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Background: Hepatocellular carcinoma (HCC) represents a considerable burden to patients and health 
systems. Microvascular invasion (MVI) is a significant risk factor for HCC recurrence and survival after 
hepatectomy. We aimed to establish a preoperative MVI prediction model based on readily available clinical 
and radiographic characteristics using machine learning algorithms.
Methods: Two independent cohorts of patients with HCC who underwent hepatectomy were included 
in the analysis and divided into a derivation set (466 patients), an internal validation set (182 patients), and 
an external validation set (140 patients). Least absolute shrinkage and selection operator (LASSO) analysis 
was used to optimize variable selection. We constructed the MVI prediction model using several machine 
learning algorithms, including logistic regression, k-nearest neighbors, support vector machine, decision 
tree, random forest, extreme gradient boosting, and neural network. Performance of the model was assessed 
in terms of discrimination, calibration, and clinical usefulness.
Results: The three most significant variables associated with MVI—α-fetoprotein, protein induced by 
vitamin K absence or antagonist-II, and tumor size—were identified by the LASSO analysis. Among the 
machine learning algorithms, the logistic regression model achieved the largest area under the receiver 
operating characteristic curve and was presented in the form of a user-friendly, online calculator. The 
concordance (C)-statistic of the model was 0.745 [95% confidence interval (CI): 0.701–0.790] for the 
derivation set, 0.771 (95% CI: 0.703–0.839) for the internal validation set, and 0.812 (95% CI: 0.734–0.891) 
for the external validation set. The Hosmer-Lemeshow calibration test and calibration plot indicated a good 
fit for all 3 data sets. Decision curve analysis showed the model was clinically useful.
Conclusions: This study provided a convenient and explainable approach for MVI prediction before 
surgical intervention. Our model may assist clinicians in determining the optimal therapeutic modality and 
facilitate precision medicine for HCC.
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Introduction

Hepatocellular carcinoma (HCC) ranks sixth in cancer 
morbidity and is the fourth leading cause of cancer-
related mortality worldwide (1). HCC is refractory to 
most therapies, and the prognosis remains poor (2). As the 
backbone of curative therapies for HCC, surgical treatment 
yields optimal outcomes (3). However, the relatively high 
rate of recurrence and metastasis after hepatic resection 
remains a major obstacle (4).

Microvascular invasion (MVI) is defined by the presence 
of cancer cell clusters in vessels located within the tumor 
capsule or in the peritumoral liver under microscopy (5). 
MVI has been well recognized as a risk factor for the 
early recurrence and survival of HCC after hepatectomy 
(6,7). Preoperative assessment of MVI is of great value for 
selecting suitable surgical strategies and improving the 
survival outcomes of patients with HCC (8). MVI status 
cannot be determined on imaging and currently can only 
be reliably confirmed by pathological examination of 
surgical specimens, limiting its clinical applicability (9). 
Hence, noninvasive predictors of MVI are urgently needed 
to accurately evaluate the risk of cancer recurrence and to 

determine treatment strategy, particularly regarding surgical 
intervention.

Over the past decade, substantial efforts have been made 
in the preoperative assessment of MVI. The nomogram 
provides an accurate, evidence-based, and individualized 
risk prediction tool and has been widely adopted for model 
presentation. Recently, machine learning algorithms have 
been employed to construct prediction models in the field 
of liver cancer (10). Despite these efforts to construct 
an accurate MVI prediction model, most studies have 
not validated the prediction model in external cohorts, 
decreasing the generalizability of the proposed models.

Herein, we aimed to determine the preoperative risk 
factors of MVI and to propose an MVI prediction model 
based on the identified predictors. The prediction model 
was further validated in internal and external patient 
cohorts. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2828/rc).

Methods

Patients and study design

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Affiliated 
Hospital of Nanjing Medical University (No. 2020-SRFA-
053) and the Ethics Committee of the First Affiliated 
Hospital of Wannan Medical College (No. 2018-15), and 
individual consent for this retrospective analysis was waived.

A total of 839 patients who underwent liver resection 
for histologically confirmed HCC at the First Affiliated 
Hospital of Nanjing Medical University (Nanjing, 
China) between January 1, 2020, and March 31, 2022, 
were retrospectively included. An independent external 
validation cohort of 291 patients with HCC who underwent 
hepatectomy at the First Affiliated Hospital of Wannan 
Medical College (Wuhu, China) from January 1, 2018, to 
December 31, 2021, was included.

The inclusion criteria were the following: (I) liver 
function of Child-Pugh class A or B; (II) completion of 
surgical resection; and (III) postoperative pathological 
diagnosis of HCC. The exclusion criteria were the 

Submitted May 30, 2022. Accepted for publication Oct 22, 2022. Published online Jan 06, 2023.

doi: 10.21037/atm-22-2828

View this article at: https://dx.doi.org/10.21037/atm-22-2828

Highlight box

Key findings 
• A novel machine learning model, based on α-fetoprotein, protein 

induced by vitamin K absence or antagonist-II, and tumor size, 
provides a convenient approach to predicting microvascular 
invasion risk before surgical intervention for patients with 
hepatocellular carcinoma.

What is known and what is new?  
• Microvascular invasion is a significant risk factor for hepatocellular 

carcinoma recurrence and survival after hepatectomy;
• This study provides a preoperative microvascular invasion 

prediction model based on readily available clinical and 
radiographic characteristics using machine learning algorithms.

What is the implication, and what should change now? 
• This model can be used as a convenient and explainable approach 

for microvascular invasion prediction before surgical intervention. 
This may assist clinicians in determining the optimal therapeutic 
modality and facilitate precision medicine for hepatocellular 
carcinoma.
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following: (I) any preoperative anticancer treatment; (II) 
extrahepatic metastasis; (III) HCC with macrovascular 
invasion; (IV) incomplete radical resection; (V) a history of 
other cancers; and (VI) complications of infectious diseases, 
blood system diseases, or immune system diseases.

A total of 648 patients from the First Affiliated Hospital 
of Nanjing Medical University (the FAHNMU cohort) and 
140 patients from the First Affiliated Hospital of Wannan 
Medical College (the FAHWMC cohort) were finally 
included in this study. The FAHNMU cohort was further 
randomly assigned to a derivation set and an internal 

validation set according to a ratio of 7:3 (n in derivation set 
=466; n in internal validation set =182), and the FAHWMC 
cohort was used for external validation. A flowchart of the 
study design is shown in Figure 1.

MVI diagnosis relied on the independent judgment of 
two experienced pathologists using a 7-point sampling 
protocol (11).

Statistical analysis

Variables associated with the presence of MVI were 

HCC patients with hepatectomy in 
FAHNMU between January 1, 2020, 

and March 31, 2022 (n=839)

Patients included in statistical 
analysis (n=648)

Internal validation set (n=182)

Modeling

Derivation set (n=466)

Model establishment

Model validation

Results
The risk model is well 
established and useful

Conclusions
Introducing AFP, PIVKA-II, and 

tumor size, the model is useful for 
preoperative prediction of MVI in 

HCC patients

Patients included in statistical 
analysis (n=140)

HCC patients with hepatectomy in 
FAHWMC between January 1, 2018, 

and December 31, 2021 (n=291)

Excluded (n=191) Excluded (n=151)

External validation set (n=140)

C-statistic

Decision curve analysis

Calibration plot  
Hosmer-Lemeshow test

Logistic regression  
K-nearest neighbors  

Support vector machine 
Decision tree  

Random forest  
Extreme gradient boosting  

Neural network

LASSO

Figure 1 Flowchart of study design. HCC, hepatocellular carcinoma; FAHNMU, First Affiliated Hospital of Nanjing Medical University; 
FAHWMC, First Affiliated Hospital of Wannan Medical College; LASSO, least absolute shrinkage and selection operator; AFP, 
α-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II; MVI, microvascular invasion; C-statistic, concordance 
statistic.
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evaluated a priori according to clinical importance, scientific 
knowledge, and previously reported predictors. Categorical 
variables are presented as whole numbers and proportions, 
and continuous variables are reported as medians with 
interquartile ranges (IQRs). The cutoff values of continuous 
variables were determined by the reference ranges. The 
cutoff values of the neutrophil-to-lymphocyte ratio 
(NLR) and the platelet-to-lymphocyte ratio (PLR) were 
determined by the receiver operating characteristic (ROC) 
curve and the maximum Youden index.

Variables were examined for missing values before 
the commencement of data analysis. The proportion of 
missing data ranged between 0% and 10.7%. We imputed 
missing data by multiple imputation with chained equation 
methodology, using the multivariate imputation by chained 
equations (mice) package v. 3.14.0 in R (The R Foundation 
for Statistical Computing). Baseline characteristics before 
and after imputation in the FAHNMU and FAHWMC 
cohorts are listed in Tables S1,S2. Differences between the 
groups were examined using the Fisher exact test or chi-
square test for categorical variables and the Mann-Whitney 
test for continuous variables.

To select the most useful prediction variables from 
all characteristics in the derivation cohort, we applied 
least absolute shrinkage and selection operator (LASSO) 
analysis by running cyclic coordinate descent with  
10-fold cross-validation. Subsequently, we constructed the 
MVI prediction model using 7 machine learning models, 
including logistic regression, k-nearest neighbors, support 
vector machine, decision tree, random forest, extreme 
gradient boosting, and neural network. After adjusting the 
hyperparameters (Table S3), we obtained the final models 
of the derivation and further evaluated the internal and 
external validation sets. The discrimination ability of the 
model, which refers to the predictive accuracy of individual 
outcomes, was assessed by the area under the ROC curve 
(AUC) or concordance (C)-statistic. The value of the AUC 
is equivalent to the C-statistic. We calculated and compared 
the AUC to evaluate the predictive performance of different 
machine learning algorithms.

The performance of the prediction model was further 
evaluated using the Hosmer-Lemeshow calibration test 
and plot. Decision curve analysis (DCA) was performed to 
investigate the significance of the clinical application of the 
model by calculating the net benefits at each risk threshold 
probability. The difference in survival between different 
groups was assessed using Kaplan-Meier curves.

Statistical analyses were performed in R v. 4.1.3 (http://

www.r-project.org). All tests were two-sided, and P<0.05 
was considered statistically significant.

Results

Clinicopathologic characteristics

A total of 788 patients who met the inclusion criteria were 
included in the study and divided into the derivation set  
(466 patients), internal validation set (182 patients), and 
external validation set (140 patients).

Characteristics of the derivation, internal, and external 
validation cohorts are shown in Table 1. No statistically 
significant difference was found between the 3 cohorts. 
Histopathologically identified MVI was detected in  
224 (48.07%), 89 (48.90%), and 52 (37.14%) of patients in 
the 3 cohorts, respectively.

Development of an MVI prediction model

We screened 28 variables to generate the optimal panel 
of included characteristics to construct the prediction 
model. Based on LASSO analysis, we identified 3 variables 
associated with MVI in the derivation set (Figure 2A,2B), 
including α-fetoprotein (AFP), protein induced by vitamin 
K absence or antagonist-II (PIVKA-II), and tumor size, 
with an optimal λ of 0.01611495. These 3 variables had 
nonzero coefficients in the LASSO analysis and were 
subsequently used to form the MVI risk estimation models.

Next, we employed several machine learning algorithms, 
including logistic regression, k-nearest neighbors, support 
vector machine, decision tree, random forest, extreme 
gradient boosting, and neural network to construct and 
optimize the MVI prediction model. As shown in Table 2, we 
found that the logistic regression model achieved the largest 
AUC. Therefore, we developed the MVI risk nomogram 
based on the logistic regression algorithm (Figure 3A). For 
instance, a patient with HCC and PIVKA-II greater than 
40 mAu/mL, tumor size larger than 5 cm, and an AFP level 
of 20–400 ng/mL had an estimated probability of MVI 
of 76.2% (Figure 3B). Furthermore, we deployed a user-
friendly, online calculator (https://generalsurgery.shinyapps.
io/MVIprediction/) that allowed real-time MVI probability 
prediction using the nomogram (Figure 3C).

Discrimination of the MVI prediction model

As shown in Figure 4A-4C, the discrimination of the 

https://cdn.amegroups.cn/static/public/ATM-22-2828-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2828-Supplementary.pdf
http://www.r-project.org
http://www.r-project.org
https://generalsurgery.shinyapps.io/MVIprediction/
https://generalsurgery.shinyapps.io/MVIprediction/
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Table 1 Baseline characteristics of derivation, internal validation, and external validation sets after imputation

Characteristics
Total patient 

cohort (n=788)
Patients with 
MVI (n=365)

Patients without 
MVI (n=423)

Derivation set 
(n=466)

Internal validation 
set (n=182)

External validation 
set (n=140)

P value

Age per 10 years 6.1 (5.4–6.9) 6.0 (5.3–6.9) 6.3 (5.5–6.9) 6.1 (5.5–6.9) 5.9 (5.3–6.9) 6.4 (5.3–7.1) 0.155

Gender 0.306

Female 140 (17.8) 60 (16.4) 80 (18.9) 91 (19.5) 27 (14.8) 22 (15.7)

Male 648 (82.2) 305 (83.6) 343 (81.1) 375 (80.5) 155 (85.2) 118 (84.3)

Lymphocyte 0.071

≤1.1×109/L 223 (28.3) 118 (32.3) 105 (24.8) 120 (25.8) 53 (29.1) 50 (35.7)

>1.1×109/L 565 (71.7) 247 (67.7) 318 (75.2) 346 (74.2) 129 (70.9) 90 (64.3)

Monocyte 0.580

≤0.6×109/L 640 (81.2) 290 (79.5) 350 (82.7) 382 (82.0) 143 (78.6) 115 (82.1)

>0.6×109/L 148 (18.8) 75 (20.5) 73 (17.3) 84 (18.0) 39 (21.4) 25 (17.9)

Neutrophil 0.315

≤6.3×109/L 751 (95.3) 347 (95.1) 404 (95.5) 447 (95.9) 174 (95.6) 130 (92.9)

>6.3×109/L 37 (4.7) 18 (4.9) 19 (4.5) 19 (4.1) 8 (4.4) 10 (7.1)

Platelet 0.123

≤125×109/L 322 (40.9) 141 (38.6) 181 (42.8) 183 (39.3) 71 (39.0) 68 (48.6)

>125×109/L 466 (59.1) 224 (61.4) 242 (57.2) 283 (60.7) 111 (61.0) 72 (51.4)

NLR 0.397

≤2.535 510 (64.7) 223 (61.1) 287 (67.8) 304 (65.2) 122 (67.0) 84 (60.0)

>2.535 278 (35.3) 142 (38.9) 136 (32.2) 162 (34.8) 60 (33.0) 56 (40.0)

PLR 0.170

≤92.545 378 (48.0) 151 (41.4) 227 (53.7) 219 (47.0) 82 (45.1) 77 (55.0)

>92.545 410 (52.0) 214 (58.6) 196 (46.3) 247 (53.0) 100 (54.9) 63 (45.0)

ALT 0.070

≤50 U/L 634 (80.5) 279 (76.4) 355 (83.9) 372 (79.8) 156 (85.7) 106 (75.7)

>50 U/L 154 (19.5) 86 (23.6) 68 (16.1) 94 (20.2) 26 (14.3) 34 (24.3)

AST 0.158

≤40 U/L 557 (70.7) 233 (63.8) 324 (76.6) 326 (70.0) 138 (75.8) 93 (66.4)

>40 U/L 231 (29.3) 132 (36.2) 99 (23.4) 140 (30.0) 44 (24.2) 47 (33.6)

AKP 0.398

≤120 U/L 617 (78.3) 264 (72.3) 353 (83.5) 357 (76.6) 147 (80.8) 113 (80.7)

>120 U/L 171 (21.7) 101 (27.7) 70 (16.5) 109 (23.4) 35 (19.2) 27 (19.3)

GGT 0.151

≤60 U/L 482 (61.2) 191 (52.3) 291 (68.8) 274 (58.8) 113 (62.1) 95 (67.9)

>60 U/L 306 (38.8) 174 (47.7) 132 (31.2) 192 (41.2) 69 (37.9) 45 (32.1)

Table 1 (continued)
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Table 1 (continued)

Characteristics
Total patient 

cohort (n=788)
Patients with 
MVI (n=365)

Patients without 
MVI (n=423)

Derivation set 
(n=466)

Internal validation 
set (n=182)

External validation 
set (n=140)

P value

Total bilirubin 0.421

≤19 μmol/L 600 (76.1) 274 (75.1) 326 (77.1) 354 (76.0) 144 (79.1) 102 (72.9)

>19 μmol/L 188 (23.9) 91 (24.9) 97 (22.9) 112 (24.0) 38 (20.9) 38 (27.1)

Albumin 0.052

≥40 g/L 265 (33.6) 124 (34.0) 141 (33.3) 167 (35.8) 63 (34.6) 35 (25.0)

<40 g/L 523 (66.4) 241 (66.0) 282 (66.7) 299 (64.2) 119 (65.4) 105 (75.0)

PT 0.221

≤14 s 735 (93.3) 340 (93.2) 395 (93.4) 437 (93.8) 172 (94.5) 126 (90.0)

>14 s 53 (6.7) 25 (6.8) 28 (6.6) 29 (6.2) 10 (5.5) 14 (10.0)

APTT 0.920

≤31.3 s 704 (89.3) 323 (88.5) 381 (90.1) 423 (90.8) 163 (89.6) 118 (84.3)

>31.3 s 84 (10.7) 42 (11.5) 42 (9.9) 43 (9.2) 19 (10.4) 22 (15.7)

Fibrinogen 0.588

≥2 g/L 623 (79.1) 303 (83.0) 320 (75.7) 374 (80.3) 140 (76.9) 109 (77.9)

<2 g/L 165 (20.9) 62 (17.0) 103 (24.3) 92 (19.7) 42 (23.1) 31 (22.1)

HBV 0.661

No 235 (29.8) 99 (27.1) 136 (32.2) 140 (30.0) 50 (27.5) 45 (32.1)

Yes 553 (70.2) 266 (72.9) 287 (67.8) 326 (70.0) 132 (72.5) 95 (67.9)

HBV DNA load 0.080

≤104 IU/mL 655 (83.1) 299 (81.9) 356 (84.2) 387 (83.0) 144 (79.1) 124 (88.6)

>104 IU/mL 133 (16.9) 66 (18.1) 67 (15.8) 79 (17.0) 38 (20.9) 16 (11.4)

HCV 0.201

No 764 (97.0) 353 (96.7) 411 (97.2) 450 (96.6) 175 (96.2) 139 (99.3)

Yes 24 (3.0) 12 (3.3) 12 (2.8) 16 (3.4) 7 (3.8) 1 (0.7)

AFP 0.174

≤20 ng/mL 394 (50.0) 125 (34.3) 269 (63.6) 234 (50.2) 95 (52.2) 65 (46.4)

20–400 ng/mL 203 (25.8) 107 (29.3) 96 (22.7) 127 (27.3) 46 (25.3) 30 (21.5)

≥400 ng/mL 191 (24.2) 133 (36.4) 58 (13.7) 105 (22.5) 41 (22.5) 45 (32.1)

PIVKA-II 0.110

≤40 mAu/mL 304 (38.6) 83 (22.7) 221 (52.2) 166 (35.6) 76 (41.8) 62 (44.3)

>40 mAu/mL 484 (61.4) 282 (77.3) 202 (47.8) 300 (64.4) 106 (58.2) 78 (55.7)

Cirrhosis 0.110

No 239 (30.3) 90 (24.7) 147 (34.8) 148 (31.8) 44 (24.2) 47 (33.6)

Yes 549 (69.7) 275 (75.3) 276 (65.2) 318 (68.2) 138 (75.8) 93 (66.4)

Table 1 (continued)
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Table 1 (continued)

Characteristics
Total patient 

cohort (n=788)
Patients with 
MVI (n=365)

Patients without 
MVI (n=423)

Derivation set 
(n=466)

Internal validation 
set (n=182)

External validation 
set (n=140)

P value

Ascites 0.379

No 700 (88.8) 318 (87.1) 382 (90.3) 420 (90.1) 158 (86.8) 122 (87.1)

Yes 88 (11.2) 47 (12.9) 41 (9.7) 46 (9.9) 24 (13.2) 18 (12.9)

Tumor encapsulation 0.098

Incomplete 89 (11.3) 50 (13.7) 39 (9.2) 44 (9.4) 23 (12.6) 22 (15.7)

Complete 699 (88.7) 315 (86.3) 384 (90.8) 422 (90.6) 159 (87.4) 118 (84.3)

Tumor number 0.053

Solitary 699 (88.7) 325 (89.0) 374 (88.4) 405 (86.9) 162 (89.0) 132 (94.3)

Multiple 89 (11.3) 40 (11.0) 49 (11.6) 61 (13.1) 20 (11.0) 8 (5.7)

Tumor size 0.760

≤5 cm 490 (62.2) 157 (43.0) 333 (78.7) 287 (61.6) 112 (61.5) 91 (65.0)

>5 cm 298 (37.8) 208 (57.0) 90 (21.3) 179 (38.4) 70 (38.5) 49 (35.0)

Continuous data are presented as median (interquartile range), and categorical data are presented as n (%). P value denotes the 
statistical difference among the derivation, internal validation, and external validation sets, with the Fisher exact test or χ2 test being 
used for categorical data and the Mann-Whitney test for continuous data. AFP, α-fetoprotein; AKP, alkaline phosphatase; ALT, alanine 
aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate transaminase; GGT, γ-glutamyl transferase; HBV, hepatitis 
B virus, HCV, hepatitis C virus; MVI, microvascular invasion; NLR, neutrophil-to-lymphocyte ratio; PIVKA-II, protein induced by vitamin K 
absence or antagonist-II; PLR, platelet-to-lymphocyte ratio; PT, prothrombin time.
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Figure 2 Variable selection by the LASSO model. (A) Coefficient profile plots showing how the size of the coefficients of variables shrinks 
with increasing value of the λ penalty. (B) Penalty plot for the LASSO model. The minimum criteria and the one standard error of the 
minimum criteria were chosen as the optimal values for the drawn dotted vertical lines. LASSO, least absolute shrinkage and selection 
operator.
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Table 2 AUC with 95% CIs of machine learning models used in this study

Algorithm
AUC (95% CI)

Internal validation set External validation set

Logistic regression 0.771 (0.703–0.839) 0.812 (0.734–0.891)

K-nearest neighbors 0.667 (0.601–0.733) 0.710 (0.631–0.789)

Support vector machine 0.673 (0.607–0.739) 0.742 (0.665–0.818)

Decision tree 0.676 (0.618–0.733) 0.762 (0.691–0.833)

Random forest 0.660 (0.598–0.723) 0.732 (0.655–0.809)

Extreme gradient boosting 0.738 (0.672–0.813) 0.810 (0.732–0.890)

Neural network 0.630 (0.561–0.699) 0.749 (0.674–0.824)

AUC, area under the receiver operating characteristic curve; CI, confidence interval.
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proposed model showed moderate to good performance 
for the derivation set [C-statistic 0.745; 95% confidence 
interval (CI): 0.701–0.790], internal validation set 
(C-statistic 0.771; 95% CI: 0.703–0.839), and external 
validation set (C-statistic 0.812; 95% CI: 0.734–0.891).

Model calibration

The Hosmer-Lemeshow calibration test was not significant 
for all 3 sets (derivation set: χ2=7.8775, P=0.4455; internal 
validation set: χ2=2.2515, P=0.9723; external validation set: 
χ2=3.6957, P=0.8835), indicating a good fit. Consistently, 
the calibration plots of the nomogram for these 3 cohorts 
showed moderate to good performance (Figure 5A-5C).

Clinical usefulness

According to the DCA results, the derivation set, internal 
validation set, and external validation set showed relatively 
good performance for the model in terms of clinical 

application compared with the strategies of treating all 
patients or treating no patients (Figure 6A-6C).

Furthermore, we compared patient survival between the 
two groups with or without MVI in the external validation 
set. As demonstrated in Figure 7A,7B, results from survival 
analyses showed that patients with either pathologically 
confirmed or model-predicted MVI exhibited poorer overall 
survival (P<0.001 for pathologically confirmed MVI and 
P=0.009 for model-predicted MVI), confirming the value of 
this study in the clinical context.

Discussion

The presence of MVI markedly worsens the survival 
outcomes of patients diagnosed with HCC (12). It 
is essential to determine the risk factors and develop 
prediction models for MVI to facilitate optimal therapeutic 
decisions. Herein, we incorporated clinical and radiographic 
characteristics to obtain a 3-feature-based MVI prediction 
model which was further validated in 2 independent patient 

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0 0.5 0.01.0 0.5 0.0

1.0 0.5 0.0

S
en

si
tiv

ity

S
en

si
tiv

ity
S

en
si

tiv
ity

SpecificitySpecificity

Specificity

AUC: 0.771AUC: 0.745

AUC: 0.812

A B

C

Figure 4 ROC curve of the microvascular invasion prediction nomogram. The AUC is shown for the derivation set (A), internal validation 
set (B), and external validation set (C). AUC, area under the ROC curve; ROC, receiver operating characteristic.



Chen et al. Prediction of MVI in liver cancerPage 10 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(6):249 | https://dx.doi.org/10.21037/atm-22-2828

cohorts. Based on the LASSO results, we demonstrated 
that 3 noninvasive preoperative variables, including AFP, 
PIVKA-II, and tumor size, were major factors associated 
with MVI. We compared the performance of several 
machine learning algorithms and constructed the prediction 
model using logistic regression, which exhibited the largest 
AUC among all algorithms tested.

In an attempt to identify the most important variables 
of MVI risk, we evaluated 28 noninvasive preoperative 
indicators, including clinical characteristics, imaging 
examination features, and laboratory test results. According 
to the LASSO results, we selected 3 major factors (AFP, 
PIVKA-II, and tumor size) to build the prediction model. 
AFP has been acknowledged as an important tumor 
biomarker that is associated with the risk of MVI in HCC 
(13,14). Reportedly, PIVKA-II may be more effective 
than AFP for early HCC diagnosis and is a predictive 
biomarker of MVI (15). Previous studies have confirmed 
the significance of tumor size in MVI risk prediction (16-18). 

Large tumor size is associated with an increased risk of MVI 
and HCC metastasis (19,20). Although tumor size, AFP, and 
PIVKA-II are significant factors related to MVI, clinical 
prediction models comprising only these 3 indicators are 
scant and have only been applied to patients with early 
HCC with single nodule disease (21-23).

It has been reported that multiomics data have also 
been evaluated in MVI prediction models. A recent study 
identified a transcriptomic signature to predict MVI in 
biopsy samples (24). However, liver biopsy is an invasive 
procedure and not routinely performed on patients with 
HCC who intend to undergo hepatectomy. With the rapid 
development of radiomics, a number of MVI prediction 
models have included multiscale and multiparametric 
data generated from radiomic techniques (25-27) . 
Nonetheless, an acknowledged limitation of radiomics is 
the lack of reproducibility and repeatability of the radiomic 
variables generated (28). The results of radiomics may 
vary between different radiomics or statistical analysis 
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software, from feature selection to model evaluation (29). 
In addition, some parameters in radiomics models are 
too specialized, and therefore the process of using these 
models is potentially cumbersome. In contrast, routine 

laboratory tests and clinical parameters are more commonly 
used and convenient for standardization, and data from 
different sources are comparable and accurate (30). In the 
present study, our model incorporated multidimensional 
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predictors to successfully predict MVI risk before surgery 
using routine clinical and radiographic data. Moreover, we 
established an online calculator that could automatically and 
promptly calculate the risk probability of MVI.

Recently, several studies have used machine learning 
techniques in the preoperative risk estimation of MVI 
(31,32). Most machine learning algorithms analyze large 
amounts of heterogeneous data without predefined rules 
and have been characterized as “black box” models (33). 
This “black box” inexplicability can hardly help physicians 
fulfill their ethical duties. A lack of interpretability in 
prediction models can undermine the trust of patients and 
healthcare providers (34). In this study, we also evaluated 
several “black box” machine learning algorithms, including 
k-nearest neighbors, support vector machine, decision 
tree, random forest, extreme gradient boosting, and neural 
network. However, none of these algorithms yielded a 
larger AUC than that of the logistic regression model. 
Therefore, we focused on the logistic regression algorithm, 
which is explainable and convenient for clinicians.

The advantages of our study are as follows. First, we 
incorporated multidimensional variables to build the 
prediction model, and all variables have the advantages of 
convenient data acquisition, objectivity, and ready availability. 
Second, our study had a large sample size of 788 patients, and 
the enrolled patients were not restricted to those with early 
HCC and solitary, small-sized HCC. Third, both internal 
and external validation cohorts were used to confirm the 
prediction model. Effective training of the prediction model 
ensured that the model had sufficient predictive power in 
real-world situations. Fourth, we transformed the prediction 
model into a user-friendly, online calculator based on the 3 
selected common clinical and radiographic variables. Hence, 
the prediction model can facilitate rapid risk detection and 
be easily adopted in regions with limited medical resources. 
Fifth, this study compared various machine learning 
algorithms to select the optimal model.

Several limitations with regard to this study should 
be noted. First, the retrospective nature of the present 
study introduced a potential for selection bias. Further 
prospective studies are needed to confirm the reliability 
and reproducibility of the model. Second, the patients 
recruited in this study were Chinese, and the inclusion of 
patients with HCC of different ethnicities is necessary in 
future studies to build external validation datasets. Third, 
a combination of clinical, radiographic, and multiomics 
signatures might further improve the prediction of MVI in 
patients with HCC.

Conclusions

We proposed a novel model based on AFP, PIVKA-II, 
and tumor size, which provided a convenient approach to 
predicting MVI before surgical intervention. According to 
the results of internal and external validation and the DCA 
curves, our model may assist clinicians in determining the 
optimal therapeutic modality by precisely predicting the 
MVI risk in patients with HCC.
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Supplementary

Table S1 Baseline characteristics of patients in the FAHNMU cohort (n=648) used for nomogram construction: pre-imputation and post-
imputation

Characteristic
FAHNMU cohort

P value
Pre-imputation Post-imputation

Age per 10 years 6.0 (5.4–6.9) 6.0 (5.4–6.9) –

Gender –

Female 118 118

Male 530 530

Lymphocyte –

≤1.1×109/L 173 173

>1.1×109/L 475 475

Monocyte –

≤0.6×109/L 525 525

>0.6×109/L 123 123

Neutrophil –

≤6.3×109/L 621 621

>6.3×109/L 27 27

Platelet –

≤125×109/L 254 254

>125×109/L 394 394

NLR –

≤2.535 426 426

>2.535 222 222

PLR –

≤92.545 301 301

>92.545 347 347

ALT –

≤50 U/L 528 528

>50 U/L 120 120

AST –

≤40 U/L 464 464

>40 U/L 184 184

AKP –

≤120 U/L 504 504

>120 U/L 144 144

GGT –

≤60 U/L 387 387

>60 U/L 261 261

Total bilirubin –

≤19 μmol/L 498 498

>19 μmol/L 150 150

Albumin –

≥40 g/L 230 230

<40 g/L 418 418

PT –

≤14 s 609 609

>14 s 39 39

APTT –

≤31.3 s 586 586

>31.3 s 62 62

Fibrinogen –

≥2 g/L 514 514

<2 g/L 134 134

HBV –

No 190 190

Yes 458 458

HBV DNA load 0.883

≤104 IU/mL 501 531

>104 IU/mL 107 117

Missing 40 (6.2%) 0

HCV –

No 625 625

Yes 23 23

AFP 0.983

≤20 ng/mL 312 329

20–400 ng/mL 160 173

≥400 ng/mL 137 146

Missing 39 (6.0%) 0

PIVKA-II 1.000

≤40 mAu/mL 226 242

>40 mAu/mL 378 406

Missing 44 (6.8%) 0

Cirrhosis –

No 192 192

Yes 456 456

Ascites –

No 578 578

Yes 70 70

Tumor encapsulation 1.000

Incomplete 65 67

Complete 563 581

Missing 20 (3.1%) 0

Tumor number –

Solitary 567 567

Multiple 81 81

Tumor size –

≤5 cm 399 399

>5 cm 249 249

Continuous data are presented as median (interquartile range), and categorical data are presented as numbers. AFP, α-fetoprotein; AKP, 
alkaline phosphatase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate transaminase; FAHNMU, 
First Affiliated Hospital of Nanjing Medical University; GGT, γ-glutamyl transferase; HBV, hepatitis B virus, HCV, hepatitis C virus; MVI, 
microvascular invasion; NLR, neutrophil-to-lymphocyte ratio; PIVKA-II, protein induced by vitamin K absence or antagonist-II; PLR, 
platelet-to-lymphocyte ratio; PT, prothrombin time.
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Table S2 Baseline characteristics of patients in FAHWMC cohort (n=140) used for nomogram construction: pre-imputation and post-imputation

Characteristics
FAHWMC cohort

P value
Pre-imputation Post-imputation

Age per 10 years 6.4 (5.3–7.1) 6.4 (5.3–7.1) –

Gender –

Female 22 22

Male 118 118

Lymphocyte –

≤1.1×109/L 50 50

>1.1×109/L 90 90

Monocyte –

≤0.6×109/L 115 115

>0.6×109/L 25 25

Neutrophil –

≤6.3×109/L 130 130

>6.3×109/L 10 10

Platelet –

≤125×109/L 68 68

>125×109/L 72 72

NLR –

≤2.535 84 84

>2.535 56 56

PLR –

≤92.545 77 77

>92.545 63 63

ALT –

≤50 U/L 106 106

>50 U/L 34 34

AST –

≤40 U/L 93 93

>40 U/L 47 47

AKP –

≤120 U/L 113 113

>120 U/L 27 27

GGT –

≤60 U/L 95 95

>60 U/L 45 45

Total bilirubin –

≤19 μmol/L 102 102

>19 μmol/L 38 38

Albumin –

≥40 g/L 35 35

<40 g/L 105 105

PT 1.000

≤14 s 124 126

>14 s 14 14

Missing 2 (1.4%) 0

APTT 1.000

≤31.3 s 116 118

>31.3 s 22 22

Missing 2 (1.4%) 0

Fibrinogen 1.000

≥2 g/L 107 109

<2 g/L 31 31

Missing 2 (1.4%) 0

HBV –

No 45 45

Yes 95 95

HBV DNA load 0.849

≤104 IU/mL 119 124

>104 IU/mL 14 16

Missing 7 (5.0%) 0

HCV –

No 139 139

Yes 1 1

AFP 0.999

≤20 ng/mL 58 65

20–400 ng/mL 27 30

≥400 ng/mL 40 45

Missing 15 (10.7%) 0

PIVKA-II 1.000

≤40 mAu/mL 55 62

>40 mAu/mL 70 78

Missing 15 (10.7%) 0

Cirrhosis –

No 47 47

Yes 93 93

Ascites –

No 122 122

Yes 18 18

Tumor encapsulation –

Incomplete 22 22

Complete 118 118

Tumor number –

Solitary 132 132

Multiple 8 8

Tumor size –

≤5 cm 91 91

>5 cm 49 49

Continuous data are presented as median (interquartile range), and categorical data are presented as numbers. AFP, α-fetoprotein; 
AKP, alkaline phosphatase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate transaminase; 
FAHWMC, First Affiliated Hospital of Wannan Medical College; GGT, γ-glutamyl transferase; HBV, hepatitis B virus, HCV, hepatitis C virus; 
MVI, microvascular invasion; NLR, neutrophil-to-lymphocyte ratio; PIVKA-II, protein induced by vitamin K absence or antagonist-II; PLR, 
platelet-to-lymphocyte ratio; PT, prothrombin time.
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Table S3 Hyperparameter adjustment of several machine learning algorithms in R software

Algorithm Hyperparameter

K-nearest neighbors Kernel =rectangular, k=26

Support vector machine Kernel =linear, cost =0.01

Random forest ntree =96

Extreme gradient boosting n rounds =100, max_depth =3, eta =0.01, gamma =0.5, colsample_bytree =1, min_child_weight =1, 
subsample =0.5

Neural network Hidden =2


