculators 
using the R Shiny package (11) has already been published 
in this journal (12). We highly recommend that tutorial to 
get started making calculators using Shiny. The purpose of 
this tutorial is to build on that foundation for researchers 
aiming to implement more complicated predictive models, 
especially those developed with ML methods, and/or more 
complex interfaces or visualizations. To achieve these goals, 

we explain how to use .rds files to store R objects containing 
complex statistic models that can be directly used by 
Shiny apps to produce predictions. We also introduce the 
R packages shinydashboard and flexdashboard which allow 
for quick creation of engaging visual displays of clinical 
predictions, as well as multi-tabular calculator applications. 

Step 1: set-up the ui.R file to design the 
collection of user supplied values

As prerequisites for this tutorial, we assume basic 
knowledge of R and RStudio (13,14). For readers with 
limited exposure, we suggest referencing https://www.
rstudio.com/training (15) prior to replicating the code in 
this paper. We also suggest updating R and RStudio to their 
most recent versions. Similarly to the previously published 
tutorial by Ji and Kattan (12), we begin by creating a ui.R 
and server.R file (Appendixes 1,2). The ui.R file, short for 
‘user interface’ file, will contain code that dictates the layout 
of the application’s web-interface, i.e., how input fields, 
graphics, and application components appear to the user. 
The server.R file, on the other hand, contains functions that 
determine how the calculator functions, including using the 
user inputs to create new predictions with the ML models. 

Create a new file directory on your local computer 
with the title of your project (e.g., ‘Tutorial Paper’) and 
place both the server.R and ui.R files within it. You should 
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then paste the code in the example documents into their 
respective files. While it is possible to construct a Shiny 
application using just one file with distinct sections for 
your server and ui code, we highly recommend the two-
file approach, especially for calculators with many inputs 
and complex dashboard schemas. When both files (must be 
titled ‘server.R’ and ‘ui.R’) are placed in the same directory 
and opened in R Studio, in the top righthand corner of 
the console the user will see a ‘Run’ icon denoted by a 
green play button that can be used in either file to start the 
application (Figure 1). 

Although a basic app layout is easily achievable with 
the default functions provided in Shiny, the package 
shinydashboard implements an intuitive framework for 
creating apps that utilize multiple tabs for inputs, results, 
and other information. For this tutorial, we will implement 
a calculator which uses a truncated version of a model from 
our previous work (16) with only five input variables: age 
(continuous), sex (M/F), sepsis (None/SIRS/Sepsis/Septic 
shock), dyspnea (None/Moderate exertion/At rest), and 
function health status (Independent/Partially dependent/
Totally dependent). This calculator is for didactic purposes 
only and is not for clinical use. 

Open the ui.R file. Lines 2–6 of ui.R list the packages 
required for the user interface portion of the application. 
Running these 5 lines will load the packages if they have 
already been installed. If not already installed, you can 
use the code install.packages (“shiny”,”shinythemes”, 
“shinydashboard”, “flexdashboard”, “htmltools” ) before 
loading the packages. 

The Shiny user interface using shinydashboard centers 
around three functions: dashboardSidebar (lines 8–14), 
dashBoardBody (lines 29–33), and dashBoardPage  
(lines 35–41). Once lines 8–14 are run, the dashboardSidebar 
object named “menu_sidebar” will contain the tabs 
(menuItems) that will be used to organize the app’s content. 

Once lines 29–33 are run, the dashBoardBody object named 
“body” will contain tabItems (e.g., “predictors” that will 
be displayed on that tab. Both the menu_sidebar and body 
are contained within dashboardPage. Figure 2 illustrates 
visual aspects associated with these code segments in a live 
application. 

Two additional objects are contained in ui.R: input_box 
and display_gauge (lines 16–27). These objects contain the 
code for patient characteristics input fields and the display of 
the model results in a gauge-style visual which is referenced 
and integrated into the body of the app (lines 31–32). 

The numericInput and selectInput lines in the code  
[19–23] are associated with the variables to be entered by 
the user of the app. For categorical variables, the “choices” 
parameter in the selectInput function specifies the different 
categories of the variable to be displayed as a drop-down 
menu. For consistency and simplicity, we will use selectInput 
for all categorical input variables. As an alternative to 
selectInput, readers may choose other options for displaying 
variable inputs, such as checkBoxInput. For a more 
comprehensive overview on this topic see the “Inputs and 
outputs” tutorial at https://shiny.rstudio.com/tutorial/ (17). 

Step 2: store statistical model objects as .rds 
files 

When you create a prediction model in R, it is contained 
in a R model object. Prediction models in R can take 
the form of a simple linear regression or more complex 
models such as LASSO and boosted regression. This R 
model object contains information about how the model 
calculates predictions based on new underlying data, which 
is then used to make predictions on new datasets. For less 
complicated models with a small number of inputs, it is 
reasonable to extract this information, which often takes 
the form of variable coefficients, from the R model object 

Figure 1 The ‘Run’ button in RStudio  becomes a ‘Run App’ play button when the server.R and ui.R files are correctly configured. 

https://shiny.rstudio.com/tutorial/
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and hard code the formula into the server.R file of the 
Shiny calculator. However, this quickly becomes unwieldy 
with many inputs and/or if the underlying model has a 
complex method for translating inputs into predictions. 
Using the R model object directly to produce predictions 
has several advantages over manually copying model 
coefficients into the Shiny server.R file. First, using the 
object directly reduces a source of error created when 
coefficients are copied manually. Second, many complex 
ML models, such as neural nets and boosted regression, are 
impossible to render with a simple formula. Therefore, we 
will demonstrate how to export your models from R and 
reference them appropriately within the application so they 
can be deployed with the other project files in Step 4. 

After generating an R model object using a function such 
as lm() or glmnet(), you can save the model to your local 
computer with the saveRDS() function:

saveRDS(your_model, “your_path/demo_model.rds”)
Following this, you should place the R model object file 

in the same directory as your server.R and ui.R files. For 
this calculator, you can download the ‘tutorial.rds’ file at 
the following link: https://github.com/S-SPIRE/clinical_
calculators/blob/main/tutorial_model.rds. This file is then 

referenced in the following code, and will be deployed with 
the other application files at a later step:

mort_model <- readRDS(‘./tutorial_model.rds’)
If you are using GitHub (18) to store your project files, 

it is also possible to reference the GitHub location where 
your .rds file is stored from within the application (see 
commented code in server.R lines (9-12). This may be 
useful in instances where you have many applications that 
reference the same models. In this case, each application 
would reference the same repository link, and updating the 
model at that GitHub location would effectively update 
each calculator without the need to redeploy each calculator 
individually (as long as calculator inputs have not changed). 
However, for most users, placing the .rds file within the 
project directory where it can be deployed with the other 
project files is the simplest and most effective way to 
reference your R model object. 

Step 3: design the server.R file to translate user 
inputs into predictions and display the results 

This calculator implements a logistic regression model for 
30-day mortality following total hip replacement utilizing 

Figure 2 The layout of a Shiny app using shinydashboard is dictated by the sidebar and the content in the body associated with each 
sidebar tab. 

https://github.com/S-SPIRE/clinical_calculators/blob/main/tutorial_model.rds
https://github.com/S-SPIRE/clinical_calculators/blob/main/tutorial_model.rds
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5 variables. While not all methods presented here will be 
directly applicable to all models, the principles of choosing 
variables corresponding to user input, and adjusting these 
variables based on user input, are the same regardless of 
model type. For additional resources regarding user input 
and Shiny interfaces see https://shiny.rstudio.com/tutorial/. 

The server.R code is mostly contained within the 
shinyServer function (line 14). The import line [6–7] 
directly precedes shinyServer such that the model is 
imported only once and saved. 

Model inputs and reactive functions

In order for the application to be dynamic and refresh its 
displays whenever user input is changed, the logic that 
determines what values are passed to the R model object 
must be contained within a reactive{()} function, which in 
our calculator is inputData(). 

The model used in this application uses 0/1 encoding 
for binary variables, so each categorical user input must 
be translated programmatically to 0 if absent, and 1 if 
present. The code from lines 19–33 assigns each model 
input variable an initial value of 0. Following this is code 
implementing logic to change the value to 1 if the user input 
indicates the presence of the associated patient characteristic 
[35–70]. After placing these inputs and the corresponding 
logic, the variables to be passed to the model will change 
dynamically based on the selectInput objects contained in 
ui.R. These variables are then used to create a dataframe 
called userPredictData (lines 72–79) which the function then 
returns. Dynamic variable input is enabled by containing the 
assignment of user input in a ‘reactive’ function (line 16), 
whereby the expressions are frequently re-evaluated by the 
server and values are updated based on new user input. 

When constructing this data.frame() code segment for 
your own app, you must use the original variable names 
of the model. Remember that because you are giving 
new user input to your source model, the table this code 
segment creates must match the format of an entry in the 
original data from which the source model was created. If 
done correctly, this code will return a single row dataframe 
containing the user information used in the generate_model 
function (lines 88–86) to obtain an accurate prediction. 
Note that the function inputData is called within generate_
model to obtain the relevant patient information. In 
addition, generate_model also accepts as a parameter the R 
model object needed to calculate the patient’s risk of post-
surgical mortality. 

Risk gauge visual

Gauges are a useful, compelling visual to display information 
associated with risk. The R package flexdashboard provides 
a built-out gauge object which can be configured to 
dynamically display the risk associated with the patient 
characteristics input by the user. Code for constructing 
the gauge visual is located on lines 88–92 of server.R, and 
execution of the visual on lines 26–27 of ui.R. 

The call to generate_model within the renderGauge 
function (line 90) computes the risk prediction from the 
indicated model, and post-calculation formatting is provided 
with round(). The “symbol” parameter appends “%” to 
end of the calculated value. The cut-offs for the gauge 
itself are dictated through the min, max, and gaugeSector 
parameters, the latter of which are used to determine the 
percentage thresholds for which the gauge progresses from 
green to yellow to red. Note the max for the gauge does 
not have to be set to 100; in fact, in risk models that tend 
towards smaller percentages (e.g., mortality) it could be 
advantageous to set the max to a lower level, for example, 
three times the population mortality occurrence. In our 
test gauge, however, we have set the max to a default of 100 
and set the benchmarks for “warning” and “danger” at 5% 
and 10%. Upon completion the gauge display tab of the 
app should appear as in Figure 3. The app generated from 
this code can also be accessed here with the addition of 
the infoBox visual discussed next (https://s-spire-clintools.
shinyapps.io/tutorial/). 

Other options to display risk predictions

Dynamic box 
One alternative to the gauge visual is a shinydashboard box 
object which displays a single number with formatted 
text in a simple but engaging manner. Code for this 
visual is located on lines 94–98 of server.r and line 32 
(infoBoxOutput(“death_box”, width = 6) of ui.r. This will 
display the predictions for the same mortality model but as 
an infoBox (Figure 4).

The “tags” statement within the value parameter allows 
the user to adjust the appearance of the display using html. 
For more information on html tags in Shiny see https://
shiny.rstudio.com/articles/tag-glossary.html (19). To 
explore valid icons for the “icon” parameter see https://
fontawesome.com/ (20). Please note that fontawesome is an 
actively updated collection and that there is a small chance 
for icons used within your calculator to be altered in name 

https://shiny.rstudio.com/tutorial/
https://s-spire-clintools.shinyapps.io/tutorial/
https://s-spire-clintools.shinyapps.io/tutorial/
https://shiny.rstudio.com/articles/tag-glossary.html
https://shiny.rstudio.com/articles/tag-glossary.html
https://fontawesome.com/
https://fontawesome.com/
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or appearance in future updates. Dynamic info boxes can be 
especially useful in conveying dashboard information when 
several models are included and gauge visuals for all of them 
would be visually overwhelming. An example of a more 
complicated calculator using a mix of gauges and infoBoxes 
can be found in our hip fracture prediction model (16) 

(https://s-spire-clintools.shinyapps.io/hip_deploy/).

Step 4: deployment 

When deploying a Shiny application, we recommend 
hosting the app at shinyapps.io, although other alternatives 

Figure 3 Landing page of tab “Calculator Results” once the app is configured (without optional dynamic box described below).

Figure 4 The Shiny dashboard infobox displays the same information as the flexdashboard gauge in a simpler format.

https://s-spire-clintools.shinyapps.io/hip_deploy/
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are available. In brief, these alternatives include options to 
host the app on-premises with either open source (Shiny 
Server) or commercial software (RStudio Connect). While 
any of these options might suit your individual needs, 
shinyapps.io is the easiest option for quick deployment, 
debugging, and user testing. See https://shiny.rstudio.com/
deploy/ (21) for more information on app deployment. 

Before you deploy, double check to confirm that your 
.rds files are located within your project directory and 
referenced appropriately in your application per server line 
7. To deploy your application to shinyapps.io, you must 
create a shinyapps.io account (https://www.shinyapps.
io/) and install the rsconnect package in RStudio. To link 
rsconnect and your shinyapps.io account, use the following 
function: rsconnect::setAccountInfo(name=“<ACCOU
NT>”, token=“<TOKEN>”, secret=“<SECRET>”). The 
token and secret are obtained from your shinyapps.io 
account by accessing Profile->Tokens. Once this is done, 
you can deploy your application by setting your working 
directory using setwd() to the directory your server.R and 
ui.R files are located and running the deployApp() function 
from rsconnect in the RStudio console. For more detailed 
instructions on shinyapps.io deployment see https://docs.
rstudio.com/shinyapps.io/index.html (22).

Discussion

The principles outlined in this work are derived from 
our own experience in orthopedic procedures but can 
also be applied broadly to other practices. If readers 
desire an additional exercise beyond orthopedic surgery, 
we recommend using the ‘heart’ dataset from R’s kmed  
package (23) to create a model of heart disease using chest 
pain, age, ECG, and gender as predictor variables. Using 
the steps outlined in this paper, these predictor variables 
would then map to calculator inputs, and the same methods 
used in this hip fracture calculator could be applied to 
visualize predicted risk of heart disease. 

Conclusions

As risk calculators become increasingly more popular as 
decision tools, attention must be given to not only creating 
clinically accurate models, but also designing tools for 
interfacing with these models that are both professional and 
accessible for physicians and patients. By using the variety 
of tools that Shiny has to offer, including accessory packages 
such as shinydashboard and flexdashboard offer, user interfaces 

with these models can become compelling aids to clinical 
decision making. 
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Supplementary

Appendix 1

#Supplemental File 1: Shiny R file ‘server.R’ 
library(shiny) 
library(shinydashboard) 
library(glmnet) 
 
#load model .rds packaged with shiny app deployment 
mort_model <- readRDS('./tutorial_model.rds') 
 
#alternate .rds file storage option; upload to github repository of choice and reference the download 
link as follows: 
#mort_model <- readRDS(gzcon(url("https://github.com/S-
SPIRE/clinical_calculators/raw/main/tutorial_model.rds"))) 
 
shinyServer(function(input, output, session){ 
  #reactive function assigns user input to variable table used in predictions  
  inputData <- reactive({ 
    female <- 0 
     
    age_74 <- 0  
    age_79 <- 0 
    age_84 <- 0 
    age_89 <- 0 
    age_90 <- 0 
     
    fnstatus_partd <- 0 
    fnstatus_totd <- 0 
     
    dyspnea_atrest <- 0 
    dyspnea_modexe <- 0 
     
    prsepis_sirs <- 0 
    prsepis_sepsis <- 0 
    prsepis_shock <- 0 
     
    if (input$Sex == "Female"){ 
      female <- 1 
    } 
     
     
    if (input$Age < 75 & input$Age >= 74){ 
      age_74 <- 1 
    } else if (input$Age < 80 & input$Age >= 75){ 
      age_79 <- 1 
    } else if (input$Age < 85 & input$Age >= 80){ 
      age_84 <- 1 
    } else if (input$Age < 90 & input$Age >= 85){ 
      age_89 <- 1 
    } else if (input$Age >= 90){ 
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      age_90 <- 1 
    } 
     
    if (input$healthStatus == "Partially Dependent") { 
      fnstatus_partd <- 1 
    } else if (input$healthStatus == "Totally Dependent") { 
      fnstatus_totd <- 1 
    } 
     
    if (input$Dyspnea == "At rest") { 
      dyspnea_atrest <- 1 
    } else if (input$Dyspnea == "Moderate exertion") { 
      dyspnea_modexe <- 1 
    } 
     
    if (input$Sepsis == "SIRS") { 
      prsepis_sirs <- 1 
    } else if (input$Sepsis == "Sepsis") { 
      prsepis_sepsis <- 1 
    } else if (input$Sepsis == "Septic Shock") { 
      prsepis_shock <- 1 
    } 
     
    #function returns a single row data frame containing variables needed for model prediction 
    #variable names in this data frame must match those of the original dataset used to train the model 
    userPredictData <- data.frame("female" = female, "age_74" = age_74, "age_79" = age_79, "age_84" = 
age_84, "age_89" = age_89, "age_90" = age_90, "fnstatus_partd" = fnstatus_partd, "fnstatus_totd" = 
fnstatus_totd, "dyspnea_atrest" = dyspnea_atrest, "dyspnea_modexe" = dyspnea_modexe, 
"prsepis_sirs" = prsepis_sirs, "prsepis_sepsis" = prsepis_sepsis, "prsepis_shock" = prsepis_shock) 
  }) 
   
  #function takes an as argument the imported model object and returns the model prediction based on 
data returned by inputData() 
  generate_model <- function(m){ 
    dat <- as.matrix(inputData()) 
    p <- predict(m, newx = dat, type = "response", s = "lambda.1se") 
    p  
  } 
   
  #render gauge with predicted value for display in ui.R 
  output$mortality_gauge <- 
flexdashboard::renderGauge(flexdashboard::gauge(round(generate_model(mort_model)*100, 1), 
symbol = "%",min = 0, max = 100, sectors = gaugeSectors(success = c(0, 5), warning = c(5, 5*2), danger = 
c(5*2, 100)), abbreviate = TRUE, abbreviateDecimals = 0)) 
   
  #render display box with predicted value for display in ui.R 
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  output$death_box <- renderInfoBox({infoBox("Mortality Risk", value = tags$p(style = "font-size: 
35px;",paste0(round(generate_model(mort_model)*100, 1), "%")),  icon = icon("skull"), color = "red", fill 
= TRUE)}) 
}) 
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Appendix 2

#Supplementary File 2: Shiny R file ‘ui.R’ 
library(shiny) 
library(shinythemes) 
library(shinydashboard) 
library(flexdashboard) 
library(htmltools) 
 
#lists and creates navigational features in sidebar menu 
menu_sidebar <- dashboardSidebar( 
  sidebarMenu(id = "tabs", 
              menuItem("Calculator Inputs", tabName = "predictors", icon = icon("calculator")), 
              menuItem("Calculator Results", tabName = "risk", icon = icon("gauge-high")) 
  ) 
) 
 
#input_box and display_gauge contain application features organized into task-relevant components 
input_box <- box(title ="Patient characteristics", status = "danger", header = T, solidHeader = T,  width = 
12, 
                 numericInput("Age", "Age (yrs)", 50, min = 0, max = 120), 
                 selectInput("Sex", "Sex", choices = c("Male", "Female")), 
                 selectInput("Sepsis", "Systemic sepsis", choices = c("None", "SIRS", "Sepsis", "Septic Shock")), 
                 selectInput("Dyspnea", "Dyspnea", choices = c("No", "Moderate exertion", "At rest")), 
                 selectInput("healthStatus", "Function health status prior to surgery", choices = 
c("Independent", "Partially Dependent", "Totally Dependent"))) 
 
display_gauge <- box(title = "MORTALITY RISK", align = "center", status = "primary", solidHeader = TRUE, 
flexdashboard::gaugeOutput("mortality_gauge")) 
 
#body takes the components created in previous items and assigns them to proper tab windows 
body <- dashboardBody(tabItems( 
  tabItem(tabName = "predictors", input_box), 
  tabItem(tabName = "risk", display_gauge, infoBoxOutput("death_box", width = 6)) 
)) 
 
#dashboardPage combines all application content including the sidebar and body into one coherent UI 
dashboardPage( 
  dashboardHeader(title = span("Tutorial: Risk Calculator", style = "font-size:14px"),  titleWidth = 300), 
   
  menu_sidebar, 
  body 
) 


