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Original Article

Recombinant human angiotensin-converting enzyme 2 plays a 
protective role in mice with sepsis-induced cardiac dysfunction 
through multiple signaling pathways dependent on converting 
angiotensin II to angiotensin 1–7
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Background: Sepsis-induced cardiac dysfunction (SICD) is a common complication of sepsis and 
contributes to mortality and the complexity of management in patients with sepsis. Recombinant human 
angiotensin-converting enzyme 2 (rhACE2) has been reported to protect the heart from injury and 
dysfunction in conditions which involve increased angiotensin II (Ang II). In this study, we aimed to detect 
the effects of rhACE2 on SICD.
Methods: A SICD model was developed in male C57/B6 mice by lipopolysaccharide (LPS) intraperitoneal 
injection. When cardiac dysfunction was confirmed by echocardiography 3 hours after LPS administration, 
mice were treated with either saline, rhACE2, or rhACE2 + A779. All mice received echocardiographic 
examination at 6 hours after LPS injection and then were sacrificed for serum and myocardial tissues 
collection. Angiotensin, cardiac troponin I (cTnI), and inflammatory markers in serum were measured. 
Histopathology features were examined by hematoxylin and eosin (HE) and terminal deoxynucleotidyl 
transferase (TdT) dUTP nick-end labeling (TUNEL) staining to evaluate structure injury and cell 
pyroptosis rate in heart tissue respectively. Pyroptosis-related proteins and signaling pathways involved in 
nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) 
inflammasome activation in heart tissue were investigated by western blot (WB).
Results: RhACE2 relieved myocardial injury and improved cardiac function in mice with SICD 
accompanied by decrease of Ang II and increase of angiotensin 1–7 (Ang 1–7) in serum. RhACE2 
diminished activation of NLRP3 inflammasome, inflammatory response, and cell pyroptosis induced by 
LPS. In addition, rhACE2 partly inhibited activation of nuclear factor κB (NF-κB), the p38 mitogen-
activated protein kinase (MAPK) pathway, and promoted activation of the AMP-activated protein kinase-α1 
(AMPK-α1) pathway in heart tissue. Administration of A779 offset the inhibitive effects of rhACE2 on 
NLRP3 expression and protective role on cardiac injury and dysfunction in mice with SICD.
Conclusions: RhACE2 plays a protective role in SICD, ameliorating cardiac injury and dysfunction 
through NF-κB, p38 MAPK, and the AMPK-α1/NLRP3 inflammasome pathway dependent on converting 
Ang II to Ang 1–7.
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Introduction

Sepsis is a life-threatening syndrome caused by the 
host’s dysregulated immune response to infection, which 
consecutively causes organ dysfunction, disability, and 
even death (1). Evidence accumulated over the past 
decades shows a high incidence of sepsis, especially in the 
intensive care unit (ICU) all over the world (2-5). Though 
the understanding and management of sepsis have been 
improving during the past years, the reported mortality 
remains as high as 20–40% (2,4,6,7).

Sepsis-induced cardiac dysfunction (SICD) is a common 
complication that exacerbates the poor prognosis of patients, 
most of which is characterized by reduced left ventricular 
ejection fraction (LVEF) and diminished contractility (8). In 
patients with SICD, the mortality is increased 2–3 times (9), 
which is reported as approximately 70–90% (10). Precise 
mechanisms and effective therapy in patients with SICD 
remain unclear and need further exploration to improve its 
management and outcomes.

The renin-angiotensin-aldosterone system (RAAS) 
includes classic pathway in which angiotensin II (Ang II) 

is the main effector and non-classic RAAS pathway in 
which angiotensin 1–7 (Ang 1–7) plays the key role. Both 
pathways are expressed in various cells in heart including 
cardiomyocytes, fibroblasts, endothelia, and immune cells 
(11-14). Ang II is known to promote heart failure through 
inducing cardiac hypertrophy, fibrosis, and ventricular 
remodeling depending on its pro-inflammatory effects 
(15,16). On the contrary, the non-classic RAAS in heart 
exerts a cardiac protective role opposite to Ang II (17). 
Angiotensin-converting enzyme 2 (ACE2), which can 
inactivate Ang II by catalyzing it to Ang 1–7 (18) shows 
cardiac beneficial effects depending on its cleavage action of 
Ang II (19,20).

Evidences indicated that Ang II is enhanced in sepsis and 
involved in the pathophysiology of organ injury (21,22). Ang 
II leads to an up-regulation of pro-inflammatory cytokines 
such as tumor necrosis factor-α (TNF-α) and interleukin-1 
(IL-1) and subsequent macrophage infiltration, micro-
vascular ischemia, and cardiac dysfunction in sepsis (23). 
Treatment targeted to balance the disturbed RAAS in septic 
animal models show anti-inflammatory effects and are 
beneficial to heart function and survival (24).

ACE2, which is a homolog of ACE1, is a negative regulator 
of RAAS by converting Ang II to Ang 1–7 (15). A recombinant 
human ACE2 (rhACE2; APN01, GSK2586881) has been 
found to have protective effects on cardiac dysfunction and 
injury in both inflammatory and non-inflammatory cardiac 
injury models and to be safe, with no negative hemodynamic 
effects in healthy volunteers and in patients with acute 
respiratory distress syndrome (ARDS) (25,26).

The nucleotide binding and oligomerization domain-
like receptor family pyrin domain-containing 3 (NLRP3) 
inflammasome, which consists of 3 members, namely 
apoptosis-associated speck-like protein (ASC), NLRP3, and 
pro-caspase-1 (27), is a vital mediator pathway of the innate 
immune system and has recently gained close attention in 
SICD research.

Previous studies have shown that NLRP3 inflammasome 
triggers the cardiomyopathy of polymicrobial sepsis induced 
by cecal ligation and puncture (CLP) (28) and Ang II is 
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involved in nuclear factor κB (NF-κB)-mediated NLRP3 
inflammasome activation (29). Therefore, we hypothesized 
that regulating NLRP3 inflammasome through modulating 
the activation of RAAS may play a protective role in mice 
with SICD.

Lipopolysaccharide (LPS) is widely accepted to be 
used in vivo and in vitro to simulate the clinical conditions 
of sepsis and SICD for years (30,31). By intraperitoneal 
injection to mouse, we can get a mouse model of SICD 
easily and economically.

In our study, we built a model of LPS-induced cardiac 
dysfunction with mouse to investigate the effects of rhACE2 
on SICD and the probable mechanism of it. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6016/rc).

Methods 

Animals and treatment

Male healthy C57/B6 mice (animal certification No. 
110011210104951884) aged 8–10-week, and weighing 
20–25 g, were purchased from Vital River Laboratories, 
Beijing, China. Before initiating the experiment, a week 
of acclimation was allowed. The animal was housed in 
standard pathogen-free environment (22 ℃, light/dark 
cycle of 12/12 h) with enough standard food and water. A 
protocol was prepared before the study without registration. 
The investigator (PZ) in charge of group allocation was the 
only person who know the group allocation in our team. 
The study was approved by the laboratory animal ethical 
committee of Animal Experiment Center of the Fourth 
Hospital of Hebei Medical University (No. 2020002). 
Hebei Key Laboratory of Critical Disease Mechanism and 
Intervention was informed and agreed with this study. All 
procedures were conducted in the Animal Experiment 
Center of the institute above and Hebei Key Laboratory of 
Critical Disease Mechanism and Intervention, in accordance 
with the Guide for the Care and Use of Laboratory Animals 
of Institutes of Health (Eighth Edition).

The SICD model was established via intraperitoneal 
LPS injection. According to the previous work of our 
team, we obtained 60% of mice with significant myocardial 
dysfunction at 3 hours after intraperitoneal LPS injection 
and significance of outcome measures among groups, 
each of which contained 6 mice (32). The experiment was 
carried out in two parts. In the first part, the control, LPS, 

and LPS + rhACE2 groups were arranged to investigate 
the effects of rhACE2 on mice with LPS-induced cardiac 
dysfunction. In detail, following the table of random digit, 
6 mice were distributed to the control group and at least 
20 mice were allocated to a model-establish group that 
would be subsequently randomly assigned to a LPS group 
and a LPS + rhACE2 group (6 per group). Mice in the 
model-establish group were injected with LPS (10 mg/kg, 
Escherichia coli 055:B5, Cat. No. L8880, Solarbio, Beijing, 
China) intraperitoneally, and mice in the control group 
were intraperitoneally injected with an isovolumetric saline. 
Mice that were injected with LPS yet showed no significant 
decrease of LVEF and left ventricular fractional shortening 
(LVFS) at 3 hours after LPS administration compared to 
the control group were excluded and euthanized by cervical 
dislocation to reduce their suffering. The LPS-injected mice 
that displayed a significant decrease of LVEF and LVFS at  
3 hours after LPS administration were included and 
allocated to either LPS group or LPS + rhACE2 group 
according to the random number method. RhACE2 (Cat 
No. HY-P7442, MedChemExpress, USA) was dissolved 
in normal saline 0.9% and intraperitoneally injected at a 
dose of 200 μg/kg (25,33) into mice allocated to the LPS 
+ rhACE2 group immediately after group allocation. The 
remaining mice were treated with isovolumetric saline. 
All mice underwent echocardiographic re-evaluation at  
6 hours after LPS injection and were sacrificed rapidly by 
cervical dislocation. Inhaling isoflurane (2%) anesthesia 
was applied to all mice to reduce their suffering during 
echocardiographic examination. The blood and myocardial 
tissues were collected. To minimize the influence of the 
order of treatments and measurements on the outcome, 
we applied the treatment, echocardiographic examination, 
and sample collection in the same order. The serum 
samples were isolated through centrifugation (3,000 rpm, 
15 minutes) at 4 ℃ and frozen at −80 ℃ immediately. 
The heart samples were rinsed with phosphate-buffered 
saline (PBS) to remove the residual blood and frozen at  
−80 ℃ for further investigation.

A779, a selective mas receptor antagonist of Ang 1–7, 
was used to further elucidate the mechanism of the effects 
of rhACE2 on LPS-induced cardiac dysfunction in the 
second part. In detail, four groups (the control group, the 
LPS group, LPS + rhACE2 group, and LPS + rhACE2 
group +A779, each containing 6 mice), were used to 
investigate the LVEF and LVFS, cardiac structure injury, 
pyroptosis cell rates, and NLRP3 expression in heart tissue. 
The establishment of the SICD model, and the criteria 
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of inclusion and exclusion were same to those of the first 
part. Random numbers were also used for group allocation. 
Besides the LPS group and LPS + rhACE2 group, mice 
with LPS-induced cardiac dysfunction were also distributed 
randomly to the LPS + rhACE2 +A779 group, receiving  
10  mg/kg A779,  (HY-P0216,  MedChemExpress , 
Monmouth Junction, NJ, USA) by tail vein injection (34) 
prior to receiving 200 μg/kg rhACE2 by intraperitoneal 
injection. All the mice were also sacrificed after cardiac 
function evaluation by echocardiography at 6-hour after 
LPS treatment under inhaling isoflurane anesthesia. The 
serum samples and myocardial tissues were collected as 
described previously.

Echocardiography

LVEF and LVFS were obtained from M-mode detection of 
left ventricular (LV) to evaluate cardiac function of mice by 
a special ultrasound instrument (Vevo 2100 imaging system, 
VisualSonics, Ontario, Canada) for small animals with 
a 13-MHz linear transducer under isoflurane inhalation 
anesthesia. The sonographer was blinded to the group 
allocation.

Indicators of myocardial injury and inflammation

Commercial enzyme-linked immunosorbent assay (ELISA) 
kits were obtained to examine the serum levels of indicators 
myocardial injury and inflammation. Cardiac troponin I 
(cTnI; Cat No. E-EL-M1203c, Elabscience Biotechnology, 
Wuhan, China) was the indicator of cardiac injury we 
used. The inflammatory factors included TNF-α (Cat No. 
KE10002, Proteintech, Wuhan, China), IL-18 (Cat No. 
CSB-E04609m, CUSABIO, Wuhan, China), and IL-1β (Cat 
No. KE10003, Proteintech).

Angiotensin in serum

Serum concentrations of Ang II (Cat No. CSB-E04495m, 
CUSABIO) and Ang 1–7 (Cat No. CSB-E13763m, 
CUSABIO) were investigated through ELISA kits on the 
basis of the manufacturer’s instructions.

Hematoxylin and eosin (HE) staining

Myocardial tissues were fixed in 4% paraformaldehyde for 
over 24 hours, embedded in paraffin, cut into 4 μm-thick 
sections, and stained with HE at room temperature. Two 

skilled pathologists who were blind to the interventions 
examined the extent of myocardial injury with a light 
microscope (DM3000 LED, Leica, Wetzlar, Germany) 
at 200× magnification and photographed them with a 
digital camera. The extent of myocardial injury showed 
in sections were scored using a semi-quantitative method 
as previously described: 0 for no damage; 1 for damage 
involving no more than 25% of the myocardium and 2 
for 25–50%, 3 for 50–75%, and 4 for 75%, respectively 
(35,36). The average score of two sections of each sample 
were used for analysis.

Terminal deoxynucleotidyl transferase (TdT) dUTP nick-
end labeling (TUNEL) staining

TUNEL staining was performed to identify pyroptosis cells 
in heart tissue sections with a TUNEL assay kit (Servicebio, 
G1501, Wuhan, China). Myocardial tissue sections were 
deparaffinized with xylene and rehydrated with ethanol, 
and then were reacted with proteinase K working solution 
(Servicebio, G1205) at 37 ℃ for 25 minutes and completely 
washed with PBS. Sections were further incubated with 
permeabilize working solution (the membrane breaking 
fluid was 0.1% triton. Configuration method, triton stock 
solution:PBS =1:1,000) for 20 minutes and washed. TUNEL 
staining was performed following the manufacturer’s 
protocol. Microscopic examination was performed, and 
images were collected through a fluorescence microscope 
(Nikon, Tokyo, Japan). Cells that were positively labeled 
(green) were quantified in 10 different fields per slide by 
Image J software (1.53a, Wayne Rasband, NIH, USA). The 
means and standard deviations (SDs) were derived from 
counting a minimum of three fields from two different 
coverslips per sample.

Western blot (WB) analysis

According to the instructions, whole proteins were 
extracted from heart tissues in radioimmunoprecipitation 
assay (RIPA) buffer (P0013B, Beyotime, Nanjing, China) 
with phosphatase inhibitor in it. The protein content was 
measured with a bicinchoninic acid (BCA) kit (Cat No. 
SW101-02, SEVEN, Beijing, China). Protein samples  
(40 μg per lane) were separated by 8% or 12% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) gels and then transferred onto polyvinylidene 
f luoride (PVDF) membranes (Mil l ipore-Upstate, 
Beijing, China, 0.45 or 0.22 μm). Nonfat milk (Cat No. 
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1172GR500, Saiguo, Guangzhou, China) or albumin 
(Solarbio) resolved in tris-buffered saline solution with 0.1% 
Tween-20 (TBST) were used to block the membranes (37 ℃  
for 2 hours). Membranes were then incubated at 4 ℃ 
overnight with primary antibodies against {[NLRP3 1:1,000, 
anti-NLRP3 antibody (EPR23094-1), Cat No. ab263899, 
Abcam, Cambridge, UK], gasdermin D [GSDMD; 1:1,000, 
anti-GSDMD (EPR19828), Cat No. ab209845, Abcam], 
caspase-1 [1:1,000, Cat No. ab179515, anti-pro-caspase-1 + 
p10 + p12 antibody (EPR 16883), Abcam], NF-κB (1:500, 
NF-κB p65 Ab, Cat No. AF 5006, Affinity Biosciences, 
Liyang, China), p-NF-κB [1:500, phospho-NF-κB p65 
(Ser536) Ab, Cat No. AF 2006, Affinity Biosciences], AMP-
activated protein kinase (AMPK; 1:500 catalog number 
10929-2-AP AMPK alpha 1 rabbit polyclonal antibody, 
Proteintech), p-AMPK [1:500; phospho-AMPK (Thr172) 
(D4D6D), Cat No. #50081, Cell Signaling Technology, 
Danvers, MA, USA], p38 mitogen-activated protein kinase 
(MAPK; 1:500, p38 MAPK rabbit polyclonal antibody, 
Cat No. 14064-1-AP, Proteintech), p-P38 MAPK [1:500, 
phosph-p38 MAPK Thr180/Tyr182(D3F9)XP Rabbit mAb, 
Cat No. #4511, Cell Signaling Technology], and α-tubulin 
(alpha tubulin rabbit polyclonal antibody 1:5,000, Cat No. 
11224-1-AP, Proteintech)}. The membranes were washed 
in TBST 3 times (15 minutes each time) followed by 
incubation with HRP-linked secondary antibodies (1:10,000, 
Cat No. SA00001-2, Proteintech) (room temperature for  
2 hours). Enhanced chemiluminescence (ECL) detection kit 
(Cat No. P10300, NcmBiotech, Suzhou, China) and BLT 
GelView 6000Plus (Fluorchem E, Santa Clara, CA, USA) 
were used to visulize the protein bands. Image J software 
(1.53a, Wayne Rasband) was used to quantify the intensities 
of the bands. Alpha-tubulin was used as internal control.

Statistical analyses

The results were represented as mean ± SD and analyzed 
using Graph Prism 8.0 (GraphPad Software,  San 
Diego, CA, USA) and SPSS 26.0 software (IBM Corp., 
Armonk, NY, USA). The differences between the two 
groups were compared by Student’s unpaired t-test. 
Differences among multiple groups were analyzed by 
one-way analysis of variance (ANOVA) followed by a 
post hoc analysis by least significance difference (LSD) 
test or Tamhane’s T2 test, depending on the deference 
of variances. Correlation between serum levels of Ang 
II and levels of NLRP3 expression in heart tissue was 
analyzed by Pearson correlation analysis. Statistical 

significance was regarded as P<0.05.

Results

RhACE2 improved cardiac function in mice with LPS-
induced cardiac dysfunction

In the first section of the study, 18 (6 per group) out of the 
total 28 mice that were enrolled completed the experiment. 
Due to absence of significant decline in LVEF and LVFS, 
10 mice were excluded. Manifestation of the animal 
received LPS injection included lethargy, mild closure of 
the eyes, ruffled fur, and diarrhea consistent to those of 
endotoxemia. All mice among groups weighed comparably 
and survived at 6 hours after intervention. LVEF and LVFS 
of mice at 3 hours after LPS injection in the LPS group and 
LPS + rhACE2 group were significantly lower than those in 
control group. Compared with the LPS group, LVEF and 
LVFS improved significantly in the LPS + rhACE2 group at 
3 hours after rhACE2 treatment (Figure 1A-1C).

RhACE2 administration relieved myocardial injury in 
mice with LPS-induced cardiac dysfunction

The HE staining of myocardial sections indicated 
widespread myocardial structure disorder, interstitial 
hemorrhage and edema, and infiltration with neutrophil 
granulocytes in LPS-induced cardiac dysfunction mice, 
which were relieved significantly by rhACE2 treatment in 
the LPS + rhACE2 group (Figure 2A,2B). Compared with 
the control group, cTnI concentration in serum increased 
significantly at 6 hours in the LPS group. Compared with 
the LPS group, cTnI concentration in serum in the LPS + 
rhACE2 group decreased significantly (Figure 2C).

RhACE2 significantly inhibited activation of NLRP3 
inflammasome followed by significant decrease of NLRP3 
inflammasome-related inflammatory factors in serum and 
cell pyroptosis in heart tissues induced by LPS

According to WB analysis of heart tissue, expression of 
NLRP3 in the LPS group were significantly higher than 
those in control group, and expression of NLRP3 in the 
LPS + rhACE2 group was significantly lower than that 
in the LPS group. Expressions of the other two classic 
pyroptosis-associated proteins, N-terminal cleavage 
product of GSDMD (GSDMD-NT) and caspase-1 p12 
(cleavage product of caspase-1 p46) in heart tissues were 
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Figure 1 RhACE2 administration improves cardiac function in mice with LPS-induced cardiac dysfunction. (A) Transthoracic 
echocardiography (M-mode) of mice among three groups (6 per group). (B,C) Comparison of LVEF and LVFS of mice among three groups 
(6 per group). Data are expressed as mean ± SD. LPS, lipopolysaccharide; rhACE2, recombinant human angiotensin-converting enzyme 2; 
LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; SD, standard deviation.

also increased in the LPS group and then decreased after 
rhACE2 treatment (Figure 3A-3D). Serum concentrations 
of IL-1β and IL-18, the inflammatory factors matured 
through NLRP3 inflammasome activation, increased 
significantly in the LPS group and decreased significantly 
under the treatment of rhACE2 (Figure 3E,3F). And the 
significant increase in serum of TNF-α, the representative 
inflammatory factor in sepsis, was also suppressed by 
rhACE2 (Figure 3G). TUNEL staining of heart tissue 
sections showed that pyroptosis cell rates in the LPS group 
significantly increased compared with those in control 
group, and decreased significantly in the LPS + rhACE2 
group compared with those in LPS group (Figure 3H,3I).

RhACE2 regulated changes of angiotensin in LPS-induced 
cardiac dysfunction mice, and the levels of Ang II in 
serum had a significantly positive correlation with levels of 
NLRP3 expression in heart tissue

In the LPS group, Ang II and Ang 1–7 levels in serum 
were significantly higher than those in the control group. 
Compared with the LPS group, levels of Ang II in serum 
decreased significantly in the LPS + rhACE2 group, and 
levels of Ang 1–7 further increased in the LPS + rhACE2 
group (Figure 4A,4B). As indicated by WB analysis, in mice 
with LPS-induced cardiac dysfunction, NLRP3 expression 
in heart tissue increased significantly compared with the 
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Figure 2 RhACE2 administration relieved myocardial injury in mice with LPS-induced cardiac dysfunction. (A) Representative pictures of 
HE-stained heart tissue of mice in three groups (n=6). Magnification, ×200. (B) Myocardial injury score in three groups (n=6). (C) Evaluation 
of myocardial injury by cTnI in serum from mice in three groups (n=6). Data are expressed as mean ± SD. LPS, lipopolysaccharide; rhACE2, 
recombinant human angiotensin-converting enzyme 2; HE, hematoxylin and eosin, cTnI, cardiac troponin I; SD, standard deviation.

control group, but decreased significantly after rhACE2 
treatment (Figure 3A,3B). The levels of Ang II in serum had 
a significantly positive correlation with levels of NLRP3 
expression in heart tissue (Figure 4C).

RhACE2 regulated activation of the NF-κB, p38 MAPK, 
and AMPK pathways in heart tissue

In order to determine the possible mechanisms and 
relationship between LPS-induced cardiac dysfunction and 
rhACE2, we further evaluated the activation levels of the 
NF-κB, p38 MAPK, and AMPK-α1 signaling pathways-
associated proteins in heart tissue, which were involved 
in cardiac injury due to either Ang II/Ang 1–7 imbalance 
or sepsis, by WB analysis. We found that the increases 
of levels of p65 (a subunit of NF-κB) and p38 MAPK 
phosphorylation in the LPS group were diminished by 
rhACE2 treatment. On the contrary, levels of AMPK-α1 
signaling pathway phosphorylation decreased in the LPS 
group and recovered partly after rhACE2 treatment  
(Figure 5A-5D).

A779 administration offset the inhibitive effects of rhACE2 
on NLRP3 expression and cardiac-protective effects on 
mice with LPS-induced cardiac dysfunction

In the second section, 12 of the total 36 mice were 
excluded for absence of cardiac dysfunction. Finally, 
24 mice were allocated to four groups (6 per group) as 
described in methods and completed all the investigations. 
Symptoms following LPS injection were similar with those 
described previously. Also, all mice among groups weighed 
comparably and survived at 6 hours after interventions. 
The LVEF and LVFS of mice with LPS-induced cardiac 
dysfunction that were treated with both rhACE2 and 
A779 were lower than those of the mice were treated with 
rhACE2 only. The NLRP3 expression in heart tissue of 
mice with LPS-induced cardiac dysfunction that were 
treated with both rhACE2 and A779 were higher than in 
those that were treated with rhACE2 only. Myocardial 
injury and pyroptosis cell rates in mice with LPS-induced 
cardiac dysfunction who were treated with both rhACE2 
and A779 were also higher than that who were treated 
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Figure 3 RhACE2 significantly inhibited activation of NLRP3 inflammasome followed by significant decrease of NLRP3 inflammasome 
related inflammatory factors in serum and cell pyroptosis in heart tissues in mice with LPS-induced cardiac dysfunction. (A-D) 
Representative bands of WB and quantitative analysis of pyroptosis-related proteins in three groups (n=6). α-tubulin was used as an internal 
control. (E) The serum levels of IL-1β in three groups (n=6). (F) The serum levels of IL-18 in three groups (n=6). (G) The serum levels of 
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×200. (I) Comparison of pyroptosis cell rates in heart tissue from mice in three groups (6 per group). Data are expressed as mean ± SD. 
GSDMD, gasdermin D; GSDMD-NT, N-terminal cleavage product of GSDMD; NLRP3, nucleotide binding and oligomerization domain-
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with rhACE2 only. Therefore, A779 administration offset 
the inhibitive effects of rhACE2 on NLRP3 expression 
and cardiac-protective effects on LPS-induced cardiac 
dysfunction (Figure 6A-6J).

Discussion

Recently, SICD has been attracting much attention 
because of its contribution to mortality and complexity 
of management in patients with sepsis (37). However, 
the mechanism and treatment of SICD are still full of 
uncertainties. Since the hypothesis that SICM develop at 
the cause of gross coronary hypoperfusion was denied by 
the landmark study which showed the increased coronary 
blood flow in patients with septic shock (38), increasing 
numbers of studies showed disturbance of microcirculatory 
and microvascular thrombosis in septic heart (39,40). The 
notion that myocardial inhibitors, such as TNF-α, IL-1β,  
IL-6, ROS, and RNS (41-45), derived form either 
inflammation or mitochondrial dysfunction, or the crosstalk 
between them suppress the cardiac function is consistent 
with the findings that the systolic dysfunction is global (46).  
Additionally,  influence of Ca2+ dysregulation and 
β-adrenergic alteration on myocardial contractility were 
also discussed in detail (47-49). Disturbance of energy 
metabolism due to either mitochondrial dysfunction or 
substrate utilization disorder is hot topic in researches 

(50,51). Though cell death is not the significant character 
in septic heart, different forms of programmed myocardial 
cell death including apoptosis, pyroptosis, and ferroptosis 
have been being investigated because of their influence 
on inflammation and mitochondrial function (52-56). 
The RAAS has been a focus of research for the complex 
crosstalk among the components and the robust association 
with heart disease (19,57,58). How it is involved in sepsis 
had been investigated for decades (59) and attracted 
more attention again because of the global pandemic of 
COVID-19 recently for that ACE2 is known to be the 
receptor of SARS-CoV-2 (18). Besides the drug aimed to 
increase myocardial contractility and mechanical device 
aimed to support the cardiac pump function, various 
treatments targeted to regulate inflammation, mitochondrial 
dynamics and function, energy metabolism to improve 
cardiac conditions have been investigated in animal or cell 
experiments based on the mechanisms (60-62). However, 
the conclusions are variable and the data of clinical study is 
absence.

In this study, we demonstrated that rhACE2 regulated 
Ang II and Ang 1–7 serum levels followed by relief of 
myocardial injury and improvement of LVEF in a mouse 
model of LPS-induced cardiac dysfunction. The effects 
of rhACE2 on activations of the NF-κB, p38 MAPK, and 
AMPK-α1 signaling pathways that were demonstrated 
in the present study indicated that rhACE2 ameliorated 
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cardiac injury and dysfunction in mice with LPS-induced 
cardiac dysfunction through the NF-κB, p38 MAPK, and 
AMPK-α/NLRP3 inflammasome pathways depending on 
conversion of Ang II to Ang 1–7 during sepsis. To the best 
of our knowledge, the present study is the first to report 
the protective role of rhACE2 in SICD, in spite of a large 
body of research demonstrating the protective effects of 
rhACE2 on heart function in conditions with pressure 
overload, diabetic cardiomyopathy, myocardial infarction, 
or doxorubicin-induced cardiomyopathy.

LPS, which is a cell wall component of Gram-negative 
bacteria, is known to be effective to trigger an intense 
inflammatory response and induce sepsis (63). LPS 
intraperitoneal injection has been used to build an SICD 
model successfully for years (30,31). In the present study, 
LVEF declined significantly at 3 hours and reached to the 
bottom at 6 hours after LPS injection in about 60% of LPS 
treated mice, which was consistent with the data reported 
by a previous study (64). Changes of cTnI in serum and 
what were observed in HE staining heart tissue sections 
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showed obvious cardiac injury in mice with LPS-induced 
cardiac dysfunction. Using the mouse model of SICD, we 
elucidated the actions of rhACE2 on SICD successfully.

Various  mechanisms part ic ipate  in  myocardia l 
dysfunction induced by sepsis. Pyroptosis, a form of 
inflammation programmed cell death, is involved in either 
inflammatory or non-inflammatory heart disease (65,66). 
NLRP3 inflammasome activation plays a significant 
role in initiating inflammatory response and pyroptosis, 
contributing to cardiac injury and dysfunction in both 
ischemic and inflammatory heart disease (67,68).

In the present study, we observed that NLRP3 
expression, caspase-1 and GSDMD activation in heart 
tissue increased significantly in mice with LPS-induced 
cardiac dysfunction, and dropped significantly under 
rhACE2 treatment. Up-regulation of pyroptotic cell rates 
in heart tissue indicated by TUNEL staining, and increase 
of IL-1β and IL-18 in serum of mice with SICD were also 
diminished by rhACE2 treatment in our study. According 
to previous report, increase of NLRP3 protein expression is 
the priming step of NLRP3 inflammasome activation (27).  
Caspase-1, the key effector of NLRP3 inflammasome, 
self-cleaves to active caspase-1 on the platform NLRP3 
assembled during activation. Active caspase-1 then promotes 
pro-IL-1β and pro-IL-18 maturate to IL-1β and IL-18 
and cleaves GSDMD to free its N-terminal domain and 
induce the formation of pores at the membrane, leading to 
pyroptosis (69). TNF-α is a main inflammatory cytokine in 
sepsis. Maturation and release of IL-1β and IL-18 amplify 
the inflammatory response as indicated by the changes of 
TNF-α among groups in the study. TNF-α and IL-1β are 
regarded as the main myocardial inhibitors in septic shock 

contribute to cardiac depression. Pyroptosis procedure 
mediated by GSDMD cleavage has a detrimental effect on 
cardiac function (70). Inhibitors of NLRP3 inflammasome-
related pro-inflammatory factors and depletion of pyroptosis 
by knocking out NLRP3 or other components of NLRP3 
inflammasome (ASC, GSDMD, or caspase-1) attenuate 
cardiac injury and improve cardiac function (67,68,70-72). 
Our observation in the present study also indicated the 
involvement of NLRP3 inflammasome activation in LPS-
induced cardiac dysfunction. Further, the inhibitive role 
of rhACE2 on NLRP3 inflammasome activation as well as 
the following inflammatory response and cell pyroptosis 
demonstrated in our study is the probable mechanism of the 
protective role of rhACE2 in SICD. This is also consistent 
with previous researches reporting that rhACE2 shows a 
protective role in sepsis-induced organ injury (26,33), and 
cardiac dysfunction caused by doxorubicin (73) through 
inhibition of NLRP3 inflammasome.

As a negative regulator of RAAS, ACE2 catalyzes the 
vasoconstrictive, pro-inflammatory, and fibrogenic Ang II 
peptide to the vasodilatory, anti-inflammatory, and anti-
fibrogenic Ang 1–7 peptide, which plays a protective role 
in heart disease (74,75). The catalyzing action from Ang 
II to Ang 1–7 of rhACE2 was also revealed in our study. 
Ang II in serum increased significantly in the LPS group, 
and dropped significantly in the LPS + rhACE2 group. In 
contrast, Ang 1–7 concentrations went up significantly in 
the LPS group and further increased in the LPS + rhACE2 
group. Increase of Ang II and Ang 1–7 in LPS group just 
the results of activation of RAAS during sepsis and SICD. 
Decrease of Ang II and Increase of Ang 1–7 indicated the 
converting action of rhACE2 on Ang II. Additionally, our 
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Figure 6 A779 administration offset the improve effect of rhACE2 in mice with LPS-induced cardiac dysfunction. (A) Transthoracic 
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Comparison of LVFS of mice among four groups (6 per group). (D) Representative pictures of HE-stained heart tissue of mice in four 
groups (n=6). Magnification, ×200. (E) Myocardial injury score in four groups (n=6). (F) Evaluation of myocardial injury by cTnI in serum 
from mice in four groups (n=6). (G) Representative images of cell pyroptosis (indicated by TUNEL labeled cells) in heart tissue of mice in 
four groups (6 per group). Nuclei were depicted by DAPI (blue). The pyroptotic cells were depicted by TUNEL (green). Magnification, 
×200. (H) Comparison of pyroptosis cell rates in heart tissue from mice in four groups (6 per group). (I) WB for NLRP3 expression in heart 
tissue of mice from four groups (n=6), α-tubulin was used as an internal control. (J) Quantitative analysis of NLRP3 expression in heart tissue 
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standard deviation.
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study showed that changes of NLRP3 expression in heart 
tissue were significantly positively correlated with the 
changes of Ang II in serum. Therefore, it could be Ang II 
that influenced the NLRP3 expression in heart tissue and 
caused cardiac injury. In fact, Ang II has been shown by 
previous reports to induce NLRP3 and reactive oxygen 
species (ROS) production which participates the disturbed 
redox cycle in sepsis and leads to cardiac injury and 
dysfunction (76,77).

Ang 1–7, the effects of which are opposite to those of 
Ang II, exerts its effects of inhibiting NLRP3 inflammasome 
activation through the Mas receptor and is implicated 
in physiological and pathophysiological processes, 
including leukocyte recruitment and inflammation, cardiac 
remodeling, and vascular alteration (78,79). Mice deficient 
for Mas receptor show cardiovascular-related phenotypes, 
including myocardial contractile dysfunction and endothelial 
dysfunction (74,80,81). On the contrary, increase of Ang 
1–7 in the heart by either infusion or overexpression from 
transgenes elicited cardioprotective actions in cardiac 
damage models (82,83). When A779, a selective mas 
receptor antagonist of Ang 1–7, was administrated to mice 
with SICD, the protective role of rhACE2 on cardiac injury 
and function as well as the inhibitive role of it on NLRP3 
expression were offset according to our study.

Not only A779 offset LVEF improve due to rhACE2 
treatment in mice with SICD, but it also offset the effects 
of rhACE2 treatment on changes of cTnI concentration in 
serum, cell pyroptosis in heart tissue and myocardial injury 
induced by LPS insult. Furthermore, administration of 
A779 offset the increase of NLRP3 induced by LPS insult. 
What were observed in the A779 part of the experiment 
verified that the protective effects of rhACE2 on SICD 
depended on its conversion action of Ang II and the 
resulting increase of Ang 1–7. The results are similar to 
the report of Liu et al., in which A779 offset the beneficial 
effects on acute lung injury resulted from sepsis (84).

As shown in this study, rhACE2 treatment decreased 
Ang II and further enhanced Ang 1-7 in serum of mice with 
SICD. In line with the activation of NLRP3 inflammasome, 
the NF-κB and p38 MAPK signaling pathways were 
activated in mice with LPS induced cardiac dysfunction. 
In line with the suppression of NLRP3 inflammasome 
activation by rhACE2 treatment, activation of the NF-κB 
and p38 MAPK signaling pathways were also suppressed 
in mice with LPS-induced cardiac dysfunction. Therefore, 
we inferred that the NF-κB and p38 MAPK signaling 
pathways were involved in the protective role of rhACE2 in 

SICD. The activation of toll-like receptors (TLRs)/NF-κB  
has been extensively accepted as pathways contributing 
to development of sepsis and following MODS including 
SICD (85). In response to microbial molecules, NF-κB 
stimulates the expression of NLRP3, which is the priming 
step of canonical NLRP3 inflammasome activation 
(69,86,87). Also, previous researches demonstrated that p38 
MAPK plays a role in inflammasome priming signals (88)  
and regulation of downstream p38 MAPK activation is 
critical for NLRP3 expression and caspase-1 activation (89). 
It has been reported that the p38 MAPK pathway is closely 
related to LPS-induced septic shock (90). A recent study 
demonstrated that activation of the p38 MAPK pathway 
promotes NLRP3 inflammasome activation in septic 
shock (91). Ang II has been shown to induce NLRP3, in 
various cardiac cells in a non-septic cardiac damage model, 
depending on the AT1R/NF-κB or p38 MAPK pathway 
or crosstalk among them (76,77,92). By contrast, Ang 1–7 
has inhibitory effects on activated NF-κB and p38 MAPK 
pathways in these cells (93) and is beneficial for improved 
contractility (94).

Additionally, in the present study, the AMPK-α1 
signaling pathway was inhibited in mice with LPS-induced 
cardiac dysfunction and was partly recovered by rhACE2 
administration. Previous reports have shown that AMPK 
activation inhibited NLRP3 inflammasome-induced 
pyroptosis in microglia (95) and relieved myocardial 
dysfunction through the AMPK-α/NLRP3 inflammasome 
dependent pathway (96). Deficiency of AMPK-α1 influences 
systemic production of cytokines and results in lung injury, 
liver damage after sepsis, and exacerbates sepsis-induced 
mortality in male mice (97). Evidence showed that ACE2 
deficiency impaired cardiac function and contributed to 
suppressing the phosphorylation of AMPK, aggravating 
cardiac lipotoxicity, and myocardial insulin resistance (98). 
In contrast, increasing activation of AMPK-α and the PI3K/
AKT pathway by an ACE2 activator improved cardiac 
function in diabetic cardiomyopathy (99). Therefore, 
enhancement of AMPK-α1 activation could represent 
another signaling pathway with a protective role of rhACE2 
to SICD.

Thus, multiple mechanisms, including the NF-κB, p38 
MAPK, and AMPK-α1 signaling pathways, were involved in 
the cardiac protective role of rhACE2 in SICD depending 
on converting Ang II to Ang 1–7 followed by the regulation 
of activation of NLRP3 inflammasome. By modulating 
NLRP3 inflammasome activation, rhACE2 is supposed to 
regulating the followed inflammatory process and redox 

https://pubmed.ncbi.nlm.nih.gov/?term=Liu+J&cauthor_id=29990483
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imbalance in septic heart, which might protect the heart 
from injury.

In summary, we established a model of SICD in vivo with 
mouse and detected the beneficial role of rhACE2 on SICD; 
the results might provide a new direction of management 
for patients with SICD.

Additionally, as the receptor of the novel SARS-CoV-2, 
ACE2 mediates the entry of virus into cells, contributing to 
the subsequent infection and pathological process such as 
inflammation and organ injury (18). There are two forms 
of ACE2 existing in plasma (which is named soluble ACE2, 
sACE2) and anchoring on cell membrane respectively. It is 
the membrane-located ACE2 that can be bound to the viral 
surface spike protein to facilitate the virus internalization 
and subsequent replication (100). Additionally, the entry 
of virus mediated by transmembrane ACE2 led to down-
regulation of the trans-membrane ACE2 followed by 
increase of local Ang II which aggravated the inflammation 
in tissue (18). As a competitive interceptor, sACE2 can 
neutralize the viruses and block their entry into target 
cells. It is verified by the study in which soluble rhACE2 
inhibited SARS-CoV-2 infection in engineered human 
tissues (101). Therefore, supplementing soluble rhACE2 to 
patients with SARS-CoV-2 infection is expected to benefit 
the population through both infection control and RAAS 
negative modulation and deserves further investigation in 
preclinical and clinical settings.

Limitations

Compared with the CLP model, the SICD model in the 
present study, which was established via LPS intraperitoneal 
injection, does not simulate the common pattern of sepsis 
well in clinical conditions, since sepsis often derives from 
infection caused by either Gram-negative, or Gram-
positive bacterial, or both of them. However, management 
of cardiac dysfunction induced by endotoxemia, which 
excludes the influence of unsatisfactory infection control on 
progression of sepsis and organ injury, can clarify the effects 
of the intervention aiming to more adequately modulate the 
dysregulated host response to infection.

In the absence of hemodynamic monitoring, we could not 
provide accuracy data on preload and could not clarify the 
influence of fluid resuscitation on LVEF. However, the left 
ventricular end diastolic volume (LVEDV) of mice among 
groups were comparable (Figure S1), which indicated the 
comparable preload among groups in a certain degree.

In the absence of a cell experiment, we could not present 

the cell-specific effects of rhACE2 on SICD, especially effects 
on cardiomyocytes. Indeed, in our study, the main pathologic 
discovery of heart section was not cardiomyocyte necrosis but 
infiltration, interstitial edema, and cardiomyocyte disorders. 
Consistently, cardiomyocyte necrosis is probably of less 
importance as it has been found only in a small proportion 
of human autopsy specimens, and its occurrence during 
experimental sepsis has not been universally confirmed (102). 
In fact, pyroptosis occurred not only in cradiomyocytes, but 
also in immune cells, cardiac fibroblast cells, and endothelial 
cells that exist in heart tissue and amplified inflammatory, 
which contributes to the reversible functional damage of the 
septic heart (30,103-106).

Only function of the left heart was evaluated in our 
study. Since it is common (107) and associates with higher 
short-term and long-term mortality during sepsis (108), 
right ventricular (RV) function in sepsis is worthy of further 
investigation to compensate our understanding of SICD, 
which will be taken into consideration in our subsequent 
studies.

Additionally, cardiac diastolic dysfunction was also 
detected in patients with SICD (9). However, we did not 
detect a significant difference among groups when we 
examined the diastolic function of left ventricle by E/A 
(Figure S2). A better animal model is needed to evaluate 
the diastolic function of the septic heart and further study is 
needed to explore the management of diastolic dysfunction 
of SICD.

Conclusions

In conclusion, rhACE2 played a protective role in the SICD 
mice model, ameliorating cardiac injury and contractile 
dysfunction in mice with LPS-induced cardiac dysfunction 
through the NF-κB, p38 MAPK, and AMPK-α1/NLRP3 
inflammasome pathway dependent on converting Ang II to 
Ang 1–7. These findings provide a new idea about research 
and management of SICD.

Well-designed preclinical and clinical studies are 
needed to investigate the exact influence and mechanism of 
rhACE2 on SICD in depth, which are expected to enable a 
precise understanding and treatment of SICD.
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Supplementary

Figure S1 The LVEDV of mice among groups are comparable. (A) Quantitative analysis of LVEDV among three groups (n=6). (B) 
Quantitative analysis of LVEDV among four groups (n=6). Data are expressed as mean ± SD. LVEDV, left ventricular end diastolic volume; 
LPS, lipopolysaccharide; rhACE2, recombinant human angiotensin-converting enzyme 2; SD, standard deviation.

Figure S2 The MV E/A ratios from mice among groups are comparable. (A) Quantitative analysis of MV E/A ratios among three groups 
(n=6). (B) Quantitative analysis of MV E/A ratios among four groups (n=6). Data are expressed as mean ± SD. MV E/A ratio, the ratio of the 
peak velocity of the early filling (E) wave to the atrial contraction (A) wave of mitral inflow; LPS, lipopolysaccharide; rhACE2, recombinant 
human angiotensin-converting enzyme 2; SD, standard deviation.


