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Introduction

A large number of basic and clinical studies in the past 50 
years have clarified the pathophysiological mechanisms of 
acute respiratory distress syndrome (ARDS) and proposed 

new treatments, yet ARDS remains a very common 

respiratory syndrome in the intensive care unit (ICU) (1). 

Recently, two large-scale multicenter investigations found 

that the mortality of patients with ARDS in ICU is as high 
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as 40% (2,3), and complications of varying degrees occur 
in at least 50% of patients with ARDS (3). This often leads 
to prolonged hospitalization and increases treatment costs, 
which then increases the family and social burden.

Big data are immensely large datasets that are difficult 
to acquire, store, manage, and analyze using traditional 
database software tools. These are often characterized by 
a massive data scale, rapid data flow, diverse data types, 
and low value density. Big data in healthcare consist of a 
patient’s demographics, laboratory results, waveforms, and 
imaging findings. These data are all combined to form 
a data archive (4). Big data analysis in medical treatment 
should be based on multiple disciplines, such as statistics, 
bioinformatics, epidemiology, and artificial intelligence 
(AI), aiming at improving patient care in terms of outcome 
prediction, diagnosis, and risk classification (5).

Machine learning is a science of AI that uses data 
or experience to improve the performance of specific 
algorithms in learning. Machine learning has been widely 
used in the medical field, mainly for supervised prediction 
and unsupervised subgroup classification (6). In some 
cases, compared with traditional methods, AI-supervised 
methods to construct ARDS prediction models is more 
accurate and convenient and can predict the diagnosis, 
survival, and complications of ARDS at an early stage. AI-
supervised methods also support clinical decision-making 
and achieve early prevention, control, and treatment. 
Because of the heterogeneity and various etiologies of 
ARDS and pathological changes (7), unsupervised clustering 
is required to classify patients with ARDS and distinguish 
different subgroups of clinical manifestations and treatment 
responses for disease management.

This narrative review aimed to (I) understand the role of 
AI in improving the management of patients with ARDS; 
(II) explore the subgroup classification of patients with 
ARDS via unsupervised clustering; (III) evaluate the use 
of supervised predictive models for the early detection of 
ARDS; (IV) focus on research gaps in ARDS prediction; 
and (V) identify the current problems that could be 
solved by applying AI in ARDS. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3153/rc).

Methods

This review focused on the application and development of 
AI for ARDS from December 1, 2011, to August 5, 2022, 

during which the medical application of AI had rapidly 
developed. To identify eligible studies and reference lists of 
primary articles found from initial searches, we further searched 
the PubMed, Web of Science, Embase, and Medline databases 
using the following index terms: ((ARDS) AND (machine 
learning) OR (artificial intelligence)) AND ((diagnosis) OR 
(prognosis) OR (complications) OR (phenotype)). To take 
advantage of the breadth and boundaries of interpretations, we 
included literature from different countries where AI was used to 
predict the diagnosis or prognosis of ARDS based on the Berlin 
criteria as well as articles on ARDS subphenotypes. Some studies 
(8-10) suggested that coronavirus disease 2019 (COVID-19) 
-related ARDS and typical ARDS differ significantly in multiple 
ways, such as the injury site, clinical features, time of onset, 
respiratory system compliance, and management protocols. 
Articles on COVID-19-related ARDS were excluded. The 
inclusion criteria were as follows: accessibility of full texts, use 
of AI and ARDS data in subtype or prediction models, formal 
publication types, and English language. The exclusion criteria 
were as follows: articles on COVID-19-related ARDS, duplicate 
records, no adults in the study population, and review articles. 
The study selection process is summarized in Table 1.

Discussion

Four online research databases were searched: PubMed, 
Web of Science, Embase, and Medline. On initial 
screening, the following keywords were used: respiratory 
distress syndrome, machine learning, artificial intelligence, 
diagnosis, prognosis, and complications. A total of  
1,074 articles were found. Of these, 116 duplicate articles 
and 91 articles with inaccessible full texts were excluded. 
Of the remaining 867 articles, 10 articles related to ARDS 
subtypes and 5 articles related to diagnosis and survival 
prediction were selected after applying the inclusion and 
exclusion criteria (Figure 1). 

We identified two broad categories of AI applications in 
ARDS. One category was the use of unsupervised clustering 
to classify ARDS into different subtypes (Table 2), including 
the use of clinical indicators combined with biomarkers to 
classify ARDS as well as the comparison of the responses 
of different groups to treatments such as positive end-
expiratory pressure (PEEP) management, fluid therapy, 
and statins. The other category included the development 
of clinical prediction models for diagnosis and survival 
(Table 3). Complex clinical data were input into the model 
to obtain more accurate prediction results to guide doctors 
in their clinical decision-making in early disease stage and 

https://atm.amegroups.com/article/view/10.21037/atm-22-3153/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3153/rc
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Table 1 Summary of the search strategy

Items Specification

Date of search June 8, 2022, to August 5, 2022

Databases and other sources searched PubMed, Web of Science, Embase, and Medline

Search terms used Keywords: artificial intelligence, ARDS, machine learning, phenotype, prognosis, diagnosis, and 
complications

Timeframe December 1, 2011, to August 5, 2022

Inclusion criteria Accessibility of full texts, use of AI and ARDS data in subtype or prediction models, formal 
publication types, and English language

Exclusion criteria Articles on COVID-19-related ARDS, duplicate records, no adults in the study population, and 
review articles

Selection process Study selection was performed by Yu Bai, Xu Huang, and Jingen Xia independently. Any 
disagreements about the inclusion of studies were resolved by discussion

COVID-19, coronavirus disease 2019; ARDS, acute respiratory distress syndrome; AI, artificial intelligence.

COVID-19 related 
ARDS (n=545)

Non-English 
language(n=13)

Not using of AI or ARDS 
data in the subtype or 

prediction model(n=213)

No adults(n=34)

Informal publication 
types(n=38)

Review
(n=9)

Full-text articles 
excluded(n=852)

Records identified 
through database 
searching(n=1074)

Records after duplicates 
removed(n=958)

Full-text articles 
assessed for 

eligibility(n=867)

Studies included(n=15)

Duplicates 
removed(n=116)

Full-text could not be
obtained(n=91)

COVID-19 related 
ARDS (n=545)

Non-english language 
(n=13)

No adults (n=34)

Not using of AI or 
ARDS data in the 

subtype or prediction 
model (n=213)

Full-text articles 
excluded (n=852)

Records identified 
through database 

searching (n=1,074)

Full-text articles 
assessed for eligibility 

(n=867)

Records after 
duplicates removed 

(n=958)

Studies included 
(n=15)

Duplicates removed 
(n=116)

Full-text could not be 
obtained (n=91)

Informal publication 
types (n=38)

Review (n=9)

Figure 1 Flowchart for the narrative review. COVID-19, coronavirus disease 2019; ARDS, acute respiratory distress syndrome; AI, artificial 
intelligence.

reduce the incidence and mortality of ARDS.

Application of unsupervised clustering

Biological subphenotype
The initial biological subphenotype was implemented by 

Calfee et al. (11) in 2014. A latent class analysis (LCA) 
was performed using data from two ARDS randomized 
controlled trials (RCTs) comprising 1,022 patients with 
ARDS [the National Heart, Lung, and Blood Institute 
(NHLBI) ARDS network RCT of lower versus higher tidal 
volume ventilation (ARMA trial) and higher versus lower 
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Table 2 Unsupervised clustering for classifying ARDS into different subtypes

Author(s) Year Method(s) Dataset(s) Sample size Conclusion(s) of study

Calfee et al. 
(11)

2014 LCA ARMA and ALVEOLI 
(retrospective)

1,022 Hyperinflammatory and hypoinflammatory phenotypes 
were found, and they had different responses to the 
PEEP strategy

Famous et al. 
(12)

2017 LCA FACTT (retrospective) 1,000 A two-class subphenotypic model best described the 
study population; the fluid conservation strategy of the 
hyperinflammatory phenotype was more conducive to 
reducing mortality

Calfee et al. 
(13)

2018 LCA HARP-2 
(retrospective)

539 The subphenotypes had features consistent with 
those previously reported; the hyperinflammatory 
subphenotype showed improved survival with 
simvastatin

Sinha et al. 
(14)

2018 LCA SAILS (retrospective) 745 The subphenotypes had features consistent with those 
previously reported. No treatment effect was observed 
with rosuvastatin

Sinha et al. 
(15)

2020 Random forest, 
Bootstrapped 
aggregating, Least 
absolute shrinkage 
and selection operator, 
and nested logistic 
regression models

ARMA, ALVEOLI, 
FACTT, and SAILS 
(retrospective)

2,737 Hyper- and hypoinflammatory phenotypes can be 
accurately identified using a simple classifier model 
comprising three or four variables

Sinha et al. 
(16)

2020 Gradient boosted 
machine algorithm

ARMA, ALVEOLI, 
FACTT, and SAILS 
(retrospective)

2,737 ARDS phenotype can be accurately identified using a 
machine learning model based on clinical data

Maddali et al. 
(17)

2022 Gradient boosted 
machine algorithm, 
XGBoost: Extreme 
Gradient Boosting

VALID, EARLI, 
and LUNG SAFE 
(retrospective)

3,834 A classifier model using clinical variables alone 
can accurately assign ARDS subphenotypes in 
the observation cohort and provide individualized 
information on PEEP treatment strategies

Sinha et al. 
(18)

2022 LCA VALID and EARLI 
(prospective)

959 The previous hyperinflammatory and hypoinflammatory 
subtypes can be extended to unselected populations 
of nontraumatic ARDS

Hashem et al. 
(19)

2022 Wilcoxon rank-sum 
and Fisher’s exact 
tests

SAILS (retrospective) 568 Inflammatory subphenotypes largely reflect the acute 
phase of illness and its short-term impact

Liu et al. (20) 2021 K-means eICU, ALVEOLI, 
FACTT, and SAILS 
(retrospective)

3,675 Three clinical phenotypes of ARDS were identified 
and they had different clinical characteristics and 
outcomes

ARDS, acute respiratory distress syndrome; LCA, latent class analysis; ARMA, the NHLBI ARDS network’s randomized controlled trials 
of lower versus higher tidal volume ventilation trial; ALVEOLI, higher versus lower positive end-expiratory pressure trial; PEEP, positive 
end-expiratory pressure; FACTT, Fluids And Catheters Treatment Trial; HARP-2, a UK multicenter, placebo-controlled randomized trial 
of simvastatin for ARDS; SAILS, contemporary NHLBI network trial of infection-associated ARDS; VALID, Validating Acute Lung Injury 
biomarkers for diagnosis; EARLI, Early Assessment of Renal and Lung Injury; eICU, Tele-Health intensive care unit.

PEEP in patients with ARDS (ALVEOLI trial)]. In total, 
27 clinical variables and 8 plasma biomarkers were included 
in the LCA for clustering. Finally, an optimal two-class 
model was determined, and the patients with ARDS were 

divided into groups of phenotypes 1 and 2; one-third of 
the patients were assigned to phenotype 2. In phenotype 1, 
the mortality of the high PEEP strategy was higher than 
that of the low PEEP strategy. In phenotype 2, the plasma 
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Table 3 Models for predicting diagnosis and survival in ARDS

Author(s) Year Method(s) Dataset(s) Sample size Conclusion of study

Ding et al. (21) 2019 Random 
forest

Five different centers in 
Beijing (retrospective)

296 The machine learning-based model showed good 
predictive ability in Chinese patients with ARDS

Zeiberg et al. (22) 2019 L2 logical 
regression

Single center 
(retrospective)

1,621 Developed an ARDS prediction model based on EHR 
data with good discriminative performance

Brown et al. (23) 2011 Classification 
tree

ARDS network trials 
(retrospective)

2,022 The tree-based classification rule performed similarly to 
APACHE III in terms of stratifying patients according to 
hospital mortality

Huang et al. (24) 2021 Random 
forest

MIMIC-III and eICU 
databases (retrospective)

2,235 The ARDS mortality prediction model was superior to 
existing traditional ARDS scores

Zhang (25) 2019 Neural 
network

Forty-four hospitals 
(retrospective)

1,071 The ARDS mortality prediction model was superior to 
existing traditional ARDS scores

ARDS, acute respiratory distress syndrome; EHR, electronic health record; APACHE: Acute Physiology and Chronic Health Evaluation; 
MIMIC, Medical Information Mart for Intensive Care; eICU, Tele-Health intensive care unit.

concentrations of interleukin-6 (IL-6), IL-8, soluble tumor 
necrosis factor receptor-1 (TNFR-1), and plasminogen 
activator inhibitor-1 were higher than those in phenotype 
1, and it demonstrated a higher heart rate and total minute 
ventilation and lower systolic blood pressure, bicarbonate 
level, and protein C concentration. Phenotype 2 was also 
categorized by more severe inflammation, shock, metabolic 
acidosis, and worse clinical outcomes, and the mortality of 
the high PEEP group was lower than that of the low PEEP 
group. The study by Calfee et al. (11) pioneered the use of 
cluster analysis for categorizing ARDS and represents the 
beginning of personalized treatment for ARDS, which is 
more conducive to the individual management of patients 
with ARDS. ARDS phenotypes (endotypes) represent 
patient subsets of ARDS defined either by a biologically 
restricted molecular pathway/mechanism or by differences 
in treatment response or, rarely, both (26). LCA is used to 
identify queue clustering by testing the hypothesis that two 
or more unobserved classes (latent classes) could elucidate 
the relationship between observed variables in a queue. 
The main goal of LCA is to identify the most concise set 
of predictive variables and potential classes for interpreting 
cohort data. All data points are condition-independent and 
are generated from one of these unobserved categories. 
Thus, LCA can be used to identify ARDS subgroups  
(27-30). In this study, although the 27 clinical variables 
and 8 plasma biomarkers were not readily available 
simultaneously and the variables were numerous, their 
classification can be used as reference for bedside ventilator 
management (31). However, prospective studies with large 
samples should further evaluate more precise results.

In 2017, the same team verified the subphenotype 
of ARDS in the Fluids and Catheters Treatment Trial 
(FACTT) with a dataset of 1,000 people and assessed 
whether the subphenotype responded differently to fluid 
management (12). The authors used LCA to analyze 
the baseline clinical data and plasma biomarkers and 
logistic regression to test for an interaction between 
subphenotype and treatment to determine mortality rates. 
Results confirmed that a two-class subphenotypic model 
best described the study population, with phenotype 2 
again characterized by higher inflammatory biomarker 
levels and hypotension. Moreover, a more simplified 
model, comprising IL-8, bicarbonate, and TNFR-1, 
accurately classified the subphenotypes. Regarding fluid 
treatment, the mortality after the fluid-conservative and 
fluid-liberal strategies in phenotype 1 were 26% and 
18%, respectively, whereas those in phenotype 2 were 
40% and 50%, respectively. In that study, the authors 
simplified the classification model to accurately classify 
patients with ARDS using only three indicators. Results 
demonstrated that fluid conservation in phenotype 2 was 
more conducive to reducing mortality, thus validating a 
significant interaction between hyperinflammatory and 
hypoinflammatory subgroups and fluid treatment.

In 2018, the same team conducted subphenotypic 
identification in 539 patients with ARDS in a multicenter, 
placebo-controlled, randomized trial of simvastatin for 
ARDS (HARP-2) in the United Kingdom and investigated 
whether different subgroups responded differently to 
simvastatin treatment (13). The authors used LCA and 
found that 65% of patients had the hypoinflammatory 
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subphenotype,  whereas  35% of  pat ients  had the 
hyperinflammatory subphenotype. The clinical and 
biological characteristics of these two subphenotypes were 
similar to those reported in previous studies (11,12). No 
difference was noted in the 28-day survival between the 
placebo and simvastatin groups in HARP-2, but there 
was a significant difference in survival between different 
treatments in different subphenotypic groups (P<0.00001). 
In the hyperinflammatory subtype group, patients taking 
simvastatin had a significantly higher 28-day survival 
than those taking placebo (P=0008); a similar pattern was 
observed at 90-day survival. In the same year, the team used 
LCA again to identify subtypes in 745 patients with ARDS 
in a contemporary NHLBI network trial of infection-
associated ARDS (SAILS) dataset. Different therapeutic 
responses of rosuvastatin in subtypes were examined (14). 
The characteristics of the subphenotype were consistent 
with those previously reported (11) in four other cohorts, 
with approximately 40% of the patients classified to 
have hyperinflammatory subphenotypes. There was no 
significant difference in efficacy between patients with 
hyperinflammatory subphenotypes who were randomized to 
rosuvastatin treatment and those who received the placebo. 
In both studies, the hyper- and hypoinflammatory ARDS 
subphenotypes were verified via analysis of simvastatin and 
rosuvastatin treatment response between two groups of 
patients. For simvastatin, the 28-day survival rate was higher 
in the hyperinflammatory group than in the placebo group, 
whereas for rosuvastatin, there was no difference in the 
curative effect between groups. The therapeutic response to 
statins should be investigated further.

To simplify the model, the team used the datasets from 
RCTs (ARMA, ALVEOLI, and FACTT) as the machine 
learning and logistic regression model test set (n=2,022), 
whereas the fourth RCT dataset (SAILS; n=715) was the 
internal validation set (15). To select the six most important 
features as classification variables, the LCA-derived subtype 
was used as a reference, employing machine learning 
algorithms such as random forest, bootstrapped aggregating, 
and least absolute shrinkage and selection operator. Nested 
logistic regression models were then developed. The 
28-, 60-, and 90-day mortality and 28-day no-machine 
ventilation time were assessed in the external validation set 
[START (START was a phase 2a trial that tested the safety 
of intravenous human bone marrow-derived mesenchymal 
stromal cells for moderate to severe ARDS) and HARP 2]. 
The six most important classification variables were IL 8, IL 
 6, protein C, soluble TNFR-1, bicarbonate, and vasopressor 

use. In the nested logistic regression model, three- variable 
(IL 8, bicarbonate, and protein C) and four variable (the 
aforementioned three variables plus vasopressor use) models 
performed the best, with accuracies of 94% and 95%, 
respectively. In the external validation datasets using the 
three -variable models developed in the derivation dataset, 
two phenotypes were identified, with distinct clinical 
features and outcomes consistent with previous findings (11),  
including differential survivals with simvastatin versus 
placebo in HARP 2 (P=0.023 for survival at 28 days). Thus, 
phenotypes can be accurately identified using a simple 
classifier model with three or four variables. This study used 
larger datasets and machine learning algorithms to screen 
the most important variables and build the model and then 
constructed a grouping model with three and four variables, 
which could accurately identify the phenotype of patients 
with ARDS. However, although the model is already 
simplified, it still includes plasma biomarkers, which cannot 
be quickly obtained at the bedside.

Clinical data subphenotype
Sinha et al. (16) noted that although identifying the ARDS 
phenotype via plasma biomarkers is a key component, the 
current lack of their immediate detection is an obstacle to 
phenotypic clinical implementation. Thus, clinical data 
must be used to quickly identify phenotypes at the bedside. 
In the study by Sinha et al. (16), three RCT cohorts were 
considered as training datasets (ARMA, ALVEOLI, and 
FACTT; n=2,022) and the fourth as a validation dataset 
(SAILS; n=745). A classification model was developed using 
the gradient boosted machine algorithm, which included  
24 clinical variables (demographic, vital signs, and laboratory 
and respiratory variables). In the secondary analysis, the 
ALVEOLI and FACTT queues were used as verification 
datasets, and the remaining combined queues constituted 
the training dataset for each analysis. The performance of 
the phenotypic model derived from the LCA was thereafter 
evaluated. In the main analysis, the model accurately 
classified the phenotypes [area under the curve (AUC) 
=0.95; 95% confidence interval (CI): 0.94–0.96] in the 
verification queue. When ALVEOLI (AUC =0.94; 95% CI: 
0.92–0.96) and FACTT (AUC =0.94; 95% CI: 0.92–0.95) 
were used as verification queues, the accuracy of the model 
was similar, indicating that the ARDS phenotype can be 
accurately identified using a machine learning model based 
on off-the-shelf clinical data and can thus can be quickly 
identified at the bedside. Maddali et al. (17) validated the 
ARDS subphenotypes in two ARDS observation cohorts 
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using clinical classifier models with readily available clinical 
variables in 2022. The primary model included only vital 
signs and laboratory variables, whereas ventilatory variables 
and demography were added to the secondary model. They 
also assessed the performance of the primary model in 
the Early Assessment of Renal and Lung Injury (EARLI) 
trial using data that were automatically extracted from an 
electronic health record. Based on their findings, Maddali 
et al. (17) reported that a classifier model using clinical 
variables alone could also be used in the ARDS observation 
cohort to assign ARDS subphenotypes at the bedside. 
Furthermore, results of the Lung Safe study showed that 
the mortality rate was lower with high PEEP than with low 
PEEP in the hyperinflammatory subphenotype group (54% 
vs. 62%) and it was lower with low PEEP than with high 
PEEP in the hypoinflammatory subphenotype group (32% 
vs. 34%).

Phenotypic prospective verification
As noted earlier, Sinha et al. (16) used retrospective 
data to classify patients with ARDS into two subtypes: 
hyperinflammatory and hypoinflammatory. Considering 
the adaptability in the prospective population, they also 
performed LCA in 2021 using two prospective observation 
cohorts of patients with ARDS from the Validating Acute 
Lung Injury biomarkers for diagnosis (VALID) (n=624) 
and EARLI (n=335) studies (18). Clinical and biological 
data were used as classification definition variables. To test 
for consistency with the previous ARDS subtypes (11), 
the performance metrics of parsimonious classifier models 
of the previously developed models (IL-8, bicarbonate, 
protein C, and vasopressor use) were evaluated in 
EARLI, with the subtypes derived from LCA as the gold 
standard. The new classification in the two prospective 
cohorts were consistent with the previously described 
hyperinflammatory and hypoinflammatory subtypes (AUC 
=0.92–0.94). Additionally, new biomarkers were found; 
in the hyperinflammatory subtypes, the levels of matrix 
metalloproteinase-8 and markers of endothelial injury 
were significantly increased, while the level of matrix 
metalloproteinase-9 was significantly decreased. This 
suggests that the previous hyper- and hypoinflammatory 
subtypes could be extended to unselected populations of 
nontraumatic ARDS.

Phenotype controversy
Hashem et al. (19) aimed to determine if there were 
significant clinical differences in the physical, mental 

health, or cognitive outcomes between patients with hyper- 
and hypoinflammatory subtypes of sepsis-related ARDS 
at 6 and 12 months. Although previous studies (11-13)  
suggested that short-term mortality was significantly 
lower in the hypoinflammatory subtype group than in the 
hyperinflammatory subtype group, Hashem et al. (19) found 
no significant difference in the survival rates above 90 days 
and no consistent significance in differences in the physical, 
cognitive, and mental health outcomes between 6 months 
and 12 months. Therefore, this inflammatory subtype 
may be of greatest value to trials that focus on short-term 
mortality and related outcome measurements, rather than 
on long-term functional outcomes.

Other subphenotypes
In 2021, a study in China used K-means clustering to 
divide patients with ARDS into three subgroups, departing 
from the previous classic hyper- and hypoinflammatory 
subtypes (20). While a previous study (11) of hyper- and 
hypoinflammatory subtypes used plasma biomarkers as 
classification variables that could not be quickly obtained at 
the bedside, the study in China used 21 clinical variables to 
cluster 5,959 patients with ARDS in the Tele-Health ICU 
(eICU) database and the ALVEOLI, FACTT, and SAILS 
datasets. Of the three identified phenotypes, phenotype 
I (n=1,565; 40%) was associated with fewer laboratory 
abnormalities, less organ dysfunction, and the lowest 
hospital mortality (8%). Meanwhile, phenotype II (n=1,032; 
32%) was associated with more inflammation and shock, 
with a higher mortality rate (18%). Phenotype III (n=1,078; 
28%) was closely related to renal insufficiency and acidosis 
and had the highest mortality (22%). In phenotype I, the 
60-day mortality of the high PEEP group was higher 
than that of the low PEEP group, and the ventilator- and 
ICU-free days were less. The mortality of patients with 
phenotype II was 22% in the fluid-conservative group 
and 32% in the fluid-liberal group; meanwhile, in patients 
with phenotype III, the mortality was 45% in the fluid-
conservative group and 36% in the fluid-liberal group. 
These results were also validated in the three RCT datasets. 
This triple classification also improves the understanding 
of ARDS heterogeneity, but it requires verification in 
prospective studies.

Application of supervised prediction models

Diagnostic model
Ding et al. (21) used a random forest model to predict the 
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risk of ARDS (296 patients, 5 different centers in Beijing). 
Among the 42 variables (including baseline characteristics 
and clinical and laboratory parameters) measured on the 
first day of admission, the minimum hematocrit, glucose, 
and sodium levels were decreased and the minimum white 
blood cell count was increased, which could effectively 
predict the occurrence of ARDS. The model yielded an 
AUC of 0.82 and a predictive accuracy of 83%. Zeiberg 
et al. (22) identified 10 predictive (highest weight) and 
protective (lowest weight) features using clinical data of 
1621 patients with moderate hypoxia from a single center, 
and these characteristics were entered into the L2 logical 
regression model to establish a diagnostic model for patients 
with ARDS. The performance of the model in the test set 
(AUC =0.81, 95% CI: 0.73–0.88) was better than that of the 
XGBoost model (AUC =0.75, 95% CI: 0.68–0.81).

The studies of Ding et al. (21) and Zeiberg et al. (22) 
differed in some aspects. Zeiberg et al. (22) included 
hospitalized patients with hypoxia and non-ICU patients, 
and the efficacy of the logical regression was better 
than that of the more complex machine learning model 
XGBoost, probably due to a low incidence of ARDS 
(2–3%), resulting in a positive predictive value of only 9%. 
The AUC values of the models in both studies are not 
particularly satisfactory, and both used retrospective data 
without external verification. Therefore, larger prospective 
studies and external validation are needed to further explore 
diagnostic models for ARDS.

Survival prognosis model
In 2011, Brown et al. (23) established a survival prediction 
model for 2022 patients with ARDS from the ARDS 
Network Trials. Using the classification tree, they identified 
age (>63 years), blood urea nitrogen (>15 mg/dL), shock, 
respiratory rate (>21 breaths/min), and minute ventilation 
(>13.9 L/min) as important predictors of hospital mortality 
at 90 days. The classification tree showed a similar expected 
prediction error (28% vs. 26%; P=0.18) and AUC (0.71 
vs. 0.73; P=0.71) in the training and validation sets as 
noted in a model based on Acute Physiology and Chronic 
Health Evaluation III (APACHE III). Huang et al. (24) 
established a prediction model of in-hospital, 30-day, and 
1-year mortality rates based on the random forest algorithm 
for 2,235 patients with ARDS in the Medical Information 
Mart for Intensive Care (MIMIC-III) database, and they 
verified the model in the eICU database. The AUCs of the 
random forest model for predicting in-hospital mortality 
in the MIMIC-III and eICU datasets were 0.905 and 

0.736, respectively, which were superior to those of existing 
traditional scores of ARDS, including the Simplified Acute 
Physiology Score II (SAPS-II) and Sepsis-Related Organ 
Failure Assessment scores. Platelet count and lactate level 
were the strongest predictors of in-hospital mortality.  
Zhang (25)  developed a  model  based on data  of  
1,071 patients with ARDS from 44 hospitals to predict 
the mortality of patients with ARDS. Seven important 
variables were identified in the model: age, AIDS, leukemia, 
metastatic tumor, hepatic failure, lowest albumin, and FiO2. 
A representative neural network model was constructed 
using forward selection. The AUC of the neural network 
model evaluated with the validation cohort was 0.821 (95% 
CI: 0.753–0.888), which was significantly greater than that 
of the APACHE III score (0.665; 95% CI: 0.590–0.739; 
P=0.002) but non-significantly greater than that of the 
logistic regression model (0.743; 95% CI: 0.669–0.817, 
P=0.130).

The abovementioned models were developed using 
clinical data that are easily available in clinical practice, 
making them convenient and quick to use. While Brown 
et al. (23) created a survival prognosis model, a complex 
machine learning model was not used, but prognosis was 
predicted using a relatively simple classification tree, with a 
moderate AUC of 0.7. Huang et al. (24) used the MIMIC-
III and eICU databases and developed a random forest 
model to predict ARDS mortality, but some variables could 
not be directly obtained from the two public databases. 
Zhang et al. (25) also developed a neural network model 
to predict mortality in patients with ARDS, but it did not 
undergo external validation and the AUC values indicated 
that the models had moderate predictive ability. All 
prediction models discussed so far were constructed using 
retrospective data and may require further prospective 
external validation to confirm their performance.

Risk of bias (ROB) and applicability
We used the PROBAST criteria to assess the ROB in the 
prediction model (Table 4). To assess the intensity of ROB, 
all models in the predictor domain were rated as low bias. 
One study in the participant domain was rated as highly 
biased, while another study was unable to identify bias in 
outcomes. The ROB in the analysis domain is generally 
high, and the high ROB usually originates from project 
4.3, which evaluated whether all enrolled participants were 
included in the study. Moreover, 4.5 evaluated whether 
the selection of predictors based on univariable analysis 
was avoided. In terms of model applicability, all models 
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had good overall applicability, and the consistency of study 
participants, predictors, and outcomes with the review 
questions was high.

Prospects for the future

In recent years, the number of studies using AI for medical 
treatment has rapidly increased. The emergence and 
application of AI resulted in notable developments in 
medical treatment, which have been helpful in clinical 
decision-making; however, there are also some limitations. 
Van de Sande et al. (32) reviewed the maturity of AI in 
the current ICU setting, the research methods employed 
in published studies, and the ROB in these studies. They 
found that 476 (96.4%) studies were retrospective, 8 (1.6%) 
were prospective, and 10 (2%) used a clinical design. Of 
the 10 studies that used a clinical design, 5 (1%) were non-
RCTs and 5 (1%) were RCTs. The most common research 
objective was predicting complications [110 studies (22.2%)] 
and mortality [102 studies (20.6%)], followed by improving 
prognostic models/risk scoring systems [91 studies 
(18.4%)] and classification subgroups [57 studies (11.7%)]. 
The median sample size for all retrospective studies was 
1,010 (median sample size of 968 for internally validated 
studies and 1,528 for external validation). In addition, 
the median sample size of all prospective observation and 
clinical studies was much smaller than that of retrospective 
studies. Data from more than 100,000 patients were 
analyzed in 10 studies (2%). Among retrospective studies,  
142 (28.7%) studies analyzed data of 100–1,000 patients. 
For the preparation level for AI in the study, the technical 
preparation levels introduced by the National Aeronautics 
and Space Administration was used: problem identification 
(level 1), proposal of solution (level 2), model prototyping 

and development (levels 3 and 4), model validation  
(level 5), real-time testing (level 6), workflow integration 
(level 7), clinical testing (level 8), and integration in 
clinical practice (level 9). Van de Sande et al. (32) found that  
441 studies (89.3%) scored ≤4 on the readiness scale,  
35 studies (7.1%) were externally validated (level 5), and 
10 studies (2%) clinically evaluated the model performance 
(level 8). However, none was integrated into clinical practice 
(level 9), indicating the need for studies to be introduced 
into clinical practice and not remain in the clinical evaluation 
stage. Finally, the ROB in all 467 retrospective studies 
was assessed using the PROBAST criteria, revealing that 
378 (80.9%) of the 467 studies had a high ROB, which 
most often arises from the “participants section” (item 1.1: 
whether inappropriate data sources are used) and the “analysis 
section” (item 4.1: whether sufficient patients are included 
and item 4.3: whether all participants included are involved 
in the analysis). These items led to the risk of high deviation.

Therefore, in the future, we can consider introducing 
machine learning into prospective studies and bedside 
testing of ARDS. High-quality models should be 
selected to provide useful tools for clinical risk screening. 
Although a high ROB has been noted in some models, 
this does not negate their predictive value. Therefore, 
the medical staff should comprehensively consider the 
predictive performance of the model, availability of 
predictors, convenience of outcome measurement, and 
applicable object of the model to select an appropriate 
model. Additionally, we have some considerations: First, 
support for these ARDS subgroups or predictive models is 
currently limited to a few specific populations. Therefore, 
it would be useful to replicate and validate these findings 
in ARDS populations from other international RCTs or in 
prospective studies with other large samples. Whether these 

Table 4 The ROB and applicability of prediction model studies

Study
ROB Applicability Overall

Participants Predictors Outcomes Analysis Participants Predictors Outcome ROB Applicability

Ding et al. (21) + + + − + + + − +

Zeiberg et al. (22) + + + − + + + − +

Brown et al. (23) + + ? − + + + − +

Huang et al. (24) − + + − + + + − +

Zhang (25) + + + − + + + − +

+ indicates low ROB/low concern regarding applicability; − indicates high ROB/high concern regarding applicability; ? indicates unclear 
ROB/unclear concern regarding applicability. ROB, risk of bias.
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ARDS subgroups and predictive models can be identified 
in unselected observational cohorts should also be clarified. 
Second, determining whether the subgroup allocation and 
prediction model of ARDS changes over time is essential, as 
this may affect the timing of interventions. Finally, there is 
currently no consensus for clustering and prediction models 
in machine learning in the field of medicine. Thus, a unified 
reporting standard should be established to standardize 
research and writing.

Conclusions

In this review, we primarily focused on the research 
application of AI in ARDS, which mainly included two 
aspects: ARDS subgroup classification and ARDS diagnosis 
and survival prediction. Individualized treatment of ARDS 
has become possible due to the discovery of hyper- and 
hypoinflammatory subtypes in patients with ARDS, and 
diagnosis and survival prediction are essential in disease 
management. The emergence of AI and its medical 
applications may be useful in clinical decision-making, but 
their reliability and generalizability to populations should 
be clarified in prospective studies by introducing AI and 
machine learning and conducting bedside testing in larger 
populations to create a more stable and time-resilient model. 
A unified standard for conducting and reporting machine 
learning studies in medicine should be established.
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