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Background: Endocrine resistance remains a major challenge in breast cancer (BRCA). Increasing 
evidence has revealed that long non-coding RNA (lncRNA) are closely implicated in tumorigenesis, drug 
resistance, and the immune-related pathways of cancer. However, the immune-related lncRNA remains to be 
thoroughly investigated in predicting the endocrine therapeutic response and prognosis of BRCA.
Methods: Based on the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases, and calculating the correlation of lncRNAs with immune-related genes obtained from ImmPort 
and InnateDB databases, we finally obtained endocrine resistance-related and immune-related long non-
coding RNAs (ERIR-lncRNAs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) 
Cox regression were performed to screen prognosis-associated ERIR-lncRNAs and establish signatures, 
using 2 separate datasets from GEO for external validation. Principal component analysis (PCA), Kaplan-
Meier analysis, receiver operating characteristic (ROC) curves, and multivariate Cox regression were 
performed to demonstrate the robustness and predictability of the signature. We investigated tumor immune 
infiltration and tumor mutation burden (TMB) between high- and low-risk groups, and the role of key 
lncRNAs in endocrine resistant breast cancer was confirmed by quantitative real-time polymerase chain 
reaction (qRT-PCR), Cell Counting Kit 8 (CCK 8) and transwell assays.
Results: A total of 781 endocrine resistance related lncRNAs were identified, of which 12 lncRNAs 
were associated with immunity. Then, three ERIR-lncRNAs with prognostic relevance were screened to 
successfully construct the risk signature. Compared to sensitive patients, the endocrine resistant patients had 
higher risk scores in both the training and validation sets (P<0.05). The high-risk group had significantly 
shorter survival times (P<0.001) with area under the curve (AUC) values of 0.710, 0.649, and 0.672 at 1, 3, 
and 5 years. Univariate and multivariate Cox regression indicated that our signature was an independent 
prognostic factor (P<0.001). Through immune infiltration analysis, it was revealed that the high-risk scores 
were associated with T follicular helper (Tfh) differentiation and exhibited a pro-tumor phenomenon with 
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Introduction

Breast cancer (BRCA) is the most common malignancy 
in women, and approximately 70–80% of BRCA cases are 
pathologically estrogen receptor (ER)-positive (1,2). ER, 
as a transcription factor, is one of the most established 
therapeutic targets in breast cancer by binding to estrogen 
to form dimers and moving toward the nucleus, interacting 
with estrogen response elements (ERE) and activating 
target genes together with other coactivators. It also binds 
to growth factor receptor tyrosine kinase and cell survival 
signaling molecules to make ER more active. Although 
endocrine therapy has considerably reduced the recurrence 
and mortality of BRCA, primary and acquired resistance 

remain a major challenge (3,4). Several mechanisms of 
endocrine resistance have been reported, such as aberrant 
regulation of ERα-36 converts breast cancer cells to a 
growth factor-dependent state, resulting in resistance to 
tamoxifen (5,6), and activation of bypasses between ER 
and growth factor receptors such as PI3K/Akt/mTOR or 
Ras/Raf/MAPK, and some epigenetic modulations such as 
histone de acetylases (HDACs) have also been suggested 
as potential mechanisms of endocrine therapy resistance 
(7-9), In addition, there is an inextricable link between 
endocrine resistance and the tumor microenvironment 
(TME) in BRCA (10-12). Recent studies suggest a role 
for the tumor-infiltrating lymphocytes (TILs) in ER+ 
tumors associated with poor response to endocrine 
therapy (13). Endocrine therapy also significantly affects 
macrophage infiltration and differentiation which induces 
immunosuppression (14,15). Furthermore, despite the 
limited infiltration of natural killer (NK) cells in hormone 
receptor (HR)+ tumors, HR+ BRCA cell lines are more 
susceptible to interleukin 2 (IL-2)-stimulated NK cell lysis 
than triple negative breast cancer (TNBC) or HER2+ 
cell lines, indicating that immunotherapy targeting NK 
cells may be a potential strategy for the treatment of HR+ 
tumors (16,17). The tumor immune microenvironment 
(TIME) is widely involved in tumorigenesis and endocrine 
resistance of BRCA, the combination of endocrine therapy 
and immunotherapy may provide long-term survival 
benefits and promote the development of individualized 
clinical treatments. Therefore, the role of immune-related 
factors in endocrine resistance BRCA deserves to be studied 
for identifying potential targets of early diagnosis and 
treatment.

Long non-coding  RNAs ( lncRNA)  are  h ighly 
heterogeneous RNA characterized by their length of 
more than 200 nucleotides and lack of protein translation 

the Th1/Th2 balance shifting toward Th2. The key lncRNAs promote cell proliferation and migration as 
confirmed by qRT-PCR, CCK-8 and transwell assays. 
Conclusions: The ERIR-lncRNA signature is valuable in predicting endocrine therapeutic response and 
prognosis of BRCA, revealing a potential relationship between endocrine resistance and TME.
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Highlight box

Key findings 
• We thoroughly investigated immune-related lncRNAs affecting 

endocrine therapeutic response and prognosis in BRCA, 
constructed a stable prognostic signature and analyzed underlying 
mechanisms involving TME.  

What is known and what is new?  
• LncRNAs are intimately involved in tumorigenesis, drug 

resistance, and immune-related pathways of cancer. However, 
there has been less exploration of the roles played by lncRNAs and 
their effects on the TME in endocrine resistant BRCA. 

• In this study, our evaluation of ERIR-lncRNAs not only constructs 
a prognostic signature that predicts response to endocrine therapy, 
while the analysis of TME contributes to a better understanding 
of the underlying molecular mechanisms of endocrine resistant 
BRCA.

What is the implication, and what should change now? 
• The ERIR-lncRNA prognostic features may become a new target 

against endocrine resistance and provide new thoughts for clinical 
precision treatment.
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capabilities (18). The lncRNA recruits transcription factors 
and chromatin modification complexes to specific genomic 
loci and regulates chromatin structure through steps such 
as histone modifications and DNA methylation. With 
the development of gene sequencing and bioinformatics 
technology, numerous lncRNAs associated with endocrine 
therapy resistance and cancer progression in breast cancer 
have been explored (19,20), such as, in breast cancer, 
HOTAIR has been proven to enhance downstream genes 
of the ER pathway and promote EMT and metastasis; 
LncRNA-ROR binds to miR205-5p to induce the EMT 
process, and UCA1 mediates tamoxifen resistance via 
HIF-1α and Wnt/β-catenin (9,21). Aberrant expression 
of lncRNA plays a very critical role in the immune-
related biological pathways of tumors and contributes 
to mediating immune and cancer cell interactions; it has 
been widely recognized to predict the prognosis of several 
cancer types. including non-small cell lung cancer, renal 
clear cell carcinoma, and hepatocellular carcinoma (22-24). 
However, there has been less exploration of the roles played 
by lncRNAs and their effects on the TME in endocrine 
resistant BRCA. In this study, we assessed the ERIR-
lncRNAs by integrating the Gene Expression Omnibus 
(GEO) dataset, The Cancer Genome Atlas (TCGA) dataset, 
ImmPort databases, and InnateDB databases, construct a 
prognostic signature for predicting endocrine therapeutic 
response and prognosis of BRCA. The assessment of 
the TME contributes to a better understanding of the 
underlying molecular mechanisms of endocrine resistant 
BRCA. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-6158/rc).

Methods

Datasets collection

The dataset GSE144378 from the GEO database (www.
ncbi.nlm.nih.gov/geo) was used to screen for ER-lncRNAs. 
Transcriptome sequencing data (RNA-Seq), clinical 
information, and somatic mutation data of BRCA were 
downloaded from the TCGA database (https://portal.gdc.
cancer.gov/) for the construction of prognostic signatures. 
The TCGA-BRCA data were randomly and equally 
divided into a training set and internal testing set. To 
validate the signature, 2 independent datasets, GSE9195 
and GSE42568, which contain patients who have received 
endocrine therapy, were selected from the GEO database 

as external validation. The complete-case analysis approach 
was used to address the missing data. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of endocrine resistance and immune-related 
lncRNA 

The differentially expressed lncRNA (DElncRNA) between 
endocrine resistance and sensitive groups were identified 
by the “limma” package, with the screening criteria set as 
|log2[fold change (FC)]| >1 and false discovery rate (FDR) 
<0.05, and results were visualized with the “pheatmap” 
package and “ggplot2” package (25). We selected 2 classical 
immunology databases ImmPort (https://www.immport.
org/home) (26) and InnateDB (https://www.innatedbdb.
com) (27) to obtain all immune-related genes and obtained 
the intersection set. Spearman correlation algorithm (R 
“psych” package, screening condition correlation >0.4, 
P<0.001) were used to further analyze lncRNA that were 
significantly correlated with immune-related genes. Based 
on immune-related genes and ERIR-lncRNAs, a co-
expression network was constructed. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed using the 
“ConensusClusterPlus” R package to further investigate the 
biological pathways that may be involved (adjusted P value 
<0.05) (28).

Construction and validation of ERIR-lncRNA prognostic 
signature

ERIR-lncRNAs with significant prognostic predictive 
value were identified by univariate Cox analysis using the 
“survival” R package, and lncRNAs with a P value <0.05 
were eligible for further analysis. To avoid overfitting, we 
further performed the least absolute shrinkage and selection 
operator (LASSO) Cox regression (10,000 iterations) 
via the “glmnet” R package (29,30). The lncRNAs with 
independent prognostic predictive value were eventually 
included in the construction of the signature with the 
following formula (31): Risk score=∑(Exp(Xi)×Coef(Xi)). 
The expr (lncRNA) indicated the expression of lncRNA, 
Coef (lncRNA) was the regression coefficients of lncRNA. 
Patients were divided into a high-risk group and a low-
risk group based on the median risk score. Principal 
component analysis (PCA) was performed using the 
“prcomp“ function of the “STATS“ R package to examine 

https://atm.amegroups.com/article/view/10.21037/atm-22-6158/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6158/rc
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.immport.org/home
https://www.immport.org/home
https://www.innatedbdb.com
https://www.innatedbdb.com
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whether signatures could better distinguish risk status, 
the “Survminer” and “timeROC” R package were used to 
evaluate the predictive capability of the risk signatures (32). 
In addition, we performed univariate and multifactorial 
Cox regression to evaluate whether the ERIR-lncRNA 
signature could be an independent prognostic predictor for 
endocrine resistant BRCA. External validation of the ITIR-
lncRNA signature was performed in 2 independent datasets 
(GSE9195, GSE42568) from the GEO database, to assess 
the performance of the signature in determining clinical 
outcomes.

Nomogram construction and verification

We aimed to develop a quantitative approach to predict 
the individual probability of a clinical event in endocrine 
resistant BRCA patients. Based on the risk score signature, 
we established a nomogram containing other independent 
prognostic factors, to predict the 1-, 3-, and 5-year overall 
survival (OS). The calibration plot which was calculated by 
the “calibrate” function was used to verify the ability of the 
nomogram for predicting the prognoses (33).

Immune infiltration analysis

To reveal the relationship between risk signature and 
tumor-infiltrating immune cells, we executed 7 algorithms, 
including Tumor Immune Estimation Resource (TIMER), 
Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT), CIBERSORT-ABS, 
quanTIseq, Microenvironment Cell Populations (MCP)-
counter, XCELL, and Estimate the Proportion of Immune 
and Cancer cells (EPIC) (34), to calculate the immune 
infiltration values among the samples in the endocrine 
treated BRCA, using bubble plots to show the correlation 
coefficients between scores and immune cells. Subsequently, 
single sample gene set enrichment analysis (ssGSEA) from 
the “GSVA” R package was performed to quantitatively 
assess the infiltration abundance between the high-risk 
group and the low-risk group, comparing the relative 
proportions of tumor-infiltrating immune cells and the 
expression of immune checkpoint genes (ICG) between the 
two risk subgroups (35). The Estimation of Stromal and 
Immune cells in Malignant Tumor tissues (ESTIMATE) 
algorithm was used to calculate the immune score, stromal 
score, and estimate score according to the proportion of 
immune cells and stromal cells. Violin plots were plotted 
to demonstrate the differences in scores between the two 

groups (36). Enrichment analysis of the 3 ERIR-lncRNA 
that included in the signature were performed separately, to 
further analysis of possible regulatory mechanisms.

Correlation between tumor mutational burden and ERIR-
lncRNA signature

Based on the somatic mutation data and clinical information 
of post-endocrine treated BRCA, Wwe calculated the tumor 
mutational burden (TMB) for each patient and compared 
the TMB between the high-risk and low-risk groups. 
Somatic mutation data in the 2 subgroups were visualized 
using the R package “maftools”. In parallel, we explored the 
impact of ERIR-lncRNA signature combined with TMB 
scores on patient survival probability.

Cell culture and siRNA transfection

Human breast cancer cell line MCF7 were obtained 
from the American Type Culture Collection (ATCC, 
Manassas, VA, USA), and cultured in Dulbecco’s modified 
Eagle’s medium (DMEM, 4.5 g/L glucose) containing 5% 
fetal bovine serum (FBS), 10 μg/mL insulin, 100 U/mL 
penicillin, and 100 μg/mL streptomycin. Stable tamoxifen-
resistant breast cancer cell line MCF7-TAMR1 were 
purchased from EMD Millipore (Millipore, Burlington, 
MA, USA), and were maintained in phenol red-free 
DMEM/F12 supplemented with 1% fetal bovine serum, 
6 ng/mL insulin, and 1 μM-4 hydroxytamoxifen (MCE, 
Monmouth Junction, NJ, USA). All cells were stored at  
37 ℃ in 95% humid air and 5% CO2.

SChLPA1 siRNA and negative control siRNA were 
purchased from Sigma-Aldrich. The sequence was 
5'-CCAAUGAUGAGGAGCGGGA-3'. The cells were 
incubated with either SChLPA1 siRNA or negative control 
siRNA using Lipofectamine 2000 Transfection Reagent 
(Invitrogen, Carlsbad, CA, USA). Cells were incubated 
at room temperature for 15 min and further analysis was 
performed after 48 h of cell culture.

Real- time quantitative PCR

Total RNA was extracted with TRIzol (Invitrogen, 
Carlsbad, CA, USA), Equal amounts of RNA were reversely 
transcribed to cDNA with the SuperScript Reverse 
Transcriptase Kit (Thermo Fisher Scientific, Waltham, MA, 
USA). Total cDNA was then amplified and analyzed by 
SYBR Green PCR Master Mix (Thermo Fisher Scientific) 
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in a Fast Real-time PCR 7500 System (Applied Biosystems, 
Foster City, CA, USA). The standard 2−ΔΔCT method was 
applied in this study for calculation of relative expression 
difference in each group sample. The primer sequences 
were: 

SChLPA1-F: 5'-GAATGGAATGACTGGGGAAGAA
GTGC-3' and SChLPA1-R: 5'-TTCTTCAGGGAGGTG
GTATCTGCATC-3'.

Cell Counting Kit‑8 (CCK‑8) assay

For CCK-8 assay, cells were transfected with SChLPA1 
siRNA or negative control siRNA were seeded in 96 well 
plates at a density of 1×104 cells/well and incubated with 
5 μmol/L tamoxifen for 0, 24, 48, and 72 h, cells were 
incubated in medium with 10% CCK-8 reagent for 2 h. 
Then the absorbance of each well was measured at the 
wavelength of 450 nm with a microplate reader (EnSpire 
2300; PerkinElmer, Inc., USA).

Transwell assay

Transwell chamber was used to assess cell migration. A 
total of 1.5×105 cells were seeded onto the upper chamber, 
while 600 μL DMEM medium containing 15% fetal bovine 
serum were added into the lower chambers. After 18 h of 
incubation, the migratory cells on the lower surface were 
washed and stained by 0.1% crystal violet.

Statistical analyses

All statistical analyses were performed on R 4.2.0 (R 
Foundation for Statistical Computing, Vienna, Austria). For 
quantitative data, the Students t-test was used to estimate 
the statistical significance of normally distributed variables, 
and non-normally distributed variables were analyzed by 
Wilcoxon rank-sum test. When more than two groups 
were compared, Kruskal-Wallis test and one-way analysis 
of variance (ANOVA) were used as non-parametric and 
parametric analysis methods. Two-sided Fisher exact tests 
were used to analyze contingency tables; Spearman method 
was applied for correlation analysis between two continuous 
variables. A P value <0.05 was considered statistically 
significant in this study. 

Results

Identification of ERIR- lncRNA

The flowchart of the study is shown in Figure 1. We 
identified 781 DElncRNA between the endocrine 
resistance and sensitivity groups from the GSE114378 
dataset, including 403 up-regulated and 378 down-
regulated lncRNA. The expression profiles of DElncRNA 
were visualized in the form of volcano map and heatmap  
(Figure 2A,2B). We obtained 1,793 and 2,188 immune-
related genes from 2 classical immunology databases, 
ImmPort and InnateDB, respectively, and took the 
intersecting genes to finally obtain 449 genes (Figure 2C).  
Spearman correlation analysis was used to further 
identify 12 lncRNA significantly associated with immune 
genes among ER-lncRNAs, including WNT5A-AS1, 
MIR205HG, LINC00871, GATA2-AS1, ZNF436-
AS1, SChLPA1, LINC01341, DNAJC9-AS1, VIPR1-
AS1, AC108676.1, LINC01579, and RBM26-AS1. We 
constructed a Sankey plot and co-expression networks 
to demonstrate the correlation of ERIR-lncRNA with 
immune-related genes (Figure 2D,2E).

Construction of ERIR-lncRNA prognostic signature

Based on 12 ERIR-lncRNA, we constructed a prognostic 
signature to predict the prognosis and endocrine therapeutic 
response of ER+ BRCA. Univariate Cox regression and 
Lasso regression analysis were used to screen the ERIR-
lncRNA that were associated with prognosis, finally 3 
ERIR-lncRNA including LINC00871, WNT5A-AS1, and 
SChLPA1 were retained according to the optimum λ value 
(Figure 3A-3D). Figure 3E demonstrates the correlation 
between 3 hub lncRNAs and immune genes. Based on the 
coefficients of each lncRNA, the formula was calculated as 
follows: RiskScore = SChLPA1(exp) × 0.303337969303109 
+  W N T 5 A - A S 1 ( e x p )  ×  − 0 . 3 9 3 8 6 5 5 8 1 3 0 4 7 2 3  + 
LINC00871(exp) × 0.2595503464363. The median risk score 
was calculated to divide the entire cohort into low- and 
high-risk groups. To test whether ERIR-lncRNA signature 
could better distinguish risk status, PCA was performed and 
revealed that patients could be well separated (Figure 3F).  
The 3 lncRNAs enrolled in the signature predicted poor 
prognosis of breast cancer respectively (Figure 3G). The 
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Figure 1 The study design and overall workflow. GEO, Gene Expression Omnibus; lncRNA, long non-coding RNA; TCGA, The Cancer 
Genome Atlas; GO, Gene Ontology; TMB, tumor mutational burden; ROC, receiver operating characteristic; PCA, principal component 
analysis; TME, tumor microenvironment.
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Kaplan-Meier curve demonstrated a notable shorter 
OS time and lower survival probability in the high-risk 
population (P<0.001, Figure 4A), predictive accuracy of 
the ERIR-lncRNA signature was assessed by the time-
dependent receiver operating characteristic (ROC) curve, 
and showed that the area under the curve (AUC) values at 
1, 3, and 5 years were 0.710, 0.649, and 0.672, respectively 
(Figure 4B). Compared with other clinical characteristics, 
the risk models also showed better predictive capability 
(Figure 4C). The risk score and survival status revealed 
that mortality was significantly associated with risk score 
(P<0.001, Figure 4D,4E). In endocrine resistant patients, 
risk scores were significantly higher than in non-resistant 
patients (P=0.01, Figure 4F). We performed univariate and 
multivariate Cox regression and the results showed that risk 
signature was an independent predictor of prognosis [hazard 

ratio (HR): 1.597, 95% confidence interval (CI): 1.185–
2.154, P=0.002, Figure 4G,4H]. Validation was performed 
in the TCGA internal testing set, all results were highly 
consistent with the training cohort (Figure 5).

External validation of ERIR-lncRNA prognosis signature

We used 2 independent datasets, GSE9195 and GSE42568, 
from the GEO database to validate the reliability of the 
ERIR-lncRNA prognostic signature and classify patients 
into high-risk and low-risk groups based on the same score 
cutoff criteria as the training set. In GSE9195, patients with 
high-risk score had a significantly lower survival probability 
(P=0.009, Figure 6A), and the timeROC curve presented 
with the AUC values of the 1-, 3-, and 5-year ROC curve 
were 0.737, 0.594, and 0.514 (Figure 6B). The correlation 
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Figure 2 Identification of endocrine resistance-related and immune-related lncRNA. (A,B) Heatmap and volcano plot of all the DElncRNA 
between endocrine resistant and sensitive BRCA in the GSE114378 dataset, FDR <0.05 and |logFC| >1. (C) The Intersection of immune-
related genes from ImmPort and InnateDB. (D) The co-expression network showed the relationship between ERIR-lncRNA and their co-
expressed immune-related mRNAs. (E) Sankey diagram displayed the relationship between the 12 ERIR-lncRNA and the top100 highly co-
expressed immune-related mRNAs. lncRNA, long non-coding RNA; DElncRNA, differentially expressed long non-coding RNA; BRCA, 
breast cancer; FDR, false discovery rate; FC, fold change; mRNA, messenger RNA.
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Figure 3 Construction of the ERIR-lncRNA signature. (A) Univariate cox regression analysis of OS for each ERIR-lncRNA were identified 
with P<0.05. (B) LASSO regression and the coefficients of the OS-related ERIR-lncRNA. (C) Cross-validation for tuning the parameter 
selection in the LASSO regression. (D) Heatmap of 3 OS-associated ERIR-lncRNA in endocrine resistant and sensitive BRCA. (E) 
Correlation analysis of 3 ERIR-lncRNA with top10 immune genes, correlation coefficient >0.4, P<0.001. (F) PCA analysis of ERIR-lncRNA 
showed that patients were classified into two significantly high or low-risk distribution patterns. (G) K-M survival analysis of the 3 lncRNAs 
included in the signature. ERIR-lncRNA, endocrine resistance-related and immune-related lncRNA; lncRNA, long non-coding RNA; OS, 
overall survival; LASSO, least absolute shrinkage and selection operator; BRCA, breast cancer; PCA, principal component analysis; K-M, 
Kaplan-Meier.
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Figure 4 Evaluation and validation of the ERIR-lncRNA signature in the TCGA training set. (A) Kaplan-Meier curves of patients between 
the high- and low-risk  groups. (B) Time-dependent ROC curves demonstrated the predictive efficiency. (C) ROC curves comparing the 
accuracy of survival prediction by risk score and clinical characteristics. (D) The distribution of patients based on the median risk score. 
(E) The survival status for each individual. (F) The difference of risk scores between endocrine resistant and non-resistant patients. (G,H) 
Univariate and multivariate Cox regression analyses for the risk score. AUC, area under the curve; T, tumor; N, node; M, metastasis; ERIR-
lncRNA, endocrine resistance-related and immune-related lncRNA; lncRNA, long non-coding RNA; TCGA, The Cancer Genome Atlas; 
ROC, receiver operating characteristic.

between mortality and risk score was also revealed by 
risk score distribution and survival status (P<0.001,  
Figure 6C,6D). Endocrine resistant patients had higher 
risk scores than non-resistant patients (P=0.02, Figure 6E). 
Consistent results were also obtained in GSE42568, the 
low-risk group presented with longer OS time than the 
high-risk group (P=0.014, Figure 6F), the AUC values of the 

1-, 2-, and 3-year timeROC curve were 0.777, 0.691, and 
0.602, respectively (Figure 6G). The risk score distribution 
and survival status also showed that the high-risk group 
was associated with higher mortality (Figure 6H,6I) and was 
highly prevalent in endocrine resistant patients (Figure 6J).  
All of these findings indicated the accuracy of ERIR-
lncRNA signature for prognostic prediction.
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Figure 5 Evaluation and validation of the ERIR-lncRNA signature in the TCGA testing set. AUC, area under the curve; T, tumor; N, node; 
M, metastasis; ERIR-lncRNA, endocrine resistance-related and immune-related lncRNA; lncRNA, long non-coding RNA; TCGA, The 
Cancer Genome Atlas.

Construction and verification of nomogram 

As shown in Figure 7, we adopted 7 independent OS 
prognostic features, including ERIR-lncRNA prognostic 
signature, T-stage, N-stage, M-stage, gender, age, and 
American Joint Committee on Cancer (AJCC) stage, 
to quantitatively estimate 1-, 3-, and 5-year survival 
probabilities for endocrine-treated BRCA (Figure 7A,7C). 
In the nomogram scoring system, each variable was assigned 
a point and the sum of the points is calculated as the total 
score, with the total score corresponding to the 1-, 3-, 
and 5-year predicted probability of survival. The accuracy 

and sensitivity of the nomogram was confirmed by the 
calibration plot, which showed that the prediction results 
were generally consistent with reality (Figure 7B,7D). 

Analysis of immunogenomic landscape and potential 
biological processes

To further investigate the biological behavior of ERIR-
lncRNA in endocrine resistant BRCA, we performed GO 
enrichment analysis and found that the cellular molecular 
composition and biological functions were mainly 
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Figure 6 External validation of ERIR-lncRNA signatures in the GEO database. (A) Kaplan-Meier curves of patients between the high- 
and low-risk groups in GSE9195. (B) Time-dependent ROC curves assess the prognostic performance of the risk score in in GSE9195. 
(C) The distribution of patients based on the median risk score in GSE9195. (D) The survival status for each individual in GSE9195. (E) 
The difference of risk scores between endocrine resistant and non-resistant patients in GSE9195. (F-J) Kaplan-Meier curves, timeROC, 
and survival status performed in GSE42568. AUC, area under the curve; ERIR-lncRNA, endocrine resistance-related and immune-related 
lncRNA; lncRNA, long non-coding RNA; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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Figure 7 The nomograms including ERIR-lncRNA prognostic features, T-stage, N-stage, M-stage, gender, age, and AJCC staging were 
constructed in the training and testing set. *, P<0.05; **, P<0.01; ***, P<0.001. M, metastasis; T, tumor; N, node; OS, overall survival; ERIR-
lncRNA, endocrine resistance-related and immune-related lncRNA; lncRNA, long non-coding RNA; AJCC, American Joint Committee on 
Cancer.
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involved in T cell signaling and T follicular helper (Tfh) 
cell differentiation, such as “alpha-beta T cell receptor 
complex”, “negative regulation of T-helper 1 type immune 
response”, “positive regulation of T-helper 2 cell cytokine 
production”, and “MHC class II protein complex”, 
which also coincided with the results of KEGG signaling 
pathway enrichment (Figure 8A,8B). We next investigated 
the immune microenvironmental characteristics that may 
regulate tumorigenesis in the high-risk group; the 22 

immune cell-related infiltrating score were calculated by 7 
algorithms, including XCELL, TIMER, and quanTIseq, 
etc., and the correlation between risk scores and immune 
cell is shown in Figure 8C. With the increase of risk 
score, immune cells like CD8+ T cells, dendritic cells, 
macrophages, and neutrophils were decreased in endocrine-
treated BRCA patients, whereas the risk score demonstrated 
a significantly positive correlation with Th1, Th2, and 
B cells. The ESTIMATE algorithm based on ssGSEA 
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Figure 8 Analysis of immunogenomic landscape and potential biological processes. (A,B) KEGG and GO functional enrichment analysis 
with ERIR-lncRNA co-expression immune genes. (C) Correlation between risk score and immune infiltrating cells. (D) The box-plot 
showed that there was a statistical difference in ESTIMATE Score, Immune Score, and Stromal Score between the 2 groups (P<0.01). (E) 
Comparisons of immune cell infiltration between two subtypes. (F) Comparison of immune checkpoints expression between two subtypes. (G) 
A shift of Th1/Th2 balance toward Th2 in the high-risk group. (H) GO enrichment analysis of SChLPA1. (I) The scatter plot showed the 
correlation between LINC00871, WNT5A-AS1, and SChLAP1 and T helper cells in endocrine-treated BRCA from the TCGA database. 
*, P<0.05; **, P<0.01. FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular 
components; MF, molecular functions; GO, Gene Ontology; ERIR-lncRNA, endocrine resistance-related and immune-related lncRNA; 
ESTIMATE, Estimation of Stromal and Immune cells in Malignant Tumor tissues; BRCA, breast cancer; TCGA, The Cancer Genome 
Atlas.
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estimated the TME components of each sample and found 
that the stromal and ESTIMATE scores were higher in the 
high-risk group (P<0.001), with no significant differences 
in immune scores (Figure 8D). Analysis of immune cell 
subpopulations between the low and high-risk groups 
showed statistically differences in Tfh, neutrophils, and 
mast cells (Figure 8E), and the immune checkpoints with 

significant differences included NRP1, CD276, CD86, 
TNFSF4, CD80, VTCN1, HAVCR2, LAIR1, TNFSF15, 
and PDCD1LG2 (P<0.05, Figure 8F).

Moreover, in the high-risk group, a shift in the Th1/
Th2 balance toward Th2 was found (Figure 8G), which 
was in accordance with the results annotated in Figure 8B  
for “negative regulation of T-helper 1 type immune 
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response” and “positive regulation of T-helper 2 cell 
cytokine production”, that is well-known as a tumor-
promoting phenomenon (37). Subsequently, the ERIR-
lncRNA included in the prognostic signature were 
functionally annotated separately, and notably, a lncRNA 
named SChLPA1 was mainly involved in “Th1 and Th2 
cell differentiation”, “T cell receptor signaling pathway”, 
and “T-helper 1 cell differentiation” (Figure 8H), and was 
positively associated with the Th1-specific markers of 
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) 
and the Th2-specific markers of CCR3 and IL-10. The 
other 2 lncRNA correlations were also found with CCR3, 
CCR4, interleukin 4 (IL-4), and IL-10 (Figure 8I). 

Correlation between TMB and ERIR-lncRNA signature

Theoretically, the higher accumulation of somatic 
mutations, the more neoantigens that can be recognized 
by T cells, in turn, patients get more benefit from 
immunotherapy. Considering that ERIR-lncRNA is 
highly enriched in chromatin remodeling and DNA 
repair, we investigated the TMB between the high- and 
low-risk groups to analyze the correlation between TMB 
and the ETIR-lncRNA signature. Based on the single 
nucleotide variant (SNV) data obtained from TCGA-
BRCA, TMB values were calculated for each sample. In 
terms of somatic mutation, the high-risk group presented 
a higher mutational rate (52.6%) than the low-risk group 
(37.28%) (Figure 9A,9B), patients in the high-risk group 
showed a significantly higher TMB (Figure 9C). According 
to the Kaplan-Meier curve, combination of TMB and the 
ETIR-lncRNA signature helped to predict OS (Figure 9D); 
the signature might be an important predictive factor to 
indicate the immunotherapy response.
SChLPA1 is highly expressed in endocrine resistant BRCA 
cells and promotes cell growth and migration

Since the biological properties and functions of LINC0087 
and WNT5A-AS1 have not been explored, there is a 
lack of relevant literature and research base in tumors. In 
contrast, SChLAP1 has been shown to be associated with 
poor prognosis in certain cancers.We first examined the 
expression levels of SChLPA1 in MCF-7 and MCF-7/R cell 
lines and found that SChLPA1 was significantly elevated 
in endocrine resistant breast cancer cells when compared 
to sensitive cells (Figure 10A).We then constructed a stable 
SChLPA1 knockdown MCF-7/R cell line (Figure 10B) and 
performed CCK8 assays, which showed that the silencing of 

SChLPA1 significantly inhibited cell growth (Figure 10C), 
and the transwell assay showed that migration of SChLPA1-
silenced endocrine resistant cells was significantly reduced 
in comparison to control cells (Figure 10D).

Discussion

Owing to the strong dependency of breast tumorigenesis 
on the estrogen-ER axis, estrogen suppression and ER 
antagonists have remained the mainstay of ER+ BRCA 
treatment for several decades, the high heterogeneity of 
BRCA makes endocrine therapy ineffective. Although 
a complex TME may support malignancy development 
and immune escape, at the same time, the interaction 
between tumors and infiltrating immune cells has important 
implications for the development of new therapeutic 
approaches. To date, the immune microenvironmental 
features of ER+ tumors have not been well investigated 
(12,38-40), but recent studies have suggested a non-
negligible role of TME in endocrine resistant BRCA. 
Several components of TME, including hypoxia (41), 
cancer-associated fibroblasts (42), ECM (11), immune cells, 
and inflammatory cytokines such as IL-1β, transforming 
growth factor-β (TGF-β), and TNF-α (10,43) have been 
shown to be associated with endocrine resistance. Our 
team has also revealed some of the endocrine resistance 
mechanisms involving the immune microenvironment 
in previous studies such as that high SGLT1 expression 
mediates enhanced glucose uptake and lactic acid secretion, 
promoting M2-like tumor-associated macrophage (TAM) 
polarization and feedback activation of EGFR/PI3K/Akt/
SGLT1 signaling in tumor cells to enhance tamoxifen 
resistance (44). Another article also proposed that TAMs 
increased the expression of cyclooxygenase-2 (COX-2)/
prostaglandin E2 (PGE2), which promoted tamoxifen 
resistance (45). However, there is no definitive clinical 
evidence to confirm the predictive value of immune features 
for endocrine resistant BRCA; looking for biomarkers with 
long-term benefits to guide treatment is necessary. The 
lncRNA are widely expressed in human cells and closely 
related to immune-related pathways of tumor progression 
(46-48), have the possibility to be potential prognostic 
markers and therapeutic targets. Combined with the 
advancement of sequencing technology, it provides an 
excellent platform to explore the key molecules of endocrine 
resistance. Our team previously found that FOXO3A-
induced LINC00926 suppressed breast tumor growth and 
metastasis through inhibition of PGK1-mediated Warburg 
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Figure 9 Correlation Between TMB and ETIR-lncRNA Signature. (A,B) Waterfall maps of the somatic mutations in the high-risk group 
and the low-risk group. (C) Comparison of TMB between the high- and low-risk groups. (D) Difference in OS based on TMB and risk 
score. *, P<0.05. TMB, tumor mutation burden; ERIR-lncRNA, endocrine resistance-related and immune-related lncRNA; OS, overall 
survival.
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effect (49). Another study identified lncRNA ST7-AS1 as 
a potential new biomarker and associated with immune 
infiltration in BRCA (50).

In this study, we screened ERIR-lncRNA based on 
transcript data, clinical information, and immune-related 
genes obtained from public databases, and functional 
annotation was performed by co-expression network 
and enrichment analysis. An ERIR-lncRNA prognostic 
signature including LINC00871, WNT5A-AS1, and 
SChLPA1 was constructed by univariate Cox regression 
and Lasso-Cox regression. Based on the median risk score, 

patients were divided into high- and low-risk groups. 
According to PCA, survival curves, ROC curves, univariate 
and multivariate Cox regression, it was concluded that the 
risk signature was an accurate and independent predictor. 
Subsequently, we constructed a nomogram which combined 
with clinical elements to predict survival more intuitively. 
To further explore the biological function of ERIR-
lncRNA and seek potential mechanisms, we performed 
functional annotation and found that it is mainly enriched 
in T cell receptor signaling pathway and Th1 and Th2 
cell differentiation. Th1 and Th2 not only showed a 
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Figure 10 SChLAP1 is highly expressed in endocrine resistant breast cancer and promotes cell growth and migration. (A) SChLAP1 
is highly expressed in endocrine resistant breast cancer. (B) Control-siRNA or SChLAP1-siRNA was constructed and transfected into 
endocrine resistant breast cancer cells, qRT-PCR confirmed that SChLAP1 was knocked down. (C) CCK-8 assay to determine cell viability 
after transfection with siRNA-SChLAP1. (D) Transwell assay detects cell migration after SChLAP1 knockdown and dyed with crystal violet 
staining (magnification, ×20). **, P<0.01; ***, P<0.001; ****, P<0.0001. OD, optical density; qRT-PCR quantitative real-time polymerase 
chain reaction; CCK-8, Cell Counting Kit 8. 
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positive correlation with the risk score, but there was also a 
significant difference in Tfh infiltration between the high- 
and low-risk groups. Among them, SChLPA1 is involved in 
the Th1 and Th2 cell differentiation, negative regulation 
of IFN-γ production, and positive regulation of IL-10 
production. In endocrine-treated BRCA patients, SChLPA1 
was positively associated with the markers and secreted 
cytokines of T helper cells, such as IFN-γ and TNF-α of 
Th1, and CCR3 and IL-10 of Th2. The other lncRNA 
were also found to be differentially linked with Tfh, such as 
LINC00871 with CCR3, and WNT5A-AS1 with CCR5, 
CCR4, IL-4, and IL-10. Notably, the expression of Th2 
was higher than Th1 in the high-risk group, this shift of 

Th1/Th2 balance toward th2 is known as a pro-tumor 
immune phenomenon (37) and corresponds to the results of 
the enrichment analysis described above.

The research progress of three lncRNAs in oncology 
is discussed separately. Among them, LINC0087 and 
WNT5A-AS1 are still functionally unknown and no tumor-
related research has been reported. As for SChLPA1, which 
was initially found to be highly expressed in prostate cancer 
and could promote cancer progression by antagonizing 
the oncogenic function of the SWI/SNF complex, the 
SChLPA1 expression levels could independently predict 
poor patient outcomes (51). Subsequently, SChLPA1 
induced poor prognostic in breast cancer, lung cancer and 
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human glioblastoma were revealed individually. The active 
mechanism include, SChLPA1 promotes immune evasion 
of CD8+ T cells by NSCLC cells through regulation of 
PD-1/PD-L1; regulating malignant tumor behavior of 
breast cancer cells via miR-524-5p/HMGA2 axis; and 
activating NF-κB signaling pathway by forming a complex 
with HNRNPL to regulate the stability of ACTN4 in 
human glioblastoma (52-54). In this study, we confirmed 
that SChLPA1 was highly expressed in endocrine resistant 
breast cancer cells and promoted the growth and migration 
of tumor cells, combined with the enrichment analysis 
of SChLPA1, which was mainly involved in “Endocrine 
resistance”, “Breast cancer”, “cellular response to drug”, 
“PD-L1 expression and PD-1 checkpoint pathway in 
cancer”, etc. It is suggested that SChLPA1 induces poor 
prognosis in endocrine resistant breast cancer, but the 
exact mechanism still needs to be explored in subsequent 
experiments.

BRCA is considered to be an immunologically quiescent 
tumor, which greatly inhibits the efficacy of immunotherapy. 
However a growing body of evidence supports the immune 
infiltration of the TME as a determinant in predicting the 
prognosis of BRCA (55). Tumor growth and progression 
are associated with structural changes of immune cells 
in the TME, which support tumor development while 
modulating the function of neighboring immune effector 
cells, thereby impairing endogenous immune surveillance. 
Interaction of tumor cells with a large number of 
mesenchymal and intratumoral immune infiltrating cells 
may enhance or diminish immunotherapeutic or targeted 
treatment responses (56). As mentioned, the hub lncRNA 
incorporated into the risk signature is closely related to T 
helper cells and appears to induce an immunosuppressive, 
tumor-promoting microenvironmental phenotype (37,57). 
It is well-known that Thf are essential regulators in tumor 
immunity, Th1 cells have strong anti-tumor properties 
by increasing the activities of NK cells and CD8+ cells, 
inducing STAT1 and STAT4 activation by secreted IFN-γ, 
which positively feeds back to promote Th1 differentiation 
and inhibit Th2 (58,59). In contrast, Th2 promotes 
tumor progression over time, and secreted IL-4 positively 
regulates Th2 differentiation while suppressing Th1 (60,61). 
Considering the special significance of Tfh differentiation 
and Th1/Th2 balance, it is commonly considered as an 
indicator of the BRCA patient's immune status. Functional 
analysis of ERIR-lncRNA showed that the nuances of 
CD4+ Th cell regulation and the balance between anti-
tumor and pro-tumor subtypes may be critical in exploring 

the relationship between endocrine resistant BRCA and 
TME. It has been proposed that the interaction between 
ECM and Thf subtypes creates a balanced TME that can 
affect the prognosis and therapeutic response of BRCA, the 
IFN-γ secreted by Th1 cells may be responsible for ECM 
remodeling and regulated by Th2 (11,62). The expression 
levels of type I IFNs correlate negatively with clinical 
outcome but positively with tumor grade in patients with 
ER-positive BRCA (63). Emerging evidence points to a 
critical role of IFN signaling, IFNs upregulate survival 
factors such as G1P3, which promote tumor cell survival 
and lead to poor prognosis in ER+ BRCA (64), which also 
induces an IFN-related DNA damage-resistant signature 
to generate treatment tolerance (65). In our risk signature, 
SChLPA1 is enriched in the type I IFN signaling pathway 
and can positively regulate IFN-β and IFN-α production. 
SChLPA1 was first identified as an independent predictor 
of metastasis and specific death in prostate cancer, and 
recently it has been reported that SChLPA1 is also found 
to be highly expressed in BRCA, which can be used as a 
potential biomarker for diagnosis, SChLPA1 regulates 
the poor prognosis of ER+ BRCA and may be associated 
with Thf balance based on IFN-related pathways. In 
addition, Thf regulate cancer-associated fibroblast (CAF)-
induced collagen synthesis through inflammatory factors, 
and in turn, CAF secrete cytokines and chemokines to 
regulate Thf’s activation, this process not only affects T cell 
differentiation, but also influences the spatial distribution 
of T cells to regulate antitumor immunity (42,66,67). 
Other researchers have also found that the serum sST2 is 
significantly associated with poor prognosis in ER+ BRCA, 
whereas ST2 is widely expressed in Th2 cells and binding 
to the ligand expressed by CD4+ T cells to trigger their 
differentiation to the Th2 phenotype (68,69). A study 
further proposed that in BRCA, saikosaponin A (SSa) and 
its derivatives increase the T cell penetration of the TME 
and promote the Th1/Th2 balance towards Th1 through 
the activation of the IL-12/STAT4 pathway (70). There 
may be benefit from combining endocrine therapy with 
SSa. From the foregoing we can see that Thf has important 
implications in BRCA recurrence and drug resistance, 
the underlying mechanism of ERIR-lncRNA prognosis 
signature remains to be further investigated.

In addition, we further explored the correlation between 
ERIR-lncRNA risk score and TMB. It is currently 
believed that TMB can predict tumor immunotherapy 
efficacy, and the tumor-specific neoantigens generated 
by somatic mutations are presented to T cells by major 

https://cn.bing.com/dict/search?q=mechanism&FORM=BDVSP6&cc=cn
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histocompatibility complex (MHC), which stimulate 
the immune system to recognize and attack cancer 
cells. Theoretically, the higher the accumulated somatic 
mutations, the more neoantigens that can be recognized 
by T cells, and patients can gain more benefit from 
immunotherapy (71,72). Compared to immunogenic 
tumors, breast cancer had intermediate TMB values, 
and triple-negative breast cancer (TNBC) had a higher 
TMB than ER(+) or HER2(+) cancer (73). High TMB 
is associated with prolonged survival in the treatment 
of ICIs and also has good predictive power for clinical 
outcomes in breast cancer patients treated with neoadjuvant 
chemotherapy, targeted therapy, or standard chemotherapy. 
The use of TMB as a prognostic biomarker helps to evaluate 
a greater number of breast cancer patients who may benefit 
from ICIs, ICIs combined with chemotherapy or targeted 
therapy (74). We found that the ERIR-lncRNA signature 
was significantly associated with TMB, with patients 
in high-risk group having higher TMB than the low-
risk group, revealing a potential link between endocrine-
resistant BRCA and immunotherapy. Combination therapy 
may be beneficial in improving patient survival, reiterating 
the importance of the immune microenvironment in 
endocrine resistant patients. Our study still needs to be 
further validated in prospective studies, complementing 
the basic experiments to further reveal the potential 
mechanisms by which ERIR-lncRNA affects the prognosis 
of BRCA.

At the current stage, the clinical translation of lncRNA-
based therapies has been hampered. The main issues are 
related to specificity, deliverability and tolerability (75). The 
reasons for poor specificity include off-target effects due to 
excessive similar sequences or uptake by non-target cells, in 
addition some lncRNAs are degraded once they enter the 
circulation, which is usually associated with higher RNAse 
activity in the blood of cancer patients. Delivery difficulties 
are mainly due to the instability of lncRNA structure and 
the lack of suitable delivery vectors. The tolerance problem 
is the recognition of the RNA structure by natural immune 
cells resulting in adverse immune effects. Taken together, 
lncRNA therapy is still facing many challenges and requires 
multidisciplinary cooperation.

Conclusions

In summary, we identified an effective and stable prognostic 
signature based on ERIR-lncRNA in BRCA, and analyzed 

the potential functional mechanisms that may be associated 
with tumor immune infiltration. As an independent 
biomarker and predictor of therapeutic response, the ERIR-
lncRNA prognostic signature may become a new target 
against endocrine resistance and provide fresh thoughts for 
clinical treatment.
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