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Background: Parkinson’s disease (PD) is a common, degenerative disease of the nervous system that is 
characterized by the death of dopaminergic neurons in the substantia nigra densa (SNpc). There is growing 
evidence that copper (Cu) is involved in myelin formation and is involved in cell death through modulation 
of synaptic activity as well as neurotrophic factor-induced excitotoxicity. 
Methods: This study aimed to explore potential cuproptosis-related genes (CRGs) and immune infiltration 
patterns in PD and the development of Cu chelators relevant for PD treatment. The PD datasets GSE7621, 
GSE20141, and GSE49036 were downloaded from the Gene Expression Omnibus (GEO) database. The 
consensus clustering method was used to classify the specimens of PD. Using weighted gene co-expression 
network analysis (WGCNA) and random forest (RF) tree model, support vector machine (SVM) learning 
model, extreme gradient boosting (XGBoost) model, and general linear model (GLM) algorithms to screen 
disease progression-related models, the column charts were created to verify the accuracy of these CRGs in 
predicting PD progression. Single sample genomic enrichment analysis (ssGSEA) was used to estimate the 
correlation between genes associated with copper poisoning and genes associated with immune cells and 
immune function. Molecular docking was used to verify interactions with copper chelating agents associated 
with cuproptosis for PD treatment.
Results: Through ssGSEA, we identified three copper poisoning related genes ATP7A, NFE2L2 and 
MTF1, which are related to immune cells in PD. We also verified that LAGASCATRIOL can bind to 
NFE2L2 through molecular docking. Consistent cluster analysis identified two subtypes, among which C2 
subtype was just enriched in PD. And to more accurately diagnose PD progression, patients can benefit from 
a feature map based on these genes.
Conclusions: CRGs such as NFE2L2, MTF1, and ATP7B were identified to be associated with the 
pathogenesis of PD and provide a possible new direction for the treatment of PD, which needs further in-
depth study.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder with a high prevalence. According to statistics in 
2016, over 6 million people had PD worldwide and the 
number of people with PD is estimated to increase with the 
age of the population (1). Patients with PD often require the 
companionship of caregivers, most of whom are under great 
stress, and this service imposes a heavy socio-economic 
burden on society (2). The clinical features of the disease 
include motor symptoms, including bradykinesia, resting 
tremor, and rigidity, and non-motor symptoms, including 
loss of smell, autonomic dysfunction, depression, cognitive 
impairment, and insomnia. The main pathological features 
of PD are progressive loss of nigrostriatal dopaminergic 
neurons and abnormal α-synuclein aggregation called Lewy 
vesicles (3), but the exact etiology of PD is still unclear.

In recent years, the pathological process involved in 
PD-associated neuronal death has been thought to be 
apoptosis, and a variety of cell death and mechanisms have 
been found to be involved in PD pathogenesis, including 
autophagy, necroptosis, cell death-dependence, iron death, 
and cell scorching (4-7). It has been shown that corynoxine 
derivative CB6 inhibits PD progression in mice by inducing 
PIK3C3 complex-dependent autophagy, whereas metformin 
ameliorates depression-like behavior in experimental 

PD by inducing autophagy in the substantia nigra and 
hippocampus (8,9). There is evidence that excessive 
copper (Cu) administration leads to a 40–60% reduction 
in the binding of dopamine (DA) D2 receptors to (3H)-
spiperone and results in neuronal cell death and α-synuclein 
aggregation (10). This confirms the possibility that Cu-
induced thiol modifications are involved in an important 
mechanism of PD progression. Another study found that 
Cu can be involved in the pathogenesis of PD by catalyzing 
harmful redox reactions including oxygen derivatives that 
increase oxidative stress (11). Not only this, but Cu in 
the brain can be directly responsive to neurotransmitters, 
leading to the oxidation of DA, which in turn promotes the 
progression of PD (12). Recently, Tsvetkov et al. revealed 
that Cu toxicity in human cells occurs through the direct 
binding of excess Cu to the lipid acylated component 
of the tricarboxylic acid (TCA) cycle. This leads to the 
accumulation of lipid acylation-related proteins, loss of 
iron-sulphur cluster proteins, and ultimately cell death due 
to intracellular proteotoxic stress, a new form of cell death 
known as ‘cuproptosis’ (13). Therefore, modulating Cu 
ions and lipid acylation in the TCA cycle may be a potential 
therapeutic strategy to improve the prognosis of PD. 

Integrated bioinformatics analysis is now widely used to 
identify potential novel biomarkers and their role in various 
diseases, A series of bioinformatic analyses using expression 
profiles of peripheral blood mononuclear cells (PBMC) have 
been performed to identify differentially expressed genes 
associated with humoral immunomodulatory mechanisms 
between PD and healthy controls (14), but a relevant 
and novel comprehensive bioinformatic analysis of PD 
patients and healthy controls in the substantia nigra densa 
(SNpc) is lacking. We aim to screen potential PD patients 
at the genetic level and explore novel mechanisms of PD 
pathogenesis and initially explore novel therapeutic targets. 
We collected a total of 19 genes associated with cuproptosis 
by reviewing the literature (13,15). The GSE49036 dataset, 
which contains 8 control brain samples and 20 PD brain 
samples, was used to look for differentially expressed 
cuproptosis genes and explore their immune infiltration 
patterns with immune-related genes and PD, and also 
further explored these cuproptosis-related differentially 
expressed genes (CR-DEGs)-targeted small molecule drugs. 
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Highlight box

Key findings 
• Cuproptosis-related genes such as NFE2L2, MTF1, and ATP7B 

were identified to be associated with the pathogenesis of PD and 
provide a possible new direction for the treatment of PD.  

What is known and what is new?  
• We then screened 19 Cu amination-associated genes from previous 

literature .
• We found that NFE2L2 and MTF1 expression was upregulated 

in PD tissues and ATP7B expression was downregulated in PD 
tissues.

What is the implication, and what should change now? 
• In future studies, we will focus on the mechanisms of action of 

ATP7B, NFE2L2, and MTF1 in PD and explore early diagnostic 
biomarkers for PD and it provides a new therapeutic target.
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The PD patients were further clustered, and the clinical and 
clustering key module genes were obtained using weighted 
gene co-expression network analysis (WGCNA). The most 
relevant diagnostic marker genes for PD were screened 
by machine learning and receiver operating characteristic 
(ROC) curve analysis was used to distinguish patients 
with PD from healthy controls. The diagnostic efficacy 
was finally validated using GSE7621 and GSE20141. In 
conclusion, this study explored the possible mechanisms of 
action of cuproptosis-related genes (CRGs) in PD and the 
combined immune infiltration pattern as a new therapeutic 
target for them. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-5756/rc).

Methods

Data download

Three tissue sequencing datasets of RNA microarray 
data on PD nigrostriatal samples were downloaded from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/): GSE7621 (9 control brain 
samples and 16 PD brain samples), GSE20141 (8 control 
brain samples and 10 PD brain samples), and GSE49036 
(8 control brain samples and 20 PD brain samples). These 
datasets were analyzed using the Affymetrix Human 
Genome U133 Plus 2.0 array on the GPL570 (Affymetrix 
GeneChip Human Genome U133 Plus 2.0 Array) platform. 
The above data were extracted and transformed with gene 
names using Perl software (https://www.perl.org/). We then 
screened 19 Cu amination-associated genes from previous 
literature (16). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Data processing and CR-DEGs screening

To find differences in the expression of cuproptosis genes 
in the substantia nigra of PD patients compared to normal 
controls, CRGs were screened from the GSE49036 dataset 
using the limma package of R software (The R Foundation 
for Statistical Computing, Vienna, Austria) and CR-DEGs 
screening was performed on 20 PD samples and 8 control 
brain tissues. ggpubr package for box plot and heat map 
presentation of the results.

Gene set enrichment analysis

To understand the impact of CR-DEGs on the mechanisms 
of PD disease development, we performed a single-sample 
gene set enrichment analysis (ssGSEA), using the limma 
package, org.Hs.eg.db, and clusterProfiler package, to an 
analysis and visualization of the diagnostic genes.

Investigation of immune cell infiltration

To understand the immune microenvironment in PD, 
we used a previously established method (17) to quantify 
immune infiltration and associated immune functions by 
ssGSEA, which calculates an enrichment score representing 
the level of immune cell infiltration and immune-related 
pathway activity. The “ggplot2” package was used to create 
a heat map of the distribution and variation of immune 
cells.

Competing endogenous RNA network search

To find possible messenger RNA-microRNA-long 
noncoding RNA (mRNA-miRNA-lncRNA) network 
relationships for CR-DEGs, we firstly searched MiRanda 
(http://www.microRNA.org), miRDB (http://www.
miRDB.org/), and TargetScan (http://www. TargetScan.
org/vert_71/) to find miRNAs for PD-CR-DEGs. The 
screening criteria were that the miRNAs predicted by all 3 
databases were the mRNA-miRNAs we were looking for, 
and then the lncRNAs corresponding to the miRNAs were 
found by using the spongeScan website (18) (spongeScan: a 
web for detecting microRNA binding elements in lncRNA 
sequences). Finally, the predictions were visualized using 
Cytoscape 3.8.2 (https://cytoscape.org/).

Drug screening and molecular docking

We used the DGIdb database (https://dgidb.genome.wustl.
edu/) for drug prediction of differential genes in order to 
explore possible targeting small molecule drugs for CR-DEGs. 
Using the search drug-gene interactions option on the web 
page, and by entering PD-CR-DEGs into the prediction, 
results were obtained and downloaded from the webpage 
by censoring the gene-drugs reported in the literature and 
visualizing the results of the gene-drug prediction network 
using Cytoscape 3.8.2. The top 5 gene-drug interaction scores 
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were selected by eliminating chemotherapeutic drugs from the 
above results and using AutoDock to perform small-molecule 
drug-large-molecule protein docking, as in our previous 
studies (19,20). The energy required for docking was heat 
mapped using the R package pheatmap.

Genotyping and enrichment analysis

First, we found CR-DEGs by the methods described above. 
We used the R package to classify patients into different 
molecular subtypes based on the expression of CRGs. The 
R package ConsensusClusterPlus was used to remove the 
control samples from the GSE49036 dataset, retaining 
only the experimental samples. We set the cluster maxK 
=9, selected the most significant clusters by consistency 
scoring, and used principal component analysis (PCA) to 
determine whether the clusters were significant. The R 
software Limma and pheatmap packages were then used to 
explore the differential PD CR-DEGs after clustering, and 
to investigate CR-DEGs with molecular subtype salient 
features, we performed a gene set variation analysis (GSVA) 
using the marker gene set (c2. c2.cp.kegg.symbols.gmt, 
c5.go.symbols.gmt) from the MSigDB database derivation. 
We then used the Profiler package in R to analyze the 
enrichment features of the genes. The results were 
visualized using the “ggplot2” package.

Weighted co-expression network construction

We constructed a co-expression network of DEGs using the 
WGCNA package in R. Next, Pearson’s correlation matrix 
was performed on pairs of genes. To further analyze the sample 
clustering to detect outliers, we calculated the dissimilarity 
of the module feature genes, selected tangents to the module 
dendrogram, and merged some modules. Module assignments 
determined by dynamic tree cuts were shown using the colored 
rows below the dendrogram. By analyzing the module-trait 
relationships between module trait genes and clinical traits, 
two modules associated with a specific trait were identified. 
The same approach was used to cluster type the two modules 
associated with a specific trait and their most significant trait 
modules were Venn diagrammed to find the clinical traits and 
the common trait genes that were significant after clustering.

Machine learning methods for filtering feature model 
construction and validation
After clustering, the above obtained clinical traits and 

significant common trait genes were used to construct a 
random forest (RF) tree model, support vector machine 
(SVM) learning model, extreme gradient boosting (XGBoost) 
model, and general linear model (GLM) using R software, 
recursive feature elimination (RFE) in Random Forest 
Algorithm is a supervised machine learning method for 
sequencing genes associated with copper poisoning in PD. 
The prediction performance was estimated by ten-fold 
cross-validation, and the genes whose relative importance 
was >0.25 were identified as the characteristic genes. SVM 
is a small sample learning method, which basically bypasses 
the traditional process of induction to deduction, realizes 
efficient “reverse reasoning” from training to prediction of 
samples, and simplifies common classification and regression 
problems. XGBoost is a representative algorithm based on 
integrated lift, which complements the overfitting problem 
of gradient lift model. The GLM is an extension of the 
traditional linear model, which is an algorithm in which the 
population mean is passed by a nonlinear join function to 
better process and obtain non-normally distributed data (21).  
Using the four methods described above to construct a 
diagnostic model with characteristics, the data samples were 
first subjected to residual analysis, and to plot the reverse 
cumulative distribution of residuals for the four methods. 
The ROC curves of the four methods were plotted, and the 
best feature models for machine learning were selected based 
on the reverse cumulative scores of the residuals and the area 
under the curve (AUC) values under the ROC curves. The 
best predictive models were plotted on column line plots, 
calibration curves, and decision curves using packages such 
as rms and rmda. Finally, the ROC curves were used to verify 
the diagnostic performance of the models in the GSE7621 
and GSE20141 datasets. 

Statistical analysis

All statistical analyses were performed using R version 
4.1.0, One-way ANOVA was performed to compare the 
differences among multiple groups (≥2 groups). The 
Student’s t-test was used to compare the differences between 
the two groups. Statistical significance was set at P<0.05.

Results

Study process 

Figure 1 show all the processes analyzed. First, PD-brain 
nigrostriatal sequencing data were retrieved from the GEO 
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Figure 1 Flow chart of the systematic analysis of cuproptosis-related diagnostic genes and medication of PD. In WGCNA selection, red 
represents a positive association with PD, while blue represents a negative association with PD. In the energy heat map, the redder the 
color, the greater the energy required for intermolecular binding. In PD-immunocorrelation analysis diagnostic genes, red represents 
high expression in PD tissue, while blue represents low expression in PD tissue. *, P<0.05; **, P<0.01; ***, P<0.001. GEO, gene expression 
omnibus; CR-DEGs, cuproptosis-related differentially expressed genes; PD, Parkinson’s disease; WGCNA, weighted gene co-expression 
network analysis; AUC, area under the curve; ROC, receiver operating characteristic; RF, RF random forest tree; SVM, support vector 
machine; XGB, Tree Ensemble; GLM, generalized linear model. 

Identification CR-DEGs

GSE762; GSE20141; GSE49036

PD-immunocorrelation analysis diagnostic genes

CR-DEGs immunocorrelation analysis diagnostic genes

CR-DEGs targeted drugs CR-DEGs boxplot in PD WGCNA selection
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Molecular docking energy heat map

Molecular docking

Machine learning model ROC curve

ROC curve
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database, and the GSE49036 dataset was used to screen 
CR-DEGs and explore their correlation and single-gene 
GSEA pathway analysis. Correlations between individual 
genes and immune cells were then explored, a CR-DEGs 
mRNA-miRNA-lncRNA network was constructed, a gene-
drug network was constructed, and molecular docking was 
performed to explore the feasibility of their binding. The 
molecular subtypes of CR-DEGs present in PD were then 
explored, WGCNs with clinical and clustering typing were 
constructed, and the clustered typing was crossed over to 
the clinical module genes. The crossed genes were then 
used to construct a diagnostic model using machine learning 
and the diagnostic model was proved using GSE7621 and 
GSE20141.

Identification of CR-DEGs in PD and correlation analysis 
between genes

The GSE49036 data were normalized and CRGs were 
extracted using the limma package of R software and 
screened for DEG analysis. According to the screening 
criteria: P<0.001, indicated by “***”, P<0.01, indicated by 
“**” and P<0.05, indicated by “*”, heat maps (Figure 2A) 
and box plots (Figure 2B) were drawn using pheatmap and 
ggpubr software packages to visualize the differential gene 
expression results.

Correlation analysis of expression of the above-
mentioned genes in PD patients was performed using the 
corrplot package of R software and the results showed that 

ATP7B was negatively correlated with NFE2L2 and MTF1 
and that NFE2L2 was positively correlated with MTF1. The 
results of expression correlation between genes were also 
visualized using the circlize package (Figure 3).

GSEA of PD tissue and CR-DEGs

Single-gene GSEA enrichment analysis was performed to 
explore the potential mechanisms of action of cuproptosis-
related genes such as NFE2L2, MTF1 and ATP7B in PD, as 
shown in Figure 4. Interestingly, all 3 genes were associated 
with the synaptic vesicle cycle, although they were down-
regulated in NFE2L2 and MTF1, down-regulated in 
ATP7B. In contrast, the ATP7B up-regulated signaling 
pathway is also related to Citrate cycle (TCA cycle), 
Nicotine addiction, Retinol metabolism, Starch and sucrose 
metabolism, etc. whereas NFE2L2 and MTF1 were jointly 
associated with Proteasome, and MTF1 down-regulation 
signaling pathway was associated with 2-oxocarboxylic 
acid metabolism, glycosphingolipid biosynthesis—globo 
and isoglobo series, and so on. NFE2L2 down-regulation 
was associated with aminoacyl-tRNA biosynthesis, 
glycosphingolipid biosynthesis—globo and isoglobo series, 
and so on.

These results indicate that NFE2L2, MTF1, and 
ATP7B may be involved in the regulation of the synaptic 
vesicle cycle, which in turn affects brain neurotransmitter 
transmission and may be involved in aerobic metabolism of 
brain tissue, leading to disease progression.

Figure 2 CR-DEGs in PD. (A) Heat maps of the 3 CR-DEGs in PD; the color of the columns represents the gene expression of the tissue 
samples, with red indicating high expression and green indicating low expression. (B) The CR-DEGs boxplot in PD. *, P<0.05; **, P<0.01. 
CR-DEGs, cuproptosis-related differentially expressed genes; PD, Parkinson’s disease.
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Immunocorrelation analysis of PD tissue and CR-DEGs

To explore the immune cell infiltration of CR-DEGs 
in PD, we performed GSEA of dataset GSE49036 
using the immune gene set “immune.gmt”, as shown in  
Figure 5A,5B. CD8 T cell was highly expressed in normal 
controls with PD tissue, whereas plasmacytoid dendritic 

cell (DC), macrophage, immature B cell, myeloid-derived 
suppressor cells (MDSCs), mast cell, neutrophil, natural 
killer (NK) T cell, type 2 T helper cell, T follicular helper 
cell, and other immune cells were highly expressed in 
PD substantia nigra versus normal brain tissue. We also 
explored the relationship between individual genes of 
CR-DEGs and immune cells (see Figure 6). ATP7B was 
associated with activated B cell, CD56 dim NK cell, 
central memory CD4 T cell, central memory CD8 T cell, 
macrophage, mast cell, MDSC, monocyte, NK cell, NK 
T cell, plasmacytoid DC, and T follicular helper cell, and 
other immune cells were negatively correlated, whereas 
NFE2L2 was negatively correlated with MTF1 and type 
17 T helper cell, plasmacytoid DC, NK T cell, central 
memory CD8 T cell, NK cell, monocyte. Memory B cell, 
mast cell, and activated B cell were positively correlated, 
and interestingly, they were negatively correlated with 
effector memory CD8 T cell expression; it is possible that 
these immune cells are involved in the midbrain substantia 
nigra of PD degenerative death of dopaminergic neurons, 
and CR-DEGs such as NFE2L2, MTF1, and ATP7B may be 
promising targets for immunotherapy in PD.

PD-CR-DEGs ceRNA network search

To further explore the complex molecular interaction 
mechanism between the NFE2L2, MTF1, and ATP7B genes, 
we created an mRNA-miRNA-lncRNA network relationship 
diagram, as shown in Figure 7. This complex network has 
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Figure 5 Immunogene set analysis of immune infiltration patterns in PD and normal conditions. (A) Heat maps of immunogene set analysis 
of PD samples and the color of the columns represents the gene expression of the tissue samples, with red indicating high expression and 
green indicating low expression. (B) Violin plot showing the difference in infiltrating immune cells between the two groups. PD, Parkinson’s 
disease; MDSC, myeloid-derived suppressor cell.
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Figure 6 Immunogene set analysis of immune cell in ATP7B, MTF1, and NFE2L2; heat map of ATP7B, MTF1, and NFE2L2 correlation 
with immune cells. MDSC, myeloid-derived suppressor cell.

Figure 7 ceRNA network in ATP7B, MTF1, and NFE2L2. Red circles represent mRNAs, green triangles represent miRNAs, and purple 
diamonds represent lncRNAs. mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long noncoding RNAs.
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60 nodes and 99 interactions, including 40 miRNAs and 17 
lncRNAs, which may provide us with a new idea to explore 
the pathogenesis of cuproptosis-related PD.

Prospective small molecule drug for PD therapy

In order to explore Prospective small molecule drugs for 
PD therapy, downloaded the results of NFE2L2, MTF1, and 
ATP7B targeting drugs from the DGIdb database and selected 
drugs with documented results (see Table 1) and presented the 
gene-drug results using Cytoscape (Figure 8A). We finally 
selected the top 5 NFE2L2 gene-drug interaction scores 
for small molecule drug-macromolecule protein docking 
using AutoDock. The energy required for docking is 
shown in Figure 8B, with the lowest energy required for 
docking LAGASCATRIOL to NFE2L2. Figure 9A shows a 
visualisation of the overall picture of the molecular docking 
results of the NFE2L2 protein in LAGASCATRIOL,  
Figure 9B shows a local view of the molecular docking 
results visualising the small molecule drug with the protein, 
see Figure 9C. LAGASCATRIOL is able to form 1 ionic 
bond each with arginine at position 456 and 504 of NFE2L2, 
and 2 ionic bonds with aspartic acid at position 457.

Clustering based on the CR-DEGs in the PD sample

In GSE49036, cluster analysis was performed to classify the 
PD samples into different molecular subtypes and examine 
the subtypes using PCA based on the expression of the 3 
CR-DEGs selected above (Figure 10A,10B). We named 
the 2 clusters as CRGClusters C1 and C2, respectively. 
Differential analysis of the 2 CRGClusters showed that 
ATP7B expression was significantly higher in C1 compared 
to C2, whereas NFE2L2 and MTF1 in C1 had significantly 
higher ATP7B expression compared to C2 expression, 
which was significantly decreased (Figure 10C). In the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), comparison 
between the two clusters in the GSEA also revealed 
significantly different KEGG pathway enrichment profiles, 
interestingly on PARKINSONS_DISEASE, but also on 
ubiquitin-mediated proteolysis, oxidative phosphorylation, 
and citrate cycle tca cycle, which were up-regulated, 
whereas tgf beta signaling pathway and spliceosome were 
down-regulated (Figure 10D). In contrast, among the Gene 
Ontology (GO) biological down-regulated in pathways: 
immunological synapse formation, positive regulation of 
hemopoiesis, positive regulation of b cell differentiation, 
regulation of endodermal cell differentiation, regulation of 

synaptic vesicle endocytosis, dendrite extension, presynaptic 
dense core vesicle exocytosis, regulation of postsynaptic 
vesicle exocytosis, and regulation of postsynaptic cytosolic 
calcium ion concentration (Figure 10E). These results 
suggest a possible involvement in the production and 
transmission of neurotransmitters in the brain, and possibly 
in dendritic production related to the progression of PD by 
causing a significant reduction in striatal DA content.

WGCNA co-expression analysis of PD samples

We first conducted a WGCNA analysis of clinical trait 
correlations in order to select the top 25% of genes 
with the greatest fluctuations for WGCNA analysis 
and cut off outlier samples, with the remaining samples 
being included in the analysis (Figure 11A). As shown in  
Figure 11B, scale independence reached 0.9 when power 
=8 and mean concordance was high. Therefore, power 
=8 was used to construct co-expression modules to obtain 
preliminary module delineation results, and the results of 
WGCNA showed that different modules were identified 
with different colors (Figure 11C). To detect outliers, trees 
were constructed using the eigenvalues of the modules, 
and then the distances of the trees belonging to the same 
branch were very close were merged and the intercept 
value was set to 0.5 (Figure 11D). Co-expression modules 
were constructed as shown in Figure 11E and the results 
were obtained after merging similar modules. Based on 
the eigenvalues of the samples in each module and the 
characteristics of the samples, correlation analysis was 
performed to identify modules associated with specific 
traits, and the genes represented by MEblack were highly 
positively correlated in PD (Figure 11F).

In the same way that we performed WGCNA analysis of 
correlations after typing, we cut off outlier samples (Figure 12A) 
as in Figure 12B when power =7, scale independence reached 
0.9, modules were identified by color and eventually found 
to be characterized after typing (Figure 12C-12F), with the 
genes represented by MEyellow being highly positively 
correlated in CRGCluster C1 (Figure 12F).

Machine learning builds diagnostic models

We crossed the clinical trait and typed common trait gene 
modules to find a total of 72 trait genes (Figure 13A). We 
used the GSE49036 dataset to extract the 72 trait genes 
and used the RF tree, SVM, XGB, and GLM algorithms to 
build diagnostic models with the traits. We first analyzed 



Annals of Translational Medicine, Vol 11, No 1 January 2023 Page 11 of 21

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(1):11 | https://dx.doi.org/10.21037/atm-22-5756

Table 1 Identification of drug for cuproptosis-related DEGs in PD

Gene Drug Sources PMIDs Query score Interaction score

ATP7B Platinum NCI 15213293 0.61 1.77

ATP7B Oxaliplatin NCI 15213293 0.23 0.67

ATP7B Carboplatin NCI, PharmGKB 26194361, 15213293 0.22 0.63

ATP7B Daunorubicin PharmGKB 25119182 0.13 0.39

ATP7B Cisplatin NCI 12509969, 11605050, 15213293 0.24 0.34

NFE2L2 Chembl128729 DTC 23742639 8.61 0.15

NFE2L2 Andalusol DTC 23046382 8.61 0.15

NFE2L2 Lagascatriol DTC 23046382 8.61 0.15

NFE2L2 Suforaphane_
isoselenocyanate

DTC 20304643 8.61 0.15

NFE2L2 Dimethyl fumarate DTC 23647822 4.3 0.08

NFE2L2 Chembl398412 DTC 21956953 2.87 0.05

NFE2L2 Irofulven NCI 9195958 2.87 0.05

NFE2L2 Pyrazole NCI 16374848 2.15 0.04

NFE2L2 Fibroblast growth factor-1 NCI 15870071 2.15 0.04

NFE2L2 Dicumarol DTC, NCI 12584558 1.84 0.03

NFE2L2 Sulforaphane DTC 20304643 1.23 0.02

NFE2L2 Bardoxolone methyl DTC 26278028 1.08 0.02

NFE2L2 Lycopene NCI 18566994 1.08 0.02

NFE2L2 Ionomycin NCI 15294043 0.96 0.02

NFE2L2 Capsaicin DTC, NCI 17979524 0.86 0.02

NFE2L2 Flutamide DTC, NCI 16055512 0.68 0.01

NFE2L2 Hypericin NCI 17219054 0.66 0.01

NFE2L2 Deferoxamine NCI 16950787 0.61 0.01

NFE2L2 Epoetin beta NCI 16707229 0.61 0.01

NFE2L2 Bromocriptine NCI 18455424 0.54 0.01

NFE2L2 Wortmannin DTC, NCI 12391262 0.46 0.01

NFE2L2 Tretinoin DTC, NCI 18048326 0.45 0.01

NFE2L2 Bleomycin NCI 15208274 0.45 0.01

NFE2L2 Rosiglitazone NCI 18302760 0.37 0.01

NFE2L2 Epigallocatechin gallate NCI 16950787 0.33 0.01

NFE2L2 Staurosporine NCI 11035812 0.32 0.01

NFE2L2 Indomethacin NCI 11909699 0.25 0

NFE2L2 Lithium NCI 18619545 0.19 0

NFE2L2 Simvastatin NCI 17928392 0.16 0

NFE2L2 Dexamethasone DTC, NCI 15870285 0.16 0

NFE2L2 Sirolimus NCI 17652445 0.15 0

NFE2L2 Curcumin DTC 23742639 0.12 0

NFE2L2 Alcohol NCI 18759561 0.1 0

NFE2L2 Doxorubicin NCI 18413364 0.09 0

DEGs, differentially expressed genes; PD, Parkinson’s disease.
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Figure 8 Search for ATP7B, MTF1 and NFE2L2 targeted drugs AND Molecular docking energy heat map. (A) The ATP7B and NFE2L2 
targeted drugs; (B) molecular docking of NFE2L2 proteins in andalusol, chembl128729, dimethyl_fumarate, lagascatriol, suforaphane_
isoselenocyanate, the ordinate value is the energy of docking (Kcal/mol). The redder the color, the greater the energy required for 
intermolecular binding.

the data samples for residuals, the reverse cumulative 
distribution of the residuals of the four algorithms is plotted 
(Figure 13B). The XGB model has smaller residuals for 
most samples, while the GLM has higher residuals for 
many samples than the XGB model. The box plots of the 
residuals of the 4 algorithms (Figure 13C), with the red 
dots indicating the root mean square of the residuals, were 

ranked as follows: XGB < SVM < RF < GLM, and the 4 
models were validated with ROC curves. The AUC values 
of the four models were as follows: RF =0.833; SVM =0.833; 
XGB =0.917; GLM =0.833 (Figure 13D).

Finally, we chose the XGB model and used the GSE7621 
and GSE20141 gene sets to validate the ROC curves for 
the XGB model (Figure 13E,13F), with corresponding AUC 
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Figure 9 NFE2L2 protein docking with LAGASCATRIOL. The molecules and drugs with the lowest docking energies are visualized in 
Figure 8. (A-C) Visualization of molecular docking results for NFE2L2 proteins in LAGASCATRIOL.

A B C

Figure 10 Two different subtypes of PD divided by consensus clustering and GSVA-GO and KEGG enrichment analysis (A) defined two 
clusters (k=2) and the consensus matrix heat map of their related regions. (B) PCA analysis showed significant transcriptome differences 
between the two subtypes. C1 is shown in green, C2 in red, and there is no sample overlap between them. (C) Box plots showed that ATP7B, 
MTF1 and NFE2L2 genes were significantly different between class A and B. Asterisks indicate statistical P values (**P<0.01; ***P<0.001). (D) 
GSVA-GO enrichment analysis N in the two clusters, where red and blue represent BP, CC, MF in activated GO and BP, CC, MF (E) in 
inhibited GO, respectively, and GSVA-KEGG enrichment analysis in red and blue represent activation pathway and inhibition pathway. BP, 
biological process; CC, cell component; MF, molecular function; RIA, ruptured intracranial aneurysm; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; PD, Parkinson’s disease; GSVA, gene set variation analysis; PCA, principal component analysis.
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Figure 11 WGCNA selection of PD disease-related modules co-expressed genes. (A) Outliers were detected in the sample cluster. (B) The 
cut-off point was set as 0.9, and the soft threshold power was set as β=8. (C) Tree diagram of all DEGs based on the cluster of difference 
measurement. The colored bands show the results from the automated monolithic analysis. (D) Correlation diagram between modules 
obtained by clustering according to inter-gene expression levels. (E) Heat map of the correlation between module characteristic genes and 
phenotypes. We chose the MEblack module for subsequent analysis (the ordinate value is the correlation coefficient of feature module). 
(F) Module membership vs. gene significance, cor is disease correlation coefficient, P is the P value of correlation coefficient. ME, module 
eigengene; WGCNA, weighted gene co-expression network analysis; PD, Parkinson’s disease; DEGs, differentially expressed genes.
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Figure 12 WGCNA selection of PD cluster-related modules co-expressed genes. (A) Outliers were detected in the cluster 1 and 2-sample 
cluster. (B) The cut-off point was set as 0.9, and the soft threshold power was set as β=7. (C) Tree diagram of all cluster 1 and 2-sample DEGs 
based on the cluster of difference measurement. The colored bands show the results from the automated monolithic analysis. (D) Correlation 
diagram between modules obtained by clustering according to inter-gene expression levels. (E) Heat map of the correlation between module 
characteristic genes and cluster 1 and 2-sample phenotypes. We chose the MEyellow module for subsequent analysis (the ordinate value is the 
correlation coefficient of feature module). (F) Module membership vs. gene significance, cor is disease correlation coefficient, P is the P value of 
correlation coefficient. ME, module eigengene; WGCNA, weighted gene co-expression network analysis; PD, Parkinson’s disease.
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Figure 13 Machine learning builds models can largely progress between PD and normal samples. (A) The intersection genes of disease feature 
module and typing feature module were analyzed by WGCNA. (B) RF random forest tree, SVM, XGB, GLM and other algorithms were 
used to construct the reverse cumulative distribution map of model residuals. The Y-axis value represents the percentile of the outlier. (C) Box 
plots of sample residuals of the four algorithms. The X-axis value represents the quantile of outliers, and the red dot represents the mean. (D) 
ROC analysis of RF random forest tree, SVM, XGB, GLM, and other algorithms. The ROC values of RF and SVM were 0.833. (E,F) ROC 
analysis of XGB model in the GSE7621 and GSE20141 validation set. x-axis: FPR, false positive rate; y-axis: TPR, true positive rate; WGCNA, 
weighted gene co-expression network analysis; AUC, area under the curve; RF, RF random forest tree; SVM, support vector machine; XGB, 
Tree Ensemble; GLM, generalized linear model; ROC, receiver operating characteristic; CI, confidence interval.

values of 0.688 and 0.833. Finally, the genes in the model 
were plotted in a nomogram (Figure 14), which showed 
that the genes in the model are SLC35D3, FLJ22184, 
SYT17184, SLC35D3, FLJ22184, FLJ22184, SYT17, and 
RIMS3.

Discussion

PD is considered a progressive neurodegenerative disease 
that manifests clinically as resting tremor, rigidity, 
bradykinesia, or dyskinesia, postural gait abnormalities, 
and other non-motor symptoms. PD is now understood 
to be a multisystem disorder accompanied by significant 

nerve inflammation and immune function dysfunction. Its 
pathogenesis is currently unclear and includes the presence 
of oxidative stress, protein aggregation, mitochondrial 
dysfunction, and inflammation as the cause of neuronal 
death (22). Among the pathological features of PD are the 
formation of predominantly intracellular alpha-synuclein-
containing inclusion bodies, called Lewy vesicles. The 
current understanding of neural death in PD is the role 
of α-synaptic nuclear proteins in brain cell death through 
the formation and assembly of these protein aggregates. 
In contrast, Cu1+ can also bind directly to two different 
regions of the α-synaptic nucleoprotein thereby causing 
oxidative neurological damage degeneration (23). High 
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concentrations of Cu promote α-synaptic protein misfolding 
leading to PD progression (24). Alternately, 6-OHDA 
disrupts copper (Cu) homeostasis through dysregulation of 
cellular Cu transport, leading to neuronal cell dysfunction 
and cell death (25). Therefore, Cu accumulation and Cu 
metabolism are important for the development of PD 
disease, and in this study we explored potential central 
genes related to cuproptosis and immune infiltration 
patterns in the substantia nigra of PD patients through 
bioinformatics analysis, and we found that plasmacytoid 
DC was upregulated in tissues with the most significant 
differences in PD. It has been suggested that DC-mediated 
T-cell differentiation leads to a reduction in recognized 
antigenic peptides, resulting in the timely degradation 
of inflammatory proteins associated with α-synuclein 
synthesis in PD (26), whereas our immune cell analysis of 
three CR-DEGs found that they were all associated with 
NK cells, and it has been shown that increased NK cell 
numbers and cytotoxicity during PD progression can play 
a neuroprotective role (27), which may further reveal new 
targets for PD immunotherapy and provide new potential 
therapeutic biomarkers and treatment strategies for PD.

Our study used three PD patients’ nigrostriatal 
sequencing datasets to enrich the exploration of cuproptosis 
genes, firstly to find DEGs related to cuproptosis in 

PD patients, namely ATP7B, NFE2L2, and MTF1, and 
to explore their respective possible pathways of action 
and relationships with individual immune cells. We also 
explored their possible target miRNAs and lncRNA, 
mapped the complex network of ceRNAs, and searched 
for their corresponding small molecule drugs through the 
DGIdb database. We also conducted an in-depth analysis of 
PD patients by clustering and typing to explore the possible 
mechanisms of tissue typing in PD tissues, and constructed 
a diagnostic model of PD using WGCNA and machine 
learning methods. 

Our results of GSEA revealed that the genes ATP7B, 
NFE2L2, and MTF1 were all associated with the synaptic 
vesicle cycle, which may suggest that these three genes 
could be involved in the synaptic vesicle cycle to reduce 
neurotransmitter transmission. ATP7B is a key ATPase 
in the Golgi complex harbors copper-transporting, which 
transfers Cu from the cytoplasmic matrix to the Golgi 
lumen for incorporation into the Cu-dependent enzyme. 
The Golgi complex also sends these ATPases to appropriate 
post-Golgi destinations to ensure the correct Cu flux in vivo 
and to avoid potentially toxic Cu accumulation. Mutations 
in ATP7A or ATP7B or the proteins that regulate their 
transport can affect their exit from the Golgi or subsequent 
fetch back to this organelle (28). α-synuclein assemblies 

Figure 14 A nomogram was constructed to predict the probability in PD progress. The values of each variable (SLC35D3, FLJ22184, SYT17, 
and RIMS3) are summed to obtain a total score. Each variable corresponds to a score, and the total score can be calculated by summing the 
scores of all variables. PD, Parkinson’s disease.
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need to exhibit seeding capacity, namely, template capacity 
for further aggregation, and toxicity mediated at least in 
part by interference with synaptic vesicle or organelle 
homeostasis (29). NFE2L2 encodes nuclear factor E2 
and related factor 2 (NRF2), which are master regulators 
of antioxidant enzymes that prevent oxidative stress and 
inflammation, and perillyl is a key inhibitor of α-synuclein 
protein synthesis, thereby slowing PD progression. In 
contrast, galangin attenuates neuronal apoptosis via the 
Nrf2/Keap1 pathway, thereby slowing PD progression 
(30,31). MTF1, a key regulator of heavy metal homeostasis 
and detoxification, provides complementary functions in 
oxidative stress and other cellular stress responses. MTF1 
gene polymorphisms have the potential to influence further 
exacerbation of PD (32). These studies above suggest 
that genes such as ATP7B, NFE2L2, and MTF1 may have 
important implications for the pathogenesis and progression 
of PD, based on which they are expected to be our next 
therapeutic targets for the study of PD.

The clinical diagnostic criteria for PD are bradykinesia 
with resting tremor, rigidity, or both (33). In contrast, 
the location of the DA transporter has been identified in 
diagnostic imaging primarily by DA transporter single 
photon emission computed tomography (DaT SPECT) 
by showing presynaptic DA neuronal hypofunction in 
PD and other neurodegenerative diseases. Identification 
of presynaptic dopamine neuronal dysfunction present 
in PD and other neurodegenerative diseases is used 
to differentiate PD from primary tremor, but it is not 
necessary to routinely perform these scans (34). They 
cannot distinguish PD from other neurodegenerative 
diseases that also involve DA transporter dysfunction (e.g., 
multisystem atrophy, progressive supranuclear palsy). There 
is growing evidence that PD includes a heterogeneous 
subtype have implications for diagnosis, prognosis, and 
expected response to treatment. Initial subtyping focused 
on motor characteristics (35). One typing approach includes 
three groups: predominantly mild motor: younger age 
of onset, mild motor and non-motor symptoms, slow 
progression and good drug response (36). Therefore, the 
typing of PD may be a better guide for treatment. We also 
typed PD and divided it into CRGClusters C1 and C2. 
Our results showed that ATP7B expression was significantly 
higher in C1 compared to C2, whereas NFE2L2, MTF1, 
and ATP7B expression was significantly decreased in 
C1 compared to C2. Our post-typing GSVA-KEGG 
enrichment analysis showed that in fractions, C2 could be 
enriched in PD signal path, as well as in the GO biological 

pathways: immunological synapse formation, regulation of 
endodermal cell differentiation, and regulation of synaptic 
vesicle endocytosis, dendrite extension, presynaptic dense 
core vesicle exocytosis, regulation of postsynaptic cytosolic 
calcium ion concentration. We obtained a diagnostic 
line graph by machine learning methods, so that we can 
diagnose PD by detecting the expression of genes; our 
research facilitates us to personalize the diagnosis and guide 
the treatment of PD by typing.

Currently, DA antagonists remain the first-line drugs 
used clinically for the treatment of PD, and the use of 
levodopa improves more function but increases the risk of 
dyskinesia, especially at higher doses (37). If it is necessary 
to reduce the dosage of levodopa after the development of 
dopamine-dysregulation syndrome (DDS), we can in turn 
try to switch to other drugs, which still have their own side 
effects, such as hallucinations and delirium (38). In contrast, 
levodopa equivalent daily dose (LEDD) can usually be 
reduced by 30–50% after deep thalamic nucleus brain 
stimulation (DBS) surgery is administered to patients, and 
one study showed that 7% of 150 patients treated with STN-
DBS stopped taking the drug after 3 years (39). Complete 
cessation after STN-DBS dopaminergic medication is 
usually not possible because the lack of DA in the limbic 
system and associated circuits can lead to apathy and 
depression (39,40), so alternative medications with fewer 
side effects and effective alternatives need to be chosen. We 
searched the DGidb database for andalusol, chembl128729, 
dimethyl_fumarate lagascatriol,  and suforaphane_
isoselenocyanate, and other small molecules were identified 
through the DGidb database, and molecular docking 
was performed to initially explore the amino acid residue 
linkage sites between these drugs and NFE2L2 and their 
counterparts. There are studies on the Nrf2-dependent 
neuroprotective activity of diterpenoids isolated from 
Sideritis spp., counteracting oxidative damage and their 
potential role as useful agents for the prevention of those 
with oxidative stress-mediated dementia. ANDALUSOL 
was the most active of the diterpenoids studied (41). 
The neuroprotective effect of dimethyl_fumarate in the 
MPTP-mouse model of PD (42), the findings of the 
above-mentioned studies led us to search for these small 
molecules, which provide a new idea for the next targeted 
drugs for the treatment of PD.

There were some limitations to our study. Firstly, 
our findings were derived by computer using in-depth 
calculations using bioinformatics methods and still require 
in vitro experiments to validate the results. Secondly, 
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further animal models need to be constructed to collect 
samples of the specific mechanisms by which the central 
genes associated with cuproptosis contribute to PD, and 
initial validation of the animal models of PD using our 
personalized drugs will be required, and ultimately we will 
use samples from patients in the early stages of PD for 
validation, combined with clinical data to provide diagnostic 
biomarkers and timely drug interventions. In future studies, 
we will focus on the mechanisms of action of ATP7B, 
NFE2L2, and MTF1 in PD and explore early diagnostic 
biomarkers for PD.

Conclusions

Using bioinformatics analysis, CR-DEGs were identified in 
the substantia nigra of PD patients. ATP7B, together with 
NFE2L2 and MTF1, were considered as candidate genes for 
further study. This study provides new genes associated with 
Cu accumulation leading to cell death in the pathogenesis 
of PD and explores promising therapeutic targets for related 
neurodegenerative diseases.
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