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Background: The optimal management of patients with subsolid pulmonary nodules is of growing 
clinical concern. This study sought to develop and validate a more precise predictive model to evaluate the 
pathological invasiveness of patients with lung peripheral subsolid nodules (SSNs).
Methods: The data of 1,140 patients with peripheral SSNs who underwent surgical resection at Shanghai 
Renji Hospital from January 2014 to December 2018 were retrospectively analyzed. The patients were 
randomly assigned to a training and validation cohort (at a ratio of 2 to 1). Clinical parameters and imaging 
features were collected to estimate the independent predictors of pathological invasiveness of SSNs. A 
nomogram model was developed and applied to the validation cohort. The predictive performance of 
the nomogram model was evaluated by a calibration curve analysis, an area under the receiver operating 
characteristic curve (AUC) analysis, and a decision curve analysis (DCA), which was also compared with 
other diagnostic models.
Results: In the multivariate analysis, the nodule diameter (P<0.001), solid component size (P<0.001), 
mean CT attenuation (P=0.001), spiculation (P<0.001), and pleura indentation (P=0.011) were identified as 
independent predictors of the pathological invasiveness of SSNs. A nomogram model based on the results 
of the multivariate analysis was developed and showed a robust discrimination in the validation cohort, with 
an AUC of [0.890; 95% confidence interval (CI), 0873–0.907], which was higher than another two reported 
models. The calibration curve showed optimal agreement between the pathological invasive probability as 
predicted by the nomogram and the actual probability.
Conclusions: We developed and validated a nomogram model to evaluate the risk of the pathological 
invasiveness for patients with lung SSNs. The AUC of this nomogram model was higher than another two 
reported models. Our nomogram model may help clinicians to make individualized treatment more precisely.
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Introduction

Adenocarcinoma is the most common histologic subtype 
of lung cancer with high heterogeneity (1). Since the 
International Association for the Study of Lung Cancer/
American Thoracic Society/European Respiratory Society 
(IASLC/ATS/ERS) (1) introduced its multidisciplinary 
classification system, lung adenocarcinoma has been 
classified as atypical adenomatous hyperplasia (AAH), 
adenocarcinoma in situ (AIS),  minimally invasive 
adenocarcinoma (MIA), and invasive adenocarcinoma (IA). 
At present, sublobar resection is favored for AIS/MIA, while 
lobectomy and lymph node dissection remain the standard 
treatment for IA (2,3). However, currently, it is still difficult 
to make a diagnosis of AIS and MIA with a frozen biopsy 
section, as the invasive component needs to be precisely 
evaluated by the entire pathologic specimen (1). In addition, 
immediate surgical resection could be obviated in cases of 
preinvasive lesions and MIAs, which may remain stable 
over several years (4). Subsolid nodules (SSNs), which 
consist of pure ground glass nodules and part solid nodules, 
are of growing clinical concern as they are frequently 
detected by computed tomography (CT) screening. Most 
common diagnosis for surgical resected SSNs is lung 
adenocarcinoma. Thus, it is necessary to construct an 
effective predictive model to evaluate the pathological 
invasiveness of SSNs.

At present, no definitive strategy has been proposed to 
determine the risk of pathological invasiveness of SSNs 
in medical settings. It has been reported that the overall 
size of the nodule and the solid component size are the 2 

most important parameters in evaluating the pathological 
invasiveness of SSNs (5,6). The Fleischner Society (7) 
suggests that a 0.5-cm solid component threshold should 
be used to decide whether to adopt a follow-up strategy 
or evaluate the need for surgical resection. CT findings of 
ground glass versus solid opacities tend to correspond to 
the lepidic and invasive patterns, respectively, which can 
be observed pathologically. However, this correlation is 
not absolute. A benign scar or pulmonary vessels can also 
present as a solid area (8). Yanagawa et al. also claimed that 
a solid portion >0.8 cm on the lung window setting and/
or >0.6 cm on the mediastinal window setting predicted 
pathologic invasiveness and could be used to differentiate 
IA from MIA and AIS (9). Discrimination of invasive 
adenocarcinomas among SSNs solely based on tumor size 
or solid component size is not always feasible.

Previous studies also have shown that CT attenuation 
values and CT morphology (10), such as pleura indentation 
and a bubble-like appearance (11-13), may help to 
differentiate between SSNs. In this study, we sought to 
identify the variables associated with the characterization 
of SSNs and establish a predictive model to evaluate the 
pathological invasiveness of SSNs based on CT features. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-5685/rc).

Methods

Patients

The data of patients with peripheral SSNs who underwent 
surgical resection from January 2014 to December 2018 
at the Department of Thoracic Surgery, Shanghai Renji 
Hospital were retrospectively analyzed. All the patients 
had a definite pathological diagnosis. Any patients who had 
nodules <0.5 or >3 cm were excluded from our study. If a 
patient had multiple SSNs, the largest sized nodule was 
analyzed. Ultimately, 1,140 patients were included in the 
study. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee of the Renji Hospital, Shanghai Jiaotong 
University School of Medicine approved the study (No. 
RA-2019-033), and informed consent was waived because 
the study was retrospective.

High-resolution CT evaluation

All the patients received a high-resolution CT scan within 
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1 month before surgical resection. The CT scans were 
conducted using a 64-detector CT row scanner (Brilliance 
64; Philips, Eindhoven, The Netherlands). The baseline 
chest CT scans were performed from the lung apices 
to the middle pole of both kidneys. The images were 
reconstructed using soft tissue and lung algorithms with 
a thickness of 1 mm. The CT features were evaluated in 
the following settings: lung window center –600 Hu/lung 
window width –1,600 Hu; and mediastinal window center 
–40 Hu/mediastinal window width –350 Hu.

The descriptions of the CT images were evaluated 
independently by 3 experienced thoracic radiologists (with 25, 
20, and 15 years of experience, respectively), who were blind to 
the pathological diagnoses. Nodule characteristics, including 
lesion position, diameter, solid component size, solid ratio, 
mean CT attenuation, multiplicity, lobulation, spiculation, 
vascular convergence, air bronchogram sign, bubble lucency, 
and pleural indentation, were assessed and recorded. In our 
study, the size of the SSNs was determined by measuring 
the maximal diameter of the SSNs in the transverse plane on 
the lung window setting using electronic calipers. The solid 
component sizes were determined by measuring the maximal 
diameter of the solid components in the lung window settings. 
If a patient had multiple solid components, the size of the 
single largest solid component was recorded as recommended 
by Travis et al. (8). The solid ratio was calculated by dividing 
the solid component size by the nodule size. Mean CT 
attenuation was measured using the region-of-interest cursors, 
which traced the edge of the tumor on the slices containing 
the region of the lesion with the maximum diameter (5). 
Multiplicity was defined as the presence of >1 nodule (including 
both SSNs and solid nodules) that were >5 mm in size.

Pathological diagnosis

All the patients underwent surgical resection using the 
thoracoscopic approach. All the pathologic specimens 
were fixed in 10% formalin and embedded in paraffin. 
The histological evaluations were conducted using 
hematoxylin and eosin staining slides. A histopathologic 
analysis was performed using the 2011 IASLC/ATS/
ERS multidisciplinary classification system for lung 
adenocarcinoma (8). NIA includes AAH, AIS, and MIA. 
Invasive adenocarcinoma includes only IA.

Statistical analysis

Two-thirds of the eligible patients were randomly selected 

and assigned to the training cohort, while the remaining 
patients were assigned to the validation cohort. The 
quantitative variables were evaluated by the independent 
sample t-test, while the qualitative variables were evaluated 
by the chi square test. The variables with statistically 
significant differences (P<0.1) in the univariate analysis were 
included in the multivariate logistic regression analysis. 
The nomogram model for differentiating IA from NIA was 
developed with the variables with a P value <0.05 according 
to the results of the multivariate analysis.

In the validation cohort, the predictive performance of 
the nomogram model was evaluated by using the area under 
the receiver operator characteristic curves (AUC). Generally, 
AUC values of less than 0.6 were regarded as poor, 0.6–0.9 
were rated moderate, and >0.9 were considered excellent. 
The calibration of the prediction model for the training 
cohort and validation cohort were performed using visual 
calibration curves with 1,000 bootstrap resamples. We 
compared the AUC of our nomogram model to the AUCs 
of Hyungjin Kim’s model (6), and a “solid size >5 mm” 
model based on the Fleischner Society’s recommendation (7) 
that a solid size >5 mm on the CT scan is an indication of 
pathological invasives.

Finally, we calculated the net benefit (NB) using a decision 
curve analysis (DCA). The DCA was developed to evaluate 
and compare diagnostic and prediction models by integrating 
the clinical consequences of false positives (14). It subtracts 
the proportion of all patients who are false-positive from 
the proportion of all patients who are true-positive; thus, 
weighing the relative harm of a false-positive and a false-
negative result (15). The following formula was used:

1
True Positives Pt False PositivesNet Benefit

n Pt n
 = −  − 

 [1]

where n is the total number of patients included in the study 
and Pt is the probability threshold.

The statistical analysis was performed using SPSS 
software, version 22 (IBM Corp., Armonk, NY, USA) and R 
software, version 3.1.0 (http://www.R-project.org; package: 
rms, ggplot2 and rmda). The statistical tests were two-
sided, with P<0.05 indicating statistical significance.

Results

The characteristics of the 1,140 participants with SSNs are 
described in Table 1. Overall, 327 (28.7%) male participants 
and 813 (71.3%) females with a mean age of 58.3±11.9 years  
were included in the study. Among them, 760 patients 
were assigned to the training cohort, and 380 patients were 

http://www.R-project.org; package: rms, ggplot2 and rmda
http://www.R-project.org; package: rms, ggplot2 and rmda


Pan et al. Predictive model for pathological invasiveness of lung SSNsPage 4 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1366 | https://dx.doi.org/10.21037/atm-22-5685

Table 1 The clinical and radiological characteristics of all the patients diagnosed with SSNs

Characteristics Overall cohort (n=1,140) Training cohort (n=760) Validation cohort (n=380) P

Clinical characters

Male (%) 327 (28.7) 220 (28.9) 107 (28.2) 0.781

Age (year, mean ± SD) 57.88±11.91 57.67±11.92 58.31±11.90 0.390

Position of lesion 0.580

RUL (%) 402 (35.3) 271 (35.7) 131 (34.5)

RML (%) 66 (5.8) 48 (6.3) 18 (4.7)

RLL (%) 199 (17.5) 130 (17.1) 69 (18.2)

LUL (%) 317 (27.8) 214 (28.2) 103 (27.1)

LLL (%) 156 (13.7) 97 (12.8) 59 (15.5)

C/T 0.947

0 (%) 624 (54.7) 414 (54.5) 210 (55.3)

≤50% (%) 358 (31.4) 239 (31.4) 119 (31.3)

>50% (%) 158 (13.9) 107 (14.1) 51 (13.4)

Surgical approach 0.686

Lobectomy (%) 412 (36.1) 140 (36.8) 272 (35.8)

Segmentectomy (%) 379 (33.2) 130 (34.2) 249 (32.8)

Wedge resection (%) 349 (30.6) 110 (28.9) 239 (31.4)

Radiologic characters

Mean CT value (Hu, mean ± SD) –442.1±175.6 –442.4±175.3 –441.4±176.4 0.925

Mean CT value 0.695

<–600 (%) 141 (18.6) 77 (20.3) 218 (19.1)

–600 to –300 (%) 453 (59.6) 217 (57.1) 670 (58.8)

>–300 (%) 166 (21.8） 86 (22.6) 252 (22.1)

Multiplicity 256 (22.5) 166 (21.8) 90 (23.7)

Size in lung window (mm, mean ± SD) 13.5 ± 6.2 13.3 ± 6.0 14.0 ± 6.4 0.060

Solid component size (mm, mean ± SD) 3.21±4.74 3.24±4.82 3.16±4.59 0.792

Spiculation (%) 192 (16.8) 127 (16.7) 65 (17.1) 0.867

Lobulation (%) 234 (20.5) 160 (21.1) 74 (19.5) 0.534

Vascular convergence (%) 711 (62.4) 235 (61.8) 476 (62.6) 0.795

Air bronchogram sign (%) 234 (20.5) 154 (20.3) 80 (21.1) 0.756

Bubble lucency (%) 252 (22.1) 162 (21.3) 90 (23.7) 0.364

Pleural indentation (%) 242 (21.2) 160 (21.1) 82 (21.6) 0.838

Pathology 0.300

AAH, AIS (%) 344 (30.2) 237 (31.2) 107 (28.2)

MIA (%) 328 (28.8) 223 (29.3) 105 (27.6)

IA (%) 468 (41.1) 300 (39.5) 168 (44.2)

SSN, subsolid nodule; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; AAH, 
atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma; 
C/T, consolidation to tumor ration; CT, computed tomography; Hu, Hounsfield units: SD, standard deviation.
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assigned to the validation cohort. There was no significant 
difference in terms of the patient or tumor characteristics 
between the training and validation cohorts.

Selection of variables for the model

The results of the univariate analysis showed that the 
patients with IAs were older, and were more common in 
males than those of NIAs. In terms of the radiological 
characteristics, the IAs had a larger nodule size (P<0.001), a 
larger solid component size (P<0.001), and a greater mean 
CT value (P<0.001) than NIAs (Figure 1). In addition, there 
were significant differences in the spiculation, lobulation, 
vascular convergence, air bronchogram sign, bubble lucency, 
and pleural indentation sign (P<0.05) between the 2 groups. 

The variables mentioned above were entered into the 
multivariable logistic regression analysis. In the multivariate 
logistic regression analysis, we identified 5 independent 
predictors of pathological invasive SSNs, including the 
nodule diameter (P<0.001), solid component size (P<0.001), 
mean CT attenuation (P=0.001), spiculation (P<0.001), 
and pleura indentation (P=0.011). The results of the 
univariate and multivariate logistic regression analyses are 
shown in Table 2. On the basis of the multivariate logistic 
regression analysis, a nomogram model was developed with 
5 independent predictors of pathological invasiveness of 
SSNs (Figure 2). A total score can be calculated by adding 
each single score of the 5 predictors, and the probability of 
the pathological invasiveness of SSNs can be estimated by 
projecting the total score to the lower total point scale.

AAH +AIS + MIA 
(n=460)

AAH +AIS + MIA 
(n=460)

AAH +AIS + MIA 
(n=460)

AAH +AIS + MIA 
(n=460)

PathologyPathology

Pathology Pathology

t (355.821)=−15.706, P≤0.001, g=1.164, 95% CI [1.007, 1.321], n=760t (486.129)=−19.337, P≤0.001, g=1.433, 95% CI [1.271, 1.596], n=760

t (546.662)=−14.095, P≤0.001, g=1.045, 95% CI [0.890, 1.200], n=760 t (483.872)=−26.190, P≤0.001, g=1.941, 95% CI [1.766, 2.117], n=760

S
ol

id
 c

om
po

ne
nt

D
ia

m
et

er
M

ea
n 

C
T

P
re

di
ct

ed
 p

ro
ba

bi
lit

y

20

10

0

30

20

10

30

20

10

1.00

0.75

0.50

0.25

0.00

IA 
(n=300)

IA 
(n=300)

IA 
(n=300)

IA 
(n=300)

A B

C D

Figure 1 The distribution of nodule size (A), solid component size (B), mean CT value (C), and predicted probability (D) between the IAs 
and NIAs. Discriminating solely based on nodule size, solid component size, or mean CT value was not always feasible due to the wide range 
of overlaps that existed between the 2 groups. IA, invasive adenocarcinoma; NIA, non-invasive adenocarcinoma.
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Predictive performance of the nomogram

Based on the receiver operating characteristic analysis, the 
nomogram showed excellent discrimination performance. 
The AUCs for the training and validation cohorts were 
0.911±0.011 and 0.890±0.017, respectively. The calibration 

curves for the training and validation cohorts are shown in 
Figure 3, which show the robust discrimination performance 
of the nomogram model.

The AUCs of Hyungjin Kim’s model were 0.886±0.012 
for the training cohort and 0.872±0.018 for the validation 
cohort. The AUCs of the “solid size >5 mm” model were 

Table 2 Univariate and multivariate logistic regression analyses of the associations between the clinico-radiological factors and pathologic status 
in the training cohort

Characteristics
Univariate analysis Variables selected for the model

NIA (n=460) IA (n=300) P Beta coefficient Odds ratio (95% CI) P

Clinical characters

Male (%) 11 2 (24.3) 108 (36.0) 0.001

Age (year, mean ± SD) 55.61±12.25 60.83±10.66 <0.001

Position of lesion 0.487

RUL (%) 158 (34.3) 113 (37.7)

RML (%) 34 (7.4) 14 (4.7)

RLL (%) 75 (16.3) 55 (18.3)

LUL (%) 133 (28.9) 81 (27.0)

LLL (%) 60 (13.0) 37 (12.3)

C/T <0.001

0 (%) 339 (73.7) 75 (25.0)

≤50% (%) 100 (21.7) 139 (46.3)

>50% (%) 21 (4.6) 86 (28.7)

Radiologic characters

Mean CT value <0.001 0.001

<–600(%) 120 (26.1) 21 (7.0) Reference

–600 to –300 (%) 297 (64.6) 156 (52.0) 0.726 1.083–3.947 0.028

>–300 (%) 43 (9.3) 123 (41.0) 1.500 2.013–9.986 <0.001

Multiplicity 100 (21.7) 66 (22.0) 0.932

Size in lung window (mm, mean ± SD) 10.3±4.1 17.8±5.8 <0.001 0.206 1.170–1.290 <0.001

Solid component size (mm, mean ± SD) 1.08±2.19 6.56±5.78 <0.001 0.193 1.124–1.310 <0.001

Spiculation (%) 14 (3.0) 113 (37.7) <0.001 1.624 2.547–10.113 <0.001

Lobulation (%) 44 (9.6) 116 (38.7) <0.001

Vascular convergence (%) 258 (56.1) 218 (72.7) <0.001

Air bronchogram sign (%) 39 (8.5) 115 (38.3) <0.001

Pleural indentation (%) 39 (8.5) 121 (40.3) <0.001 0.715 1.181–3.537 0.011

NIA, non-invasive adenocarcinoma; IA, invasive adenocarcinoma; CI, confidence interval; RUL, right upper lobe; RML, right middle 
lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CT, computed tomography; C/T, consolidation to tumor ration: SD, 
standard deviation.



Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 7 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1366 | https://dx.doi.org/10.21037/atm-22-5685

0.746±0.016 for the training cohort and 0.734±0.027 for 
the validation cohort. Our nomogram model had better 
predictive performance than both Hyungjin Kim’s model 
(P=0.036) and the “solid size >5 mm” model (P<0.001) for 
the validation cohort (Table 3).

The sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), and accuracy of 
the “solid size >5 mm” model for the validation cohort were 
55.3%, 91.5%, 83.8%, 72.1%, and 75.5%, respectively. At 
an equally high specificity of 91.5%, the sensitivity, PPV, 
NPV, and accuracy of Hyungjin Kim’s model were 57.1%, 
84.2%, 72.9%, and 76.3%, respectively. The sensitivity, 
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Figure 2 A nomogram model for predicting the probability of invasive adenocarcinoma for patients with subsolid pulmonary nodules. By 
adding each predictor’s score and calculating the total score to the lower total point scale, we were able to determine the corresponding 
probability of IA. IA, invasive adenocarcinoma.
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PPV, NPV, and accuracy of the nomogram model were 
67.9%, 85.7%, 76.4%, and 79.5%, respectively. The 
nomogram model was more sensitive than Hyungjin 
Kim’s model (P=0.036) and the “solid size >5 mm” model 
(P=0.018) at an equally high specificity of 91.5% (Table 4).

DCA

The decision curve is shown in Figure 4. The x axis represents 
the potential thresholds for the pathological invasiveness at 
which surgical resection should be suggested for patients with 

SSNs. The y axis represents the clinical NB in terms of the 
probability of the positive results; that is, removing invasive 
SSNs, minus the probability of the false-positive results. At 
a cut-off of 40%, the NBs were 29.1% for the nomogram 
model, 26.9% for Hyungjin Kim’s model, and 21.8% for the 
“solid size >5 mm” model. At a cut off of 80%, the NBs were 
12.4% for the nomogram model, 7.3% for Hyungjin Kim’s 
model, and 4.1% for the “solid size >5 mm” model. Across 
a range of cut-off values, our proposed nomogram model 
had a larger NB than Kim’s model or the “solid size >5 mm” 
model.

Discussion

The optimal management of patients with SSNs is of 
growing clinical concern. It should be noted that most 
persistent SSNs belong to 1 of the following 4 categories 
of the adenocarcinoma spectrum: AAH, AIS, MIA, and 
IA (16). Evaluating the pathological invasiveness of SSNs 
is important as clinical management strategies differ 
substantially for preinvasive and invasive lesions. By 
retrospectively analyzing the radiological characteristics of 
the 760 patients from the training cohort, we developed an 
intuitive graphic model that showed excellent discrimination 
performance for the validation cohort.

In the present study, we identified the diameter, solid 
component size, mean CT attenuation, presence of 
spiculation, and pleura indentation as independent predictors 
of the pathological invasiveness of SSNs. The diameter and 

Table 3 Classification performance of the three models for the prediction of invasive adenocarcinoma

Model
Training cohort Validation cohort

AUC 95% CI P AUC 95% CI P

Proposed model 0.911 0.900, 0.922 – 0.890 0.873, 0.907 –

Kim’s model 0.886 0.874, 0.898 0.001 0.872 0.854, 0.890 0.036

Solid size >5 mm model 0.746 0.730, 0.762 <0.001 0.734 0.707, 0.761 <0.001

AUC, area under the receiver operating characteristic curve; CI, confidence interval.

Table 4 Discrimination performance of the three models at equal specificity

Model Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Proposed model 67.9 91.5 85.7 76.4 79.5

Kim’s model 57.1 91.5 84.2 72.9 76.3

Solid size >5 mm model 55.3 91.5 83.8 72.1 75.5

PPV, positive predictive value; NPV, negative predictive value
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Figure 4 Decision curves of the predicted probabilities in the 
validation cohort. Using a wide range of cut-off values, our 
proposed nomogram model provided a larger NB than Kim’s 
model or the “solid size >5 mm” model. NB, net benefit.
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solid component size were the 2 greatest contributors to 
the risk of IA in our study. Generally, as the lesion size and 
solid component increase, the possibility of pathological 
invasiveness increases. However, our study clearly showed 
overlaps between invasive and non-invasive SSNs in terms of 
nodule diameter and solid component size.

Solid components on CT images not only include cancer 
cells, but also include myofibroblastic stroma, fibrosis, 
inflammatory cells, alveolar collapse, and pathologic 
mucus (9). Discrimination solely based on nodule size 
or solid component size is not always feasible. Previous 
study has shown that morphologic CT features, including 
lesion margin and lesion border, can help to differentiate 
between preinvasive lesions and IAs (17). Our study 
clearly showed a better discrimination performance and 
more NBs than Kim’s model, which mainly uses lesion 
size and solid component size in combination with more 
CT characteristics. Our results provide evidence that a 
meticulous CT and a comprehensive evaluation, not only 
of the lesion size, but also of the morphologic features, are 
important in the management of SSNs.

Previous reported models (5,6) incorporated the solid 
ratio as an independent predictor of the pathological 
invasiveness of SSNs. However, the solid ratio was not 
adopted in the present study as a predictive variable in the 
univariate and multivariate analyses. One reason for this 
was that multicollinearity was observed when the diameter, 
solid component size, and solid ratio were entered into 
the multivariate logistic regression simultaneously. As 
multicollinearity increases, coefficients remain unbiased, 
but standard errors increase, and the likelihood of model 
convergence decreases. Another important reason for this 
was that for non-mucinous lung adenocarcinomas with a 
lepidic component, which manifests as SSNs on CT scans, 
the size of the invasive component should be used as the 
tumor(T) descriptors, regardless of the lepidic components 
in the 8th tumor, node, and metastasis (TNM) staging 
project of lung cancer (8). Accordingly, the long axis of 
the largest solid portion of the SSNs is proposed to be the 
T descriptors of clinical TNM stage. This highlights the 
importance and necessity of measuring solid components 
when making decisions for patients with SSNs.

An important issue in the management of SSNs is to avoid 
overdiagnosis and overtreatment in clinical practice. It has 
been estimated that 20–25% screening-detected lung cancers 
are overdiagnosed (18). Compared to solid nodules, SSNs 
have a more indolent growth rate, which shows no difference 
in prognosis even after years of observation (19). The 

treatment of SSNs should include a comprehensive evaluation 
of the surgical risks, patient’s psychology, life expectancy, 
cancer progress, and the socio-economic burden (2,6). Based 
on the CT features, our proposed nomogram model provides 
more individualized probability predictions of SSNs, which 
may help patients and clinicians in the treatment decision-
making process. Given the high PPV (89.1%) and specificity 
(95.3%) at the cut-off of 80%, we believe our model could be 
used to help mitigate the overtreatment of SSNs. The false-
negative results mainly occurred when the low-risk cut-off 
points were used. However, we believe a follow-up CT scan 
at 3–6-month intervals could safely be used to monitor the 
growth of SSNs.

Our study had several limitations. First, we only 
included patients who underwent surgical resection at 
our department, and those who did not undergo surgical 
resection were excluded, which represents a selection bias 
in our study. The SSNs of the patients who received CT 
surveillance may be smaller in size and solid component 
size than those who received surgical resection. We believe 
a substantial portion of them may be IAs, even though no 
changes in size or morphology after years of observation 
were observed. However, studies based on follow-up CT 
surveillance could not be carried out due to lack of histology 
diagnoses. The results of our study may not be applied 
to SSNs detected at screening tests. Second, only CT 
features were retrospectively analyzed in our study. We did 
not investigate whether clinical factors, such as a smoking 
history, previous malignancy, tumor biomarkers, and a 
positron emission tomography examination, could help 
differentiate between SSNs. In addition, the longitudinal 
assessment of SSNs using CT to assess changes in size 
or morphology might be more important in differential 
diagnosis (7). Third, our study was a single-center 
retrospective study with a limited number of patients. Thus, 
the generalizability of this model still requires external 
validation in other databases to confirm its diagnostic value 
in differentiating between SSNs.

Conclusions

Evaluating the pathological invasiveness of SSNs is important 
as clinical management strategies differ substantially for NIA 
and IA. Based on CT characteristics, including diameter, 
solid component size, mean CT attenuation, the presence 
of spiculation, and pleural indentation, we developed and 
internally validated a nomogram model to predict the risk 
of IAs for patients with SSNs. These 5 characteristics can 
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be easily observed on CT images. Our proposed model may 
help clinicians to make individualized predictions for patients 
with SSNs and to discriminate between IAs and preinvasive 
lesions and MIAs.
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