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Background: Cutaneous tumors are commonly seen in clinical practice, and malignant melanoma 
(MM) is the leading cause of cutaneous tumor-induced death. The tumor microenvironment (TME), a 
critical part of tumorigenesis, has been a research hotspot in recent years. However, the effects of the MM 
microenvironment components remain elusive. This study aimed to analyze the various components in the 
TME of MM to identify factors affecting the tumorigenesis, progression, and metastasis of MM and the 
survival of MM patients. We also aimed to identify biomarkers related to TME rehabilitation to provide a 
new direction for MM treatment. 
Methods: We used bioinformatics to analyze the RNA-seq and somatic mutation data of 473 MM patients 
from The Cancer Genome Atlas database. Firstly, the patients’ immunity and stroma were separately 
scored by the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) method. According to the median score, the participants were split into high- and low-score 
groups. Then, Gene Set Enrichment Analysis (GSEA) was performed, showing that high-expression genes 
were highly abundant in biological and metabolic activities associated with the immune system.
Results: Differentially expressed genes (DEGs) and differentially mutated genes (DMGs) were identified 
and intersected to obtain the key immune-related genes PSMB8, FAM216B, DYSF, and FAM131C. PSMB8 
was finally selected as the preferred immune-related prognostic marker; it was positively associated with 
overall survival and therefore considered a protective gene for MM patients. The GSEA analysis showed that 
PSMB8 with high expression had greater gene abundance in biological and metabolic processes related to 
immune system. In addition, CIBERSORT analysis showed an association between the proportion of tumor-
infiltrating immune cells and PSMB8 expression. 
Conclusions: Our results suggest that PSMB8 might be associated with tumorigenesis and MM 
progression and could serve as a biomarker for the TME rehabilitation of MM. Our findings provide a new 
perspective and direction for the treatment of MM.
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Introduction

Cutaneous malignant melanoma (MM) is the fifth 
most common malignancy globally and has the highest 
malignancy among cutaneous tumors. It accounts for only 
1% of cutaneous tumors but has the highest mortality. 
In 2022, there have been approximately 99,780 patients 
diagnosed with aggressive MM, and 7,650 cases have died 
of this disease in the United States. Dependent on the 
tumor stage, primary treatments for MM include surgery, 
immunotherapy, targeted therapy, radiotherapy, and 
chemotherapy (1). Some of these treatments achieve tumor 
control via immunoregulation with CTLA-4 and PD-1 
antibodies, and some focus on targeting the proliferation of 
specific mutations in MM using BRAF and MEK inhibitors. 
Despite these new treatment options, the proliferation 
and recurrence of MM are not well controlled, so the 
therapeutic effects of these options are limited for patients 
with advanced MM (2). Therefore, there is an urgent 
need for a new treatment strategy to improve patients` 
prognoses. Immunotherapy based on immune checkpoint 
inhibitors is a novel treatment strategy and has achieved 
great success in treating various cancers. The effects of 
PD-1 inhibitors and CTLA-4 inhibitors have been validated 
in the treatment of multiple tumors, such as non-small cell 
lung cancer (3). However, PD-1 inhibitors suppress tumors 
by enhancing the immune response, so they can also disrupt 

inherent immune tolerance causing immune-related adverse 
reactions such as the common dermatologic condition of 
bullous pemphigoid (4). Moreover, the clinical response of 
this agent in MM patients remains unsatisfactory.

The tumor microenvironment (TME) plays a key role 
in tumor generation and progression and has become a 
research hotspot. It refers to the internal environment on 
which tumor cells depend for survival and consists of tumor 
cells, immune cells, vascular endothelial cells, fibroblasts, 
cytokines, chemokines, and cellular metabolic products (5).  
It has been demonstrated that the cellular constituents 
of the TME are closely associated with the generation, 
proliferation, and metastasis of tumors. TME-targeting 
has become a new focus of antitumor treatment (6). MM 
has a high metastatic potential, Within the melanoma 
microenvironment, there are numerous immune cells, 
including T lymphocyte subpopulations, B lymphocytes, 
natural killer cells (NK), dendritic cells (DC), M1 and M2 
type macrophages, and immature cells of myeloid origin 
called myeloid-derived suppressor cells (MDSC) (7).  
They exert anti-cancer effects by inducing apoptosis of 
transformed cells, producing anti-tumor cytokines or 
cytotoxic reactions, and participating in the recruitment of 
antigen-presenting cells. At the same time, melanoma cells 
can evade T cell recognition by (I) β down-regulation, (II) 
defects/deletions of antigen processing mechanisms, which 
may include proteasome subunits or transporters (TAPs) 
associated with antigen processing and/or (III) MHC 
molecules. By reducing antigen presentation, melanoma 
cells can evade immune surveillance to a certain extent, 
forming the characteristics of high malignancy and rapid 
metastasis, so the high metastasis potential of CMM is 
inseparable from the components and functions of its tumor 
microenvironment (8-11).

However, a comprehensive understanding of the 
biological characteristics and effects of the TME in MM 
is yet to be elucidated. Understanding this from the 
perspective of transcription and somatic mutations may help 
interpret the potential mechanisms of MM generation and 
progression.

This  study used bioinformatics  to analyze the 
transcriptome RNA-seq and somatic mutation data of 473 
MM patients from The Cancer Genome Atlas (TCGA) 
database. Firstly, the patients’ immunity and stroma were 
separately scored by the Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression 
data (ESTIMATE) method. Further analysis showed that 
the immune scores were significantly better than the stromal 
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scores for predicting the overall survival (OS) of MM 
patients; therefore, according to the median immune score, 
the participants were split into high- and low-immune score 
groups. In this study, we innovatively analyzed somatic 
mutation data to determine the correlation between gene 
mutations and immune components in the cutaneous 
melanoma tumor microenvironment. Somatic mutation-
related data of the two groups were downloaded and 
analyzed. We found a significant difference in the genetic 
mutations between the two groups; thus, the differentially 
expressed genes (DEGs) and differentially mutated genes 
(DMGs) were identified and intersected to obtain the key 
immune-related genes PSMB8, FAM216B, DYSF, and 
FAM131C. PSMB8 was positively correlated with patients’ 
OS and therefore considered a protective gene for MM 
patients. Hence, Gene Set Enrichment Analysis (GSEA) 
and CIBERSORT were performed to analyze the immune-
related biological characteristics of PSMB8. Finally, we 
analyzed the correlation between PSMB8 and conventional 
heterogeneity checkpoint molecules to evaluate the 
response of MM patients to immune checkpoint inhibitors. 
The above conclusions suggest that PSMB8 might play a 
critical role in TME.

The results of this study indicate that PSMB8 plays a 
critical role in the TME of MM patients at different stages 
of the disease and has the potential to be a predictive 
biomarker for immune-related prognosis or an indicator of 
TME recovery. It is of great benefit to reveal the potential 
mechanisms of MM generation and progression to improve 
MM treatment. We present the following article in 
accordance with the REMARK reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-5761/rc).

Methods

Original data

The transcriptome data, corresponding clinical data, 
and somatic mutation data of 473 MM patients were 
downloaded from the TCGA database (2022-04-07), and 
a dataset consisting of one normal sample and 472 tumor 
samples was obtained, which contained information such 
as patient’ survival, tumor TNM stage, and time of the last 
follow-up. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical analysis

Calculation of immune score, stromal score, and 
ESTIMATE score
The “ESTIMATE” R software package (Ver 4.2.0) was 
used to analyze each MM sample and calculate the immune 
score (proportion of immune components), stromal score 
(proportion of stromal components), and ESTIMATE score 
(the sum of the above two scores). A higher score indicated 
more abundant corresponding components (immune, 
stromal, and non-tumor components) in the TME.

Survival analysis for transcriptome data
A survival analysis was performed using the “Survival” R 
software package for patients in the high- and low-score 
groups. A survival curve was plotted with the Kaplan-Meier 
method. Statistical significance was tested using the Log-
Rank test.

Correlation between the scores and clinical information
Significant data were identified (including 405 patients at 
TNM stage I-IV, 385 at stage Tis-T4, 403 at N0-N3, and 
430 at M0-M1). Scores and clinical information of different 
components were pooled according to each patient’s 
immune, stromal, and ESTIMATE scores. Correlation 
analysis was performed using the “ggpubr” R software 
package for the scores and clinical information. Wilcoxon 
and Kruskal Wallis rank-sum tests were adopted for the 
statistical analyses.

DEG identification
Patients were divided into a high immune-score group and 
a low immune-score group using the median immune score 
as the cutoff. A divergence analysis was conducted with the 
“limma” R software package. By comparing the differences 
between the high and low immune-score groups, the DEGs 
were counted, a total of 406 DEGs in the different groups 
were obtained, and a heat map was drawn. We set the 
significance threshold for DEGs according to the following 
criteria: (I) false discovery rate (FDR) was less than 0.05; 
(II) |log2 fold change (FC)| >1 (high- or low-immunity 
cohorts).

DMG identification
The somatic mutation information of MM patients was 
accessed via the TCGA database and saved in a mutation 

https://atm.amegroups.com/article/view/10.21037/atm-22-5761/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5761/rc
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Figure 1 The analysis flow chart. MM, malignant melanoma; TCGA, The Cancer Genome Atlas; DMGs, differentially mutated genes; 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TICs, tumor-infiltrating 
immune cells; GSEA, Gene Set Enrichment Analysis.
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annotation format. According to the median immune 
score, 456 tumor samples were evenly divided into a high-
immunity cohort and a low-immunity cohort. The two 
cohorts were compared using the “mafTools” R software 
package to identify DMGs, where a P value less than 0.05 
indicated statistical significance.

GO and KEGG enrichment analysis

Immune scoring software was used to perform the 
intersection analysis for DEGs and DMGs, and four key 
genes were identified: PSMB8, FAM216B, DYSF, and 
FAM131C. PSMB8 was finally selected as the target gene 
and was analyzed along with the patients’ clinical data, 
including OS and tumor stage.

Results

Study design and procedure

This study was conducted using the analysis procedure 
shown in Figure 1. The RNA-seq map and relevant clinical 
data were downloaded from the TCGA database. The 
CIBERSORT and ESTIMATE programs were used to 
compute the ratio of tumor-infiltrating immune cells 

(TICs) to immune and stromal components in 472 MM 
patients. We also downloaded the somatic mutation data 
and determined the DMGs in the high and low immune-
score groups according to the median immune score and 
GO and KEGG analyses were performed for these genes. 
An intersection analysis was conducted for the DEGs and 
DMGs, and PSMB8, FAM216B, DYSF, and FAM131C were 
obtained. Further analyses for PSMB8 were performed, 
including correlation analysis for OS with the tumor-
node-metastasis (TNM)-based staging, GSEA (Gene Set 
Enrichment Analysis), and TICs, as shown in Figure 1.

DEG identification in MM patients

Correlation between the scores and OS of MM patients
The TME immune, stromal, and ESTIMATE scores 
were calculated using the ESTIMATE algorithm. A high 
immune or stromal score indicated a large proportion of the 
component in the TME of MM patients. The ESTIMATE 
score represented the results of adding immune and 
stromal scores, indicating tumor purity. The results 
showed that the ratio of immune components to stromal 
components was positively correlated with OS (Figure 2, 
A: ESTIMATE, P=0.001; B: Immune, P=0; C: Stromal, 
P=0.047). The immune components showed the most 
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Figure 2 The Kaplan-Meier survival analysis for malignant melanoma patients. A comparison of overall survival between the high- and low-
score groups determined by the median immune score for (A) ESTIMATE Score, (B) Immune Score, and (C) Stromal Score (P=0.001, 0.000, 
and 0.047, respectively, according to the log-rank test).
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significant difference (P=0). Based on the above results, 
we considered that the immune components were more 
significant for MM generation and progression and would 
be more likely to reveal patients’ prognosis. On this basis, 
we analyzed the clinical characteristics of MM patients to 
identify the correlation between these three scoring systems 
and the clinical data (see Figure 3). It was observed that the 
immune, ESTIMATE, and stromal scores were significantly 
correlated with tumor (T) stage. These findings elucidated 
the crucial role of immune components in MM generation 
and progression, especially in tumor infiltration and 
invasion.

DEG identification based on the immune score
Given the significant impact of immune components on 
MM progression, we further conducted a comparative 
analysis of the high and low immune-score groups. Patients 
were allocated to a high or low immune-score group 
according to the median immune score, and 406 DEGs 
were identified, of which 364 were upregulated, and 42 
were downregulated. The heat map is provided in Figure 4.

GO and KEGG enrichment analysis of DEGs
The GO analysis showed that the DEGs were mainly 
correlated with immunity, such as leukocyte-mediated 
immunity, adaptive immune response based on somatic 
recombination of immune receptors, and regulation of 
the immune effector process (Figure 5A). According to the 
KEGG analysis, DEGs were highly enriched in biological 
processes associated with immune system, such as the B 
cell receptor signaling pathway, viral protein interaction 

with cytokine and cytokine receptors, and cell adhesion 
molecules (Figure 5B). It was evident that immune-related 
biological processes reflected the main functions of DEGs 
in MM patients, indicating that immune components might 
play a major role in the TME of MM patients.

Somatic mutations in MM patients

The specific mutation of tumor cells could produce new 
antigens that could induce an immune response to kill the 
tumor cells (12). We analyzed and visualized the somatic 
mutation data of MM patients and found 151 somatic 
mutant genes. Patients were divided into two groups 
according to the median immune score. The somatic 
mutation data in both the high and low immune-score 
groups were analyzed, and the top 30 mutant genes in 
each group were identified through the absolute values 
of Log2Fc (Figure 6A,6B) to reveal the different gene 
mutations in MM patients. The commonly mutated genes 
in both groups were analyzed, and the results showed that 
the high immune-score group had a higher proportion 
of mutated genes than the low immune-score group  
(Figure 6C,6D), indicating that patients with more mutated 
genes typically had a higher immune concentration.

Subsequently, we performed an intersection analysis 
for the 406 DEGs and 147 DMGs (Figure 6E), and the 
following four genes were identified: PSMB8, DYSF, 
FAM216B, and FAM131C.

PSMB8 encodes a  catalyt ic  subunit  of  the 20S 
immunoproteasomes called b5i. Immunoproteasome-
mediated proteolysis generates immunogenic epitopes 
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Figure 3 Correlation between scores and malignant melanoma’s clinical features. (A-C) Distribution of scores in the T classification for the 
ESTIMATE, Immune, and Stromal Scores, respectively, based on the Kruskal-Wallis test. (D-F) Distribution of scores in the N classification 
for the ESTIMATE, Immune, and Stromal scores, respectively, based on the Kruskal-Wallis test. (G-I) Distribution of scores in the M 
classification for the ESTIMATE, Immune, and Stromal Scores, respectively, based on the Wilcoxon rank sum test. (J-L) Distribution of 
scores in the Stage classification for the ESTIMATE, Immune, and Stromal Scores, respectively, based on the Kruskal-Wallis test.
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Figure 4 Heat map of DEGs. Heat map for differentially expressed genes generated by comparison of the high vs. low score groups in 
Immune Scores. Rows reflect the gene’s name, and columns represent sample identifications (not shown in the plot). DEGs were identified 
using the Wilcoxon rank sum test, with FDR <0.05 and |log2 FC| >1 as the cut-off of significance. DEGs, differentially expressed genes; 
FDR, false discovery rate. 
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presented by major histocompatibility complex (MHC) class 
I molecules. we have already confirmed the role of PSMB8 
in the evolution of cutaneous squamous cell carcinoma, 
papillary thyroid carcinoma, and prostate adenocarcinoma, 
(13-15), In addition to the previously mentioned tumors, 
PSMB8 plays an inhibiting neovascularization role in 
glioma by regulating ERK1/2 and PI3K/AKT signaling 
pathways (16,17). These findings elucidate that the 
expression of PSMB8 is associated with multiple immune-
related pathways in vivo, and that the gene may act as a 
powerful biomarker to determine the prognosis of a variety 

of cancers.
In summary, we selected PSMB8 as the target gene.

PSMB8 expression in MM patients

We divided the MM samples into PSMB8 high- and PSMB8 
low-expression groups. A survival analysis revealed that MM 
patients in the PSMB8 high-expression group had a higher 
survival rate than those in the low-expression group within 
15 years after tumorigenesis.

On the other hand, we found that PSMB8 expression 
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Figure 5 Enrichment analysis of GO and KEGG for differentially expressed genes. GO and KEGG enrichment analysis for 406 
differentially expressed genes, where terms with P and q<0.05 were considered to be enriched significantly. The figure on the left shows 
the three ontologies in GO enrichment analysis, describing the BP, CC, and MF of genes involved. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular components; MF, molecular functions.
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varied among MM patients according to the tumor stage. 
The expression became downregulated as the tumor 
stage progressed. This finding suggested that PSMB8 is 
a protective factor for MM patients and may be closely 
associated with prognostic factors, such as tumor infiltration 
and OS (Figure 7).

Correlation of PSMB8 expression with tumor-infiltrating 
immune cells (TICs)

We further validated the correlation of PSMB8 expression 
with immune components using the CIBERSORT method. 
We downloaded 22 common TIC maps and analyzed the 
correlation of PSMB8 expression with the TICs (Figure 8). 
The correlation and variation analysis showed significant 
differences in the contents of 14 TICs between the PSMB8 
high- and low-expression groups (Figure 8C). We also 

observed that in the TME of MM patients, the contents of 
15 common TICs were correlated with PSMB8 expression. 
We performed an intersection analysis for these two 
variables and found ten types of TICs (Figure 8E). PSMB8 
expression was positively correlated with the contents of 
M1 macrophages, CD8 T cells, CD4+ T cells, follicular 
helper T cells, γδ T cells, regulatory (Tregs) T cells, and 
activated NK cells, and was negatively correlated with M0 
macrophages, resting mast cells, and CD4 resting memory 
T cells (Figure 8D). This finding indicated that PSMB8 
expression significantly affected the immunocompetence of 
TME.

Correlation of PSMB8 with common immune checkpoints 
(ICPs)

We also investigated whether PSMB8 expression could 
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Figure 6 Somatic mutation analyses and identification of shared genes in DEGs and DMGs. (A,B) Oncoplots show the top 30 frequently 
mutated genes. The types of mutations in each MM (malignant melanoma) sample are displayed in the central panel, and the mutation 
frequency is presented in the upper panel. The frequency and type of mutation in the high- and low-immunity cohorts are depicted in 
the right-hand bar graphs, respectively. The legend for the mutation types is shown at the bottom. (C) Forest plot displays the significant 
DMGs between the two cohorts. The confidence intervals for each included study were described with multiple line segments parallel to 
the horizontal axis centered on a vertical invalid vertical line with a abscissa scale of 1, and when the 95% C.I horizontal line intersected 
the invalid vertical line, we considered that the mutation did not differ significantly in the grouping of high and low immunity. When 
the horizontal line is to the right of the invalid vertical line, the gene has more mutations in the high immune score group, and when 
the horizontal line is to the left of the invalid vertical line, it means that the gene has more mutations in the low immune score group. 
***P<0.001, **P<0.01. (D) Oncoplot shows the 30 differentially mutated genes (P<0.03) between the high- and low-immunity groups. The 
types of mutations in each malignant melanoma sample are presented in the central panel, whereas the legend for the mutation types is 
located at the bottom. (E) Venn plot presents the shared genes of DEGs and DMGs, ImmuneDiff in the figure represents differentially 
expressed genes in the high and low immune groups. DEGs, differentially expressed genes; DMGs, differentially mutated genes.
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Figure 7 The differential expression of PSMB8 in samples and its correlation with survival and clinicopathological staging characteristics in 
malignant melanoma patients. (A) Survival analysis for malignant melanoma patients with different PSMB8 expressions. Based on the median 
expression level, patients were classified into the high- and low-expression groups (P=0.004, log-rank test). (B) Differential expression 
of PSMB8 in the normal and tumor samples (P=0.159, Wilcoxon rank sum test). (C-F) The association between PSMB8 expression and 
clinicopathological characteristics. Wilcoxon or Kruskal-Wallis rank sum tests was performed to test the statistical significance.
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assess the effects of immunotherapy by analyzing the 
correlation of PSMB8 with common ICPS. The results 
showed that PSMB8 expression was correlated with CTLA4, 
LMTK3, CD28, CD40, TNFRSF9, ICOS, TNFRSF18, and 
TNFSF18 (Figure 8F).

Discussion

Based on MM patient data in the TCGA database, 
this study aimed to identify differentially expressed 
and mutated immune-related genes in the TME of 
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Figure 8 TIC profile in malignant melanoma samples, correlation analysis, and the correlation of the proportion of tumor-infiltrating 
immune cells and common immune checkpoints with PSMB8 expression. (A) Bar plot shows the ratio of 21 types of TICs in tumor samples, 
and the columns represent sample identifications. (B) Heat map describes the association between 21 types of tumor-infiltrating immune 
cells with numeric in each box representing the P value of the correlation. The shadows in color boxes indicate correlation values. The 
significance test was conducted using Pearson coefficient. (C) Violin plot depicts the ratio differentiation of 21 immune cells in malignant 
melanoma samples with low or high PSMB8 expression. The Wilcoxon rank sum test was used to test the significance. (D) Scatter plot 
shows the correlation between 15 Tumor-infiltrating immune cells and PSMB8 expression (P<0.05). Blue line is a fitted linear model that 
represents the proportional tropism of the immune cell along with PSMB8 expression. The correlation test was conducted using Pearson 
coefficient. (E) Venn plot displays ten types of tumor-infiltrating immune cells correlated with PSMB8 expression, which are codetermined 
by the difference and correlation analyses. (F) The results show that the high PSMB8 expression group had significantly higher expression of 
immune checkpoints than the low PSMB8 expression group (***P<0.001, **P<0.01). TIC, Tumor-infiltrating immune cell.
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MM that were significantly correlated with the clinical 
characteristics, survival, and prognosis of MM patients. 
Using bioinformatics analysis, we found that PSMB8 was 
correlated with immune cell infiltration in MM generation 
and progression. It can be concluded that PSMB8 plays a 
critical role in immune-related biological processes. PSMB8 
also correlated with ICPs, indicating that PSMB8 can be 
used as a biomarker for TME rehabilitation and may be 
a potential indicator for predicting the prognosis of MM 
patients and assessing the effects of immunotherapy.

Tumor biological behavior cannot be interpreted by 
the characteristics of a single specific tumor cell. Multiple 
components of the TME need to be taken into account. 
The TME is a dynamic network and has noticeable effects 
on tumor generation and progression, as well as complicated 
effects on tumor progression, immune regulation, and 
treatment (5). The biological function of tumor cells and 
activated T cells depends on glycolysis (18,19) so there is 
competition for nutrition among tumor cells, other immune 
cells, and stromal cells in the TME. Some metabolites 
produced in the TME might be able to inhibit an antitumor 
immune response. As such, a comprehensive understanding 
of the correlation of in-TME tumor cells with other 
cellular components would be of great therapeutic value. 

Increasing evidence indicates that the intracellular signaling 
pathway of tumor cells might be related to the dynamic 
change in immune patterns in the TME (20). In this study, 
bioinformatics analysis showed that the content of immune 
cells significantly influenced the OS rate and T stage of 
patients with MM. A variety of evidence has suggested that 
the density and diversity of invasive tumor immune cells are 
closely related to prognosis and the prediction of therapeutic 
effects. Therefore, immune cells in the TME may greatly 
affect the clinical response of MM patients to different 
immunotherapy strategies. The transformation of TME 
from a tumor-friendly to a tumor-suppressive type may be 
an effective treatment for MM patients to improve survival, 
delay tumor progression, and improve symptoms (21).  
In the past 10 years, antitumor treatments have been 
reformed many times. Conventionally, pharmacological 
agents (such as chemotherapy) have targeted a wide range 
of tumors, but current new treatment strategies target 
specific cells in the TME. Therefore, stimulating and 
activating the T-cell response in tumor cells and having an 
immune-promoting TME are critical. Immune checkpoint 
blockade (ICB) is an initial form of TME immunotherapy 
based on antibodies (22). ICB prevents receptor ligands, 
such as CTLA4 and PD1, from interacting with T-cell 
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receptors, hence inhibiting T-cell activation and function. 
Immune checkpoint inhibitors (ICIs), particularly CTLA4 
and PD-1 antibodies, have revolutionized the treatment of 
many cancers. For melanoma, many new immunotherapies 
are now used to treat  melanoma, including PD1 ,  
PD-L1, and CTLA-4 inhibitors. However, these regimens 
are only effective for a subset of patients, with others 
showing only a limited response or response failure, 
especially in the advanced stages (23,24). Furthermore, 
most patients with advanced melanoma do not respond 
to ICI therapy due to primary or acquired drug tolerance 
(22,25). Combining anti-CTLA4 and anti-PD-1 checkpoint 
inhibitors to enhance antitumor immune reactions, or 
ICIs combined with intratumoral oncolytic virotherapy, 
may trigger pro-inflammatory rebuilding of the TME 
to overcome anti-PD-L1 resistance. It has been known 
that ICIs induce immunotoxicity while stimulating the 
body’s immune system, inevitably resulting in immune-
related adverse events. The therapies mentioned above 
also cause different degrees of immune-related adverse 
events (22,26). Unfortunately, no highly sensitive and 
specific biomarker for ICIs has been reported. As a result, 
more relevant biomarkers should be identified, and new 
TME-targeting agents are required to reduce the risk of 
immune-related adverse events. In this study, we conducted 
comprehensive bioinformatic analysis on transcriptome 
RNA-seq and somatic mutation data. The results showed 
a significant correlation between downregulated PSMB8 
expression and poor prognosis and advanced T stage. 
Moreover, patients in our high-immune group had more 
PSMB8 mutations, indicating that PSMB8 mutations 
induced the expression of new tumor-specific antigens 
to activate the immune response. Further, CIBERSORT 
analysis showed that a high PSMB8 expression was closely 
correlated with the immune-related biological process. In 
addition, the expression of ICP was elevated in the high 
PSMB8 expression group. Therefore, this study suggests 
that PSMB8 is a possible prognostic marker, an indicator 
of immunotherapeutic response and TME recovery, and a 
potential therapeutic target of TME in patients with MM.

PSMB8 (proteasome 20S subunit beta 8) is a poly-
catalytic protease complex possessing a highly ordered ring-
shaped 20S core structure. It serves as a protein-coding 
gene, is distributed throughout eukaryotic cells at high 
concentration, and cleaves peptides in an ATP/ubiquitin-
dependent process in a non-lysosomal pathway. Previous 
studies have shown that PSMB8 inhibited angiogenesis in 
glioma by regulating the ERK1/2 and PI3K/AKT pathways 

(16,17). Another study on the functions of PSMB8 in the 
pathogenesis of mucinous ovarian cancer has confirmed 
that PSMB8 is an intermediary between the presentation 
of foreign antigens by MHC-I molecules and the irregular 
nuclear factor-light chain enhancer (Nik/NF-kB) pathway 
of activated B cells (27). Additionally, PSMB8 is involved 
in activating the PI3K/AKT pathway in acute myelogenous 
leukemia (28), and several studies have reported its 
contribution to the progression of cutaneous squamous 
cancer, papillary thyroid cancer, and prostate cancer (13-15).  
Several studies have proposed that PSMB8 works by 
promoting immune cell concentration. In the T-cell-
mediated antitumor immune response, PSMB8 can reduce 
colony formation after radiation and increase the expression 
of apoptosis-inducing molecules, such as cleaved PARP and 
caspase-3 (29,30). Nonetheless, the role of PSMB8 in the 
occurrence and progression of MM remains unclear, and 
the immunological and prognostic role of PSMB8 in TME 
remains to be elucidated. The results of this study show 
that high PSMB8 expression reflects the enhancement of 
immune components in MM patients, which may indicate 
an increase in the clinical response to immunotherapy and 
a more favorable clinical prognosis. PSMB8 expression 
decreases with advancing tumor stage, suggesting that 
PSMB8 may be a protective factor for patients with MM.

Further analysis demonstrated the effects of PSMB8 
on the TME, especially on immune components. PSMB8 
expression was positively correlated with M1 macrophages, 
CD8 T cells, CD4+ T cells, follicular helper T cells, γδ T 
cells, regulatory (Tregs) T cells, and activated NK cells, and 
was negatively correlated with M0 macrophages, resting 
mast cells, and resting CD4 memory T cells. In addition, 
high ICP expression was common in the high PSMB8-
expression group, suggesting PSMB8 may be a potential 
predictor of the immunotherapeutic response in MM. 
In conclusion, PSMB8 may be an antitumor biomarker 
for predicting patients’ survival and immune response. 
Our comprehensive bioinformatics analysis revealed 
that MM patients in the high PSMB8-expression group 
demonstrated a higher OS rate, an earlier T stage, and 
increased TME immune components and common ICPs. 
As such, it can be determined that PSMB8 is an indicator of 
TME rehabilitation, and has the potential to be used as an 
effective immunotherapy and clinical prognosis predictor.

Conclusions

Using comprehensive bioinformatics analysis, this study 
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is the first to show that PSMB8 is a promising indicator of 
TME rehabilitation and can be used as a potential predictor 
of clinical prognosis, such as OS, tumor invasion, and 
immunotherapy response in MM patients. Further research 
on the correlation between PSMB8 and ICPs and the 
potential mechanism of PSMB8-related immunobiological 
processes may facilitate the treatment of MM.
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