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Abstract: Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 

better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer 

therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. 

The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on 

BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) 

compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve 

progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of 

patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually 

develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation 

of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of 

epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment 

in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them.
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Introduction

Melanoma is the most aggressive form of skin cancer, 
representing over 10% of all skin cancers, but responsible 
for more than 80% of skin cancer-related deaths (1). 

The mitogen-activated protein kinases (MAPK) pathway 
is a key oncogenic signaling system of a relay of kinases that 
culminate in cell proliferation, differentiation and survival. 
Genomic classification of cutaneous melanoma proposed four 
subtypes: BRAF mutations, NRAS mutation, loss of NF-1 and 
triple wild-type.

The discovery of hotspot mutations in BRAF V600E, a 

key serine-threonine kinase in the RAS-RAF-MEK-ERK 
(MAPK pathway) signaling pathway, led to development of 
molecular targeted therapies for melanoma (2). Activating 
BRAF mutations harbor 50% of cutaneous melanoma 
with non-chronic sun damage (involves another tumor 
as colorectal cancer, ovarian, thyroid) (Figure 1). In other 
clinical subtypes of melanoma, BRAF mutations are present 
in 10–20% of mucosal or acral melanoma, but absent in 
uveal melanoma (3,4). The most common mutation is a 
substitution of valine to glutamic acid (V600E) or lysine 
(V600K) at codon 600 in 20% of BRAF-mutants patients (5).  
The BRAF V600R occurs in 7% of patients, presents a 
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substitution of valine to arginine. Mutations in NRAS 
are the second most common genetic alteration, being 
present in 20% of melanomas, and always exclusive to 
BRAF mutations (6). Twenty to thirty percent of mucosal 
melanomas harbor mutations or genomic amplification 
of cKIT (7). These are infrequently altered in cutaneous 
melanoma, while more than 85% of uveal melanomas 
contains mutations in GNAQ and GNA11; these mutations 
are also rarely present in cutaneous melanoma (8,9). 
BRAF inhibitors (vemurafenib, dabrafenib) and MEK 
inhibitors (trametinib) have been approved for treatment of 
unresectable or metastatic BRAF mutated melanoma, since 
they have shown improved progression-free survival (PFS) 
and overall survival (OS) compared to chemotherapy (10).  
Although responses and tumor control with BRAF inhibitors 
are impressive, durability of response is limited due to 
resistance, and evidence of disease progression can be seen 
within 6 to 8 months of starting therapy due to development of 
resistance mechanisms (11,12). Combined therapy with BRAF 
and MEK inhibitors has shown benefit in PFS and response 
rate, compared with monotherapy, delaying the appearance of 
alterations involved in resistance (13). 

Mechanisms of resistance to MAPK pathway inhibition can 
be subdivided in two groups: MAPK–dependent and MAPK-

independent. Into BRAF/MEK/ERK dependent reactivation, 
mechanisms of resistance including: amplification of BRAF, 
splicing BRAF, NRAS mutation, MEK mutation, loss of 
NF1. MAPK-independent includes: up-regulated receptor 
tyrosine kinases (RTKS), overexpression COT.

Primary and acquired resistance, tumoral 
heterogeneity

Numerous mechanisms of resistance have been detected 
using in vitro and in vivo models, and many have been 
observed in pre- and post-treatment tumor samples. It is 
very difficult to explain the behavior of neoplastic cells, but 
melanoma cells are highly heterogeneous, regardless of their 
mutational and epigenomic profile. Resistant melanoma 
cells may become so under selective pressure from therapies 
from preexisting resistant clones, or secondary as an 
evolving process during treatment. Melanoma cells do not 
show arrangement, but express great plasticity, with several 
tumor subclones sustained by the microenvironment. 
This microenvironment supports tumor growth and the 
maintenance of two populations, slow-cycling tumor cells, 
and cells with epithelial to mesenchymal transition (EMT). 
Plasticity supports organization within the tumor, and 

Figure 1 MAPK pathway. NSCLC, non-small-cell lung carcinoma; MAPK, mitogen-activated protein kinases.
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survival during treatment with BRAF inhibitors in vitro and 
in vivo (3–6% complete response) (14).

These mechanisms are known as primary or intrinsic 
resistance when no clinical benefit is achieved, and as 
secondary or acquired when progressive disease is seen after 
clinical benefit. Mechanisms of primary resistance include 
mutations in RAC1, loss of PTEN, amplification of cyclin 
D; secondary resistance mechanisms include alternative 
splicing of BRAF, BRAF copy number amplification and 
alterations in PI3K (Table 1).

Mechanisms of primary resistance

Loss of PTEN 

Loss of PTEN occurs in 10–35% of melanomas, is mutually 
exclusive to NRAS mutations and coexists with BRAF 
mutations. PTEN is lost in the most of melanomas by loss 
of heterozygosity, mutations, and methylation. PTEN 
serves a tumor suppressor and major regulator of PI3K 
(15,16). Deletions or mutations in PTEN are associated 
with shorter PFS in patients treated with BRAF inhibitors. 
It is known, that PTEN loss alone is not sufficient to 

confer resistance to BRAF inhibitors other concurrent 
alterations, such as activation of AKT, are necessary. Cell 
lines with inactivation of PTEN are less sensitive to BRAF 
inhibitors than wild-type PTEN melanoma cells (17). In 
clinical practice, patients with wild-type PTEN treated 
with BRAF inhibitors had longer PFS than patients with 
mutated PTEN (18) (32.1 vs. 18 weeks; P=0.066), and 
a weak association was seen between low expression of 
PTEN and lower response rates in patients treated with 
BRAF inhibitors (19). Dual inhibition BRAF and PI3K has 
been studied as a means of overcoming this resistance and 
restoring apoptosis in deleted PTEN cells (20).

Dysregulation of cyclin-dependent kinase 4 (CDK4)

In the cell cycle, cyclin D1 regulates proliferation through 
binding to CDK4 and CDK6, which activate retinoblastoma 
protein and lead to cell cycle progression. CDK4 mutations 
and cyclin D1 amplification confer strong resistance to 
therapy with BRAF inhibitors (21). Cyclin D1 amplifications 
are found in about 20% of BRAF mutated melanomas. 
CDK4-6 inhibitors (key regulators of G1-S transition of 
the cell cycle) alone failed to decrease tumor size, but when 
BRAF and MEK inhibitors were combined, complete 
responses were achieved in 30% of mouse models (22).

Hepatocyte grow factor (HGF) and microenvironment

Stromal cells secrete several factors such as HGF receptor 
c-MET, able to activate tumor cell growth in a paracrine 
form upregulating PI3K, thus conferring resistance to BRAF 
inhibitors or combinations of BRAF and MEK inhibitors (23).  
It was reported in cell lines that the combination of BRAF 
and AKT inhibitors or anti-MET therapies can lead to 
overcoming resistance of this pathway (24).

Loss of NF1

NF1 is a tumor suppressor of RAS; mutations of NF-1 
are present in 14% of melanomas. Inactivation of NF1 
leads to activation of RAS, PI3K-AKT-mTOR and MAPK 
pathways. NF1 mutations prevents under BRAF inhibition 
senescence of melanoma cells and too, NF1 mutations and 
NRAS mutations coexist in the inactivating BRAF, were 
been required RAS isoforms for the pro-tumorigenic activity 
of these cells. In this scenario, one means of overcoming 
resistance to BRAF inhibition is the combination of MEK 
and mTOR inhibitors (25).

Table 1 Mechanisms of resistance

Intrinsec

RAC1 mutations

Stromal secretion HFG/cMET

Aberration CDK4, cyclin D1

HOXD8 mutation

Acquired

Splicing BRAF

Copy gain or amplification BRAF

Upregulation TK receptors

ERK feedback

Intrinsec/acquired

MITF

Aberrations of PI3K/AKT pathway

Loss PTEN

Mutations MEK

COT expresión

Loss of NF1

NRAF mutations

CDK4, cyclin-dependent kinase 4; HFG, hepatocyte growth 
factor; MITF, microphthalmia-associated transcription factor.
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RAC1 mutations

RAC1 is a key regulator of motility and proliferation cells and 
a GTPase effector of RAS. RAC mutations are present in 9% 
of melanomas, coexisting with BRAF and NRAS mutations. 
In clinical practice, from a cohort of 45 patients treated with 
BRAF inhibitors, 14 showed primary resistance, three had 
RAC1 mutations, any of the which no patients with reached 
response to therapy (26,27).

Mechanisms of secondary resistance

Acquired resistance mechanisms are associated mainly with the 
reactivation of the MAP kinase pathway (>70%), sometimes it 
coexists with the reactivation of the PI3K-AKT pathway, in a 
less percentage of patients it depends in exclusive on the AKT 
reactivation in parallel (PI3K-PTEN-mTOR).

BRAF variants

BRAF inhibitors drive suppression MEK/ERK signaling, 
although they activate MEK/ERK signaling in RAS mutant 
cells. In the presence of oncogene RAS, BRAF inhibitors 
lead to the formation of CRAF-BRAF heterodimers or 
homodimers. One part of BRAF inhibitors bound to 
hetero/homodimer, and another part that is drug-free. The 
BRAF inhibitor bound leads to activation of the drug-free, 
and through conformational changes, activating CRAF, and 
finally MEK-ERK activation. To overcome this resistance 
have been tested the combination targeting of BRAF and 
MEK inhibitors.

To date, no secondary gatekeeper BRAF mutations have 
been found. Two aberrations have been described affecting 
BRAF gene: gene copy number gain or amplification of 
BRAF, and alternative splicing of BRAF. Amplification 
of BRAF is a copy gain of the mutant allele of BRAF, 
resulting in overexpression and leading to reactivation of 
ERK independently of RAS (28). This aberration has been 
detected in about 20% of melanomas after treatment with 
BRAF inhibitors. ERK reactivation could be blocked with 
higher doses of BRAF inhibitors or with the combination of 
BRAF and MEK inhibitors. However, BRAF amplification 
also has been detected in patients treated with the 
combination of MEK and BRAF inhibitors. BRAF splicing 
is present in 32% of melanomas (29). The combination of 
BRAF and MEK or single therapy with ERK inhibitors 
should prevent this phenomenon, although BRAF 
splicing has been also detected in patients treated with the 

combination of BRAF and MEK inhibitors.

NRAS mutations

NRAS mutations (Q61, Q12, Q13) occurring al either 
codon 12 or 61, and with mutations of NF1 drive MAPK 
activation in 30% of melanomas. BRAF and NRAS 
mutations are considered to be mutually exclusive. NRAS 
mutations not only activate MAPK pathway, is thought 
activate the PI3K pathway.

NRAS mutations are the second most common oncogenic 
alteration in melanoma (20%) and represent a clinical 
problem since they are associated with more aggressive 
tumors and shorter survival in early and late stage melanoma 
(30,31). The mutation of NRAS, actives transduction signals 
through CRAF in patients treated with BRAF inhibitors, 
resulting in a paradoxical transactivation of MAPK signaling 
via dimerization of BRAF and CRAF (32). Preclinical data in 
NRAS mutated patients supported the use of MEK, ERK 
and Pan-RAF inhibitors due to their high level of activity. 
In clinical trials, a MEK inhibitor (binimetinib) achieved 
20% of response rate in NRAS mutant melanoma (33).  
Two trials have now completed enrollment, one phase II 
comparing pimasertib versus dacarbacine, and another 
phase III comparing a MEK inhibitor (binimetinib) 
versus dacarbacine in an NRAS mutated population. Data 
presented, but not published of this phase III of binimetinib, 
showed significant benefit in PFS. Preclinical data are 
interesting, although the benefit from MEK inhibitors is 
transient (34). Therefore, one possibility is to look for the 
last effector of this pathway, in this case blocking CDK4. 
Clinical trials are ongoing with the combination of MEK 
and CDK4-6 inhibitors (35). One clinical trial of MEK 
inhibitor with CDK4/6 inhibitor, binimetinib with LEE011 
combination, showed 33% response rate in NRAS mutant 
population, with good tolerability.

Hyperactivation of RTKS

Overexpression or hyperactivation of RTKs could drive 
resistance by activation of parallel pathways or by direct 
induction of the RAS pathway (36). The most frequently 
involved receptors are platelet derived grow factor receptor 
beta (PDGFRβ) and insulin-like grow factor I receptor 
(IGF-1R) (37,38). The activation of these receptors is due 
to epigenetic changes. The activation of RTKs induces 
additional activation of the PI3K pathway in patients 
treated with BRAF or MEK inhibitors, therefore leading 
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to resistance (39). The epidermal growth factor receptor 
(EGFR) gene is not normally expressed in non-treated 
melanoma, but in some patients that develop resistance 
to BRAF or MEK inhibitors overexpression of EGFR is 
induced by negative feedback. In this case, it is possible 
restoring sensitivity by inhibiting EGFR (40).

Aberrations in PI3K-PTEN-AKT pathway

MAPK pathway is deregulated in more than 70% of 
melanomas, but the PI3K/AKT/mTOR pathway is 
deregulated in more than 50% of melanomas.

It has been found that in 10–20% of cases that develop 
early resistance, or are intrinsically resistant to the MAPK 
inhibition, there is a loss of PTEN, or mutations in PI3K 
or AKT. Experiments in melanoma cell lines supports 
combined treatment with BRAF/MEK plus PI3K/AKT 
inhibitors to overcome resistance. Although the results in 
preclinical models are promising, there is currently limited 
clinical data (41,42).

Targeted therapy in non-cutaneous melanoma

Uveal melanoma (5% of all melanomas) has mutations in 
GNAQ/GNA11 (codon 209 or 183) in more than 80% 
of cases, and result in partial or complete loss of GTPase 
activity, thereby leading to constitutive activation effector 
pathways. This aberration activates the MAPK or PI3K 
pathways or protein kinase C. This activation can be 
suppressed by PKC inhibitors In a phase II clinical trial, a 
MEK inhibitor (selumetinib) as monotherapy was compared 

with chemotherapy. . The study showed a benefit in terms 
of response rate and PFS, but there was no improvement in 
terms of OS (43). There are ongoing clinical trials testing 
the combination of a MEK inhibitor (trametinib) with an 
AKT inhibitor (GSK2141795), the PKC inhibitor AEB071 
as single agent or the combination of combined MEK or 
PI3K inhibitors. 

Mucosal or acral melanomas (3% of all melanomas) 
harbor mutations or amplifications in cKIT (20–30% of these 
melanomas) Activating KIT mutations lead to activation 
of KIT tyrosine kinase activity, stimulate the MAPK and 
PI3K/AKT pathway; and mutation non amplification predict 
response to TK inhibitors. The cKIT inhibitor imatinib was 
tested in in three clinical trials, demonstrating a response 
rate around 30%. Clinical trials with other ckit inhibitors 
(nilotinib, dasatinib, sunitinib) have been completed and 
results are pending (44,45) (Table 2).

Strategies to overcome resistance

Currently, the combination of BRAF and MEK inhibitors 
represents the gold standard of targeted therapy in BRAF 
mutated melanoma. However, even with this combination, 
efficacy is limited due to development of resistance. 

There are several strategies for overcoming such resistance, 
as combination with other targeted therapies, sequential/
intermittent treatment schedules, and the combination of this 
targeted therapy and with immunotherapy. 

The addition of a third drug might help to overcome 
resistance and several trials are ongoing testing the triple 
combination of MEK plus BRAF inhibitors with MET, 

Table 2 Clinical trials in progress

Phase Drugs Targets

II Vemurafenib followed ipilimumab Immunotherapy plus BRAFi

II LGX818 + MEKi/CDK4,6/FGFRi/PI3Ki/METi Sequential TKi

I/II Pembrolizumab + dabrafenib + trametinib Anti-PD1 + BRAFi + MEKi

I/II MEDI4736 + dabrafenib+ trametinib Anti-PDL1 + BRAFi + MEKi

I Dabrafenib ± trametinib + ipilimumab Anti-CTL4 + BRAFi/MEKi

I/II Vemurafenib + BKM120 BRAFi + PI3Ki

I/II Dabrafenib + GSK2141795 BRAFi + AKTi

I/II Vemurafenib + P1446A-05 BRAFi + CDKi

I Dabrafenib, trametinib, ipilimumab sequent BRAFi, MEKi, anti-CTL4

I GDC-0941 + cobimetinib PI3Ki + MEKi

I BKM120 + MEK162 PI3Ki + MEKi
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FGF, CDK, VEGF, or mTOR inhibitors (46,47). 
It has been demonstrated that in resistant melanoma 

cell lines harboring BRAF splicing forms or BRAF 
amplifications stopping BRAF inhibition, leads to melanoma 
regression (48,49). 

Treatment with MAPK inhibitors increases the 
expression of melanocytic antigens, and CD8 lymphocyte 
infi ltration. This observation supports a possible 
synergism with the combination of targeted therapy with 
immunotherapy (50). An early attempt, combining a BRAF 
inhibitor with anti-CTL4 antibody (ipilimumab), was failed 
due a high grade of hepatoxicity in the phase I trial that 
led to an early stop of the study (51). Results of the clinical 
trial testing the sequential combination of dabrafenib plus 
ipilimumab are pending. New immunotherapeutic agents, 
such as anti-PD-1 antibodies (pembrolizumab, nivolumab) 
demonstrated much higher activity and less toxicity than 
anti-CTL4 antibody. 

The tumor infiltrating cytotoxic CD8 lymphocyte is 
a component of the adaptive immune response against 
melanoma associated antigens (after treatment with 
BRAF inhibitors), circulating CD8 cells sustain a strong 
inflammatory response with cytotoxic effects. In the 
exhaustion profile of CD8, leading to their incapacity to 
proliferate and produce cytokines (IL-2, INF), is mediated 

up-regulation of inhibitory signaling pathways as PD-1, 
PD-L1 and CTL4 (52,53). Clinical trials are underway to 
determine the clinical activity of the combination of BRAF 
inhibitors with anti PD-1 antibodies (Figure 2).

Preclinical studies have demonstrated that intermittent as 
opposed to continuous therapy with a BRAF/MEK inhibitor, 
may delay the development of acquire resistance (54). There 
are several studies assessing sequential or intermittent 
dosing of BRAF and MEK inhibitors are ongoing. In 
the phase II COMBAT study (CT.gov: NCT02224781), 
patients are randomized to the combination of dabrafenib 
and trametinib versus their combination, after 8 weeks 
of monotherapy with dabrafenib or trametinib. Serial 
biopsies on treatment and at progression are used, to assess 
biomarkers related to response or resistance. Another 
clinical trial, SWOG study S1320 (CT.gov: NCT02196181) 
is looking at intermittent schedule, with the combination 
with dabrafenib y trametinib during an 8-week lead in 
period; the patients without disease progression in the lead 
period, ongoing continuous dosing or to intermittent dosing 
during 5 weeks on with 3 weeks off. In this study includes 
serial biopsies to determinate resistance mechanisms.

Reactivation of MAPKinase pathway leds to a highly 
recurrent transcriptomic alterations across resistant 
tumors, in contrast to mutations, and were correlated with 

Figure 2 Strategies to overcome resistance. CDK4, cyclin-dependent kinase 4.
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differential methylation. The authors identified in the 
tumor: c-MET up-expression, LEF1 down-expression 
and YAP1 signature enrichment, as a drivers of acquired 
resistance. The authors observed high intra-tumoral 
cytolytic T cell inflammation, prior to BRAF inhibitor 
therapy preceded CD8 T cell exhaustion, and loss of 
antigen presentation in half of progressive melanomas, 
suggesting resistance to anti PD-1/PD-L1. 

In the presence of BRAF/MEK inhibitor are the adaptive 
mechanisms of resistance. During the early phase, when 
the patients still respond to drug with inhibition MAPK 
pathway, adaptive resistance to BRAF inhibitors can occur, 
within the first 24−48 hours, leading to dampening of the 
inhibitor effect. Adaptive signaling seen involves: acquired 
EGFR and PDGFR expression, increase sensitivity to 
grow factors as EGF, FGF, HGF, neuregulin-1; increased 
phosphorylation AKT, up-regulation ERBB3 and enhanced 
MITF expression (55).

Recently, it has been published that an oncogene MITF 
is a driver of an early non-mutational and reversible drug 
tolerance state, which is induced by PAX-3-mediated up-
regulation of MITF, before acquire resistance. Nelfinavir, 
HIV-1 protease inhibitor, was showed as a potent suppressor 
of PAX3 and MITF expression. Nelfinavir sensitizes BRAF, 
NRAS and PTEN mutant melanoma cells to MAKP 
inhibitors (56).

Conclusions 

Targeted therapies are highly active drugs against metastatic 
melanoma. Different mechanisms of resistance have been 
described: epigenetic (57), genomic (58) and phenotypic (59) 
changes produces several alterations, leading to intrinsic, 
acquired or adaptive resistance. Tumor heterogeneity is a 
major driver of resistance in melanoma. In clinical practice, 
combination of BRAF and MEK inhibitors is the gold 
standard for metastatic BRAF mutant melanoma patients. 
The combination is highly active, but the duration of 
response is limited due to the development of acquired 
and adaptive resistance mechanisms. In order to overcome 
this phenomenon, there are different strategies, as the 
combination with other drugs—as CDK, PI3K, ERK 
and AKT inhibitors, intermittent schedules, and the 
combination with immunotherapy drugs.
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