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Background and Objective: Vascular calcification has important clinical significance due to its vital 
prognostic value for cardiovascular diseases, chronic kidney disease (CKD), diabetes, fracture, and other 
multisystem diseases. Radiology is the main diagnostic method of it, but facing great pressure such as the 
increasing workload and decreasing working accuracy rate. Therefore, radiology needs to find a way out to 
better realize the clinical value of vascular calcification. Artificial intelligence (AI) encompasses any algorithm 
imitating human intelligence. AI has shown great potential in image analysis, such as its high speed and 
accuracy, becoming the savior of the current situation. In order to promote more rational utilization, the role 
and progress of AI in this field were reviewed.
Methods: A search was conducted in PubMed and Web of Science. The key words included “artificial 
intelligence”, “machine learning”, “deep learning”, and “vascular calcification”. The qualitative analysis of 
literature was achieved through repeated deliberation after refining valuable content. The theme is the role 
and progress of AI in the diagnostic radiology of vascular calcification.
Key Content and Findings: Sixty-two articles were included. AI has been applied to the diagnostic 
radiology of 5 types of vascular calcification, including coronary artery calcification (CAC), thoracic aortic 
calcification (TAC), abdominal aortic calcification (AAC), carotid artery calcification, and breast artery 
calcification (BAC). Deep learning (DL), the latest technology in this field has been well applied and 
satisfactorily performed. Radiologists have been able to achieve efficient diagnosis of 5 types of vascular 
calcification through AI, with reliable accuracy.
Conclusions: Increasingly, advanced AI has achieved an accuracy comparable to that of human experts, 
with a faster speed. Moreover, the ability to reduce noise and artifacts enables more imaging equipment to 
obtain reliable quantification. AI has acquired the ability to cooperate with radiology departments in future 
work. However, the research in AAC and carotid artery calcification can be more in-depth, and more types of 
vascular calcification and more fields of radiology should be expanded to. The interpretation of results made 
by AI and the promotion of existing achievements to the development of other disciplines are also the focus 
in future.
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Introduction

Vascular calcification refers to the ectopic deposition and 
active remodeling of calcium salts in the arterial walls (1). 
It often occurs in 2 parts of the arterial walls, the intima 
and the media. The calcification of the intimal layer is 
patchy, associated with atherosclerosis (AS), whereas the 
calcification of the media layer is diffuse and concentric, 
related to diabetes mellitus (DM), peripheral artery disease 
(PAD), and chronic kidney disease (CKD) (2,3). For vascular 
calcification, as the accepted gold standard, radiology 
can provide simple and usually noninvasive diagnostic  
methods (4). However, there are increasing defects in this 
field. Studies have shown that radiologists need to interpret 
an image in an average of 3–4 seconds (5). Besides, more 
and more data are being produced by the continuously 
improving medical imaging technology (6). For instance, 
chest radiographs are reported to be performed more than  
2 billion times worldwide every year (7). The limited human 
resources are being tasked with handling increasingly 
complex data within the specified time, resulting in not only 
a large number of diagnostic errors, but also a huge waste 
of resources and low work efficiency (7). These harsh facts 
make radiologists eager to seek tools for improvement. 
Fortunately, the development of artificial intelligence (AI) 
has opened up opportunities for radiology departments to 
address these issues (5).

Hitherto, based on the existing literature, AI has been 
applied to the diagnostic radiology of 5 types of vascular 
calcification: coronary artery calcification (CAC), thoracic 
aortic calcification (TAC), abdominal aortic calcification 
(AAC), carotid artery calcification, and breast artery 
calcification (BAC). Consequently, this review focused 
only on these types. In all, this review introduced the 
basic concept of AI, summarized the prognostic value of 
vascular calcification, analyzed the barriers in diagnostic 
radiology of vascular calcification without AI, narrated the 
application progress of AI, and put forward the prospect 
for the possible future direction. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6333/rc).

Methods

Literature retrieval was conducted using the keywords 
“artificial intelligence”, “machine learning”, “deep 
learning”, and “vascular calcification” in the databases of 

PubMed and Web of Science. All papers were published 
between 2003 and 2022. After the computer automatically 
generated the search results, the researchers sorted out 
the literature according to the inclusion and exclusion 
criteria, focusing on the contents related to diagnostic 
radiology. When necessary, the researchers conducted a 
supplementary search for other relevant literature, such as 
clinical prognostic value of vascular calcification, difficulties 
faced by radiology department, and related concepts of 
AI. More details about the retrieval strategy are shown in  
Table 1.

Discussion

Results of literature search

After searching PubMed and Web of Science, 62 studies 
published between 2007 and 2022 were included because 
they were related to the application of AI in diagnostic 
radiology of artificial intelligence. These studies included 
5 types of vascular calcification: CAC, TAC, AAC, 
carotid artery calcification and BAC, as well as 4 types of 
radiologic methods: X-ray, invasive angiography, computed 
tomography (CT) and magnetic resonance imaging (MRI). 
The main methodology of these studies was to compare 
the diagnostic ability of human doctors and AI on the same 
radiological images by the use of sensitivity, specificity, 
accuracy and speed and other indicators.

Basic concept of AI

The concept of AI originated in 1955, defined as any 
computing program that imitates and expands human 
intelligence to perform tasks (6,8). It can automatically 
make decisions based on input data without manual  
intervention (9). AI is a very broad and blooming concept, 
which has different understandings and applications in 
different fields (10,11).

Machine learning (ML) was introduced as a subset of AI 
in 1959 (9). Compared with ordinary AI algorithms, ML 
algorithms need not be explicitly programed for specific 
tasks, which automatically form rules by learning manually 
annotated training sets instead (9,12). In the application 
of ML in the diagnostic radiology of vascular calcification, 
K-nearest neighbor, support vector machine, and random 
forest are the representatives of such algorithms (13-15).

Artificial neural network (ANN), which is also called 
deep learning (DL), is a type of ML inspired by the 

https://atm.amegroups.com/article/view/10.21037/atm-22-6333/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6333/rc
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interconnection of neurons in the human brain (12,16). 
ANN is composed of interconnected layers, among which 
the input layers are used to receive input data, the hidden 
layers are used to extract data patterns, and the output 
layers are used to generate results (9,17). Compared with 
traditional ML, ANN can automatically discover features 

of input without manual annotation (16,17). Convolutional 
neural network (CNN) is added with filters on the basis 
of ANN (16,17). If a large number of images are used as 
input, ordinary ANN will be overloaded due to too much 
feature information contained in the images, but CNN 
can select features for learning through filters (16,17). 
Therefore, CNN is more suitable for medical image 
analysis. In addition to CNN, there are varieties of new 
neural networks, such as U-Net and ResNet, which have 
also been applied in the field of medical imaging because of 
their excellent performance in image processing (12,16,17). 
To more vividly show the relationship between different 
concepts, the related information is depicted in Figure 1. 

Significance of emphasis on vascular calcifications

Vascular calcification can occur anywhere in the body, 
having different prognostic value due to different anatomical 
positions (1). Table 2 briefly summarizes the prognostic 
value of each type of vascular calcification mentioned below.

CAC 
The traditional prediction tool for coronary artery events 
is Framingham risk score (FRS), which uses traditional risk 
factors such as age, sex, and blood pressure (18). However, a 
large prospective study with a follow-up of 7 years reported 

Table 1 A summary of the literature search strategy

Items Specification

Date of search 1 July 2022 to 10 July 2022

Databases and other 
sources searched

PubMed and Web of Science

Search terms used “Artificial intelligence”, “machine learning”, “deep learning”, “vascular calcification”

Timeframe 2003–2022

Inclusion and exclusion 
criteria

Inclusion criteria:

(I) The article was about the application of artificial intelligence in vascular calcification

(II) The article focused on radiology, including X-ray, CT, and MRI

(III) Literature type included review, research article and editorial

Exclusion criteria: 

(I) The article had nothing to do with the application of artificial intelligence in vascular calcification

(II) The article focused on other fields, including drug and surgical treatment, mechanism research and other 
diagnostic tools such as ultrasound

Selection process Two researchers searched the literature, and the third researcher arbitrated in case of differences

CT, computed tomography; MRI, magnetic resonance imaging.

Deep learning

Machine learning

Artificial intelligence

Also called artificial neural network 
Discovering features without manual annotation 

Basic mode:

Forming rules by learning annotated training sets

Any program to imitate and expand human intelligence

Input layer

Hidden layer

Output layer

Figure 1 Artificial intelligence is the largest concept, and machine 
learning is its subset. Moreover, deep learning is a subset of 
machine learning. Their remarkable characteristics and the basic 
mode of deep learning are shown in the figure.
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that high-level coronary artery calcium scoring (CACS) 
diagnosed by CT could improve the risk prediction obtained 
only from FRS (18). The description of CACS is shown 
in Table 3. Another study with a follow-up of 7.6 years 
demonstrated that not only CACS had a good ability to 

predict risk, but also CAC volume and density scores were 
valuable (19). The CAC volume score was independently 
correlated with coronary heart disease (CHD) events, 
whereas the CAC density score showed an independent 
negative correlation with risk (19). It is generally recognized 
that the elderly are the main risk population of CHD  
events (19). However, a 12.5-year follow-up showed 
that young people aged between 32 and 46, even if the  
CACS score was very low, had an increased risk of CHD 
and death (7). By analyzing the conclusions of these follow-
up studies with long time span, it becomes clear that both 
CACS and other information related to CAC have a strong 
ability to predict coronary events in almost all age groups.

TAC 
A large sample study including 4 ethnicities found that 
TAC was widespread in the AS population (8). In addition, 
a study with a follow-up of about 5 years and a 28-year 
follow-up study of nearly 120,000 participants confirmed 
that TAC was associated with an increased risk of CHD 

Table 2 The major and most prominent prognostic values of 5 types of vascular calcification 

Type of vascular calcification Major prognostic value The most prominent value

Coronary artery calcification Marker of coronary AS A strong ability to predict CHD and reflect the 
cardiotoxicity in any population

Improving risk prediction by FRS 

Strong independent predictors of CHD

Predicting CHD in all age groups

Reflecting cardiotoxicity of cancer treatment

Thoracic artery calcification Marker of increased risk of CHD Ability to predict cardiovascular and 
cerebrovascular embolism events

Higher risk of ischemic stroke

Predicting cerebral infarction

Identifying risk of embolism in surgery 

Abdominal artery calcification Risk of obstructive CHD Ability to predict pelvic and lower limb skeletal 
events

Predicting asymptomatic CHD

Marker of congestive heart failure

Higher risk of skeletal events

Carotid artery calcification Marker of intracranial AS Ability to predict cerebrovascular events in 
young people

Higher risk of stroke

Predicting cerebrovascular events for youth

Breast artery calcification Indication of the severity of CHD for women Ability to predict cardiovascular events in 
women

Related to CKD, DM, and bone health

AS, atherosclerosis; FRS, Framingham risk score; CHD, coronary heart disease; CKD, chronic kidney disease; DM, diabetes mellitus.

Table 3 CACS is obtained by multiplying the calcified plaque 
density integral and calcified area. The total CACS value is the 
sum of the results calculated at each level. The corresponding 
relationship between CACS value and risk classification is shown in 
the table

CACS Risk classification

0 Almost none

1–10 Low

11–100 Medium

101–400 Upper-middle

>401 High

CACS, coronary artery calcium scoring.
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and death, especially the aortic arch calcification (20,21). 
The latter study also showed that aortic arch calcification 
was related with an increased risk of ischemic stroke in 
women (21). This proof was reinforced by another study 
of 2,618 subjects, which found that TAC was an effective 
means to assess the risk of cerebral infarction (22). 
Moreover, TAC has other prognostic values. A study of 
patients with indications for cardiovascular surgery found 
that preoperative CT screening of TAC status was helpful 
to identify high-risk areas and reduce the risks of aortic 
embolism and stroke (23). Thus, TAC can not only predict 
cardiovascular events, but also provide prediction function 
for cerebrovascular events and perioperative period.

AAC
A study of 58 patients found that the AAC score determined 
by CT was correlated with the CACS, and the absence 
of AAC helped to exclude obstructive CHD and improve 
risk stratification (24). Besides, an analysis of 373 patients 
and another of lateral lumbar X-rays of 2,467 participants 
supplemented the value of the AAC score, indicating that 
the AAC score could be used as a surrogate marker for 
asymptomatic CHD and an independent risk factor for 
congestive heart failure (25,26). Prognostic value can also 
be provided for bone health by AAC. A study that included 
2,662 healthy postmenopausal women found that AAC 
was independently associated with an increased risk of 
osteoporosis in the proximal femur (27). In addition, a study 
that included 5,994 65-year-old men confirmed that AAC 
was an effective indicator to identify the high risk of hip 
fracture in elderly men (28). Overall, AAC is a common 
predictor of cardiovascular outcomes and skeletal events.

Carotid artery calcification
Carotid artery calcification is a vital predictor of 
cerebrovascular events, which has been supported by a 
series of studies based on a 6-year cohort study of 2,323 
patients (29). Carotid artery calcification, especially 
intracranial carotid artery calcification (ICAC), is an 
important marker of intracranial AS in various ethnicities 
worldwide and is closely related to stroke risk (29-31). 
Notably, a study involving nearly 2,000 patients found that 
ICAC and other vascular bed calcifications has a prominent 
difference, that is, ICAC has been widespread in very young 
individuals, indicating that carotid artery calcification can 
serve as a significant prognostic factor for cerebral vascular 
events in the young (32).

BAC 
A study involving 213 patients showed that BAC is significantly 
correlated with CAC and the severity of CHD (33). A cohort 
study involving 12,239 women and a retrospective study 
involving 228 women also demonstrated that BAC is related to 
CKD, DM, bone mineral density, and so on (34,35). However, 
because BAC is considered unrelated to breast cancer, it has 
been widely underreported by radiologists (36,37). What is 
worse, young women have an insufficient understanding of 
cardiovascular diseases (38). In fact, cardiovascular disease 
is also one of the most dangerous threats to women’s 
health, related to their unique non-traditional risk factors 
which tend to be ignored, such as fertility, contraception, 
pregnancy complications, menopausal hormone therapy, 
systemic autoimmune diseases, and so on (38,39) . 
Consequently, given that BAC is an easily available 
quantitative indicator that can reflect the cardiovascular risk 
of women, it should not go unheeded by radiologists (37).

Barriers in the absence of AI 

A survey from 1999 to 2010 concluded that the volume of 
medical images is increasing, yet the utilization of images 
is not proportional, and radiologists need to interpret 
an image every 3–4 seconds within 8-hour working  
days (40). Another study based on multiple hospitals found 
that radiologists interacted with other medical staff an 
average of 6 times per hour, of which more than 81.2% 
was found to directly affect the health of patients (41). A 
study of physical condition of 40 radiologists before and 
after work found that after reading for 1 day, the diagnostic 
accuracy was significantly reduced, the attention was 
decreased, and the symptoms of oculomotor fatigue were  
increased (42) .  In general,  it  is  reported that the 
retrospective error rate of radiological examination is as 
high as 30%, and the real-time error rate is 3–5%. Besides, 
75% of medical malpractice claims related to radiologists 
link to diagnostic errors (43). These research results 
reveal the cruel situation of radiology that radiologists 
play an important role in the decision-making of patient 
intervention measures, but the increasingly heavy workload 
increases the diagnostic error rate, and the health of 
radiologists is also threatened.

The accurate determination of calcium score is 
reasonably demanding for the operators, to achieve which, 
each calcification within each coronary artery must be 
manually identified by the operator in turn (13). However, 
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the shape of calcified foci is variable and subject to 
various disturbances. Therefore, calcium scoring is quite 
time-consuming and technically demanding (13,44,45). 
Meanwhile, specific calcium scores, such as CACS, need 
to be obtained through dedicated cardiac CT loaded with 
electrocardiogram (ECG) gating: calcium scoring computed 
tomography (CSCT) (46) .  The standard scanning 
parameters of CSCT include 120 kVp tube voltage and 
variable tube current according to the patients’ body type, 
equipped with a prospective ECG trigger device, obtaining 
images in the diastole period, and reconstructed in a slice 
thickness of 3 mm (9). Moreover, in CSCT, CAC is defined 
as a lesion with at least 3 consecutive pixels (or 1 mm2) and 
attenuation ≥130 Hounsfield unit (HU) (9). This means 
that if the CAC needs to be diagnosed accurately, a special 
examination must be performed, increasing the economic 
burden and radiation exposure, which will be reduced if an 
accurate diagnosis can be made by ordinary equipment (46). 
In addition, not in all scans, radiologists will evaluate the 
vascular calcification reflected in the images, resulting in a 
large number of missed diagnoses (44-47). 

Generally, AI fairly needed for radiologists to diagnose 
vascular calcification. Fortunately, 5 types of vascular 
calcification have been assisted by AI (1,45,48-50). The 

anatomical location and radiologic equipment involved 
in AI of each type of vascular calcification is visualized in 
Figure 2.

Application progress of AI

CAC 
Automatic CACS in CSCT
AI was originally used to diagnose CAC in 2007 (13). A 
total of 64 features were designed for each candidate of 
CAC, after which, the K-nearest neighbor was applied 
to achieve an accuracy rate of 73.8% (13). In the next  
3 years, researchers tried various methods to design 
features, including strength threshold, spatial features, 
and geometric features (13,51-53). Since it was always a 
technical problem to select features in the non-contrast 
images obtained by CSCT (15), in the following years, a 
more popular method was to register the high-precision 
coronary artery spatial information in coronary computed 
tomography angiography (CCTA) with the images 
from CSCT, which was called the atlas-based method  
(15,54-57) This idea made a breakthrough in the 
performance of ordinary ML. An algorithm using support 
vector machine achieved a sensitivity of 98.9% and a 

Carotid artery calcification:

Thoracic artery calcification:

Breast artery calcification:

Coronary artery calcification:

Abdominal artery calcification:

CT
MRI (SNAP sequence)

Mammograms

CSCT and NCTs including PET-CT, low dose chest CT, 
radiotherapy planning CT

CSCT and NCTs including CCTA, PET-CT, low dose
chest CT, radiotherapy planning CT 
Chest radiographs, invasive coronary angiography

Dual energy X-ray absorptiometry
Abdominal CT

Figure 2 The anatomical locations of the 5 types of vascular calcification, as well as the imaging equipment that AI has assisted in the 
diagnostic radiology of them, are shown in the figure. CT, computed tomography; MRI, magnetic resonance imaging; SNAP, simultaneous 
non-contrast angiography and intraplaque hemorrhage; CSCT, calcium scoring computed tomography; NCTs, non-electrocardiogram-
gating CTs; PET, positron emission tomography; CCTA, coronary computed tomography angiography; AI, artificial intelligence.
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positive predictive value (PPV) of 94.8% (15). Similar ML 
algorithms were popular until 2016 (15); however, they had 
obstacles such as the cumbersome manual operation that 
was required (9).

In order to further improve efficiency, DL became the 
mainstream choice (5,16). Although the performance of DL 
was unsatisfactory at first, through continuous improvement 
of CNN by researchers, it was able to achieve hundreds of 
times faster efficiency, accurate and robust automatic scoring, 
and convenience of full automatic detection (58-64). When 
researchers use DL, the traditional idea is to determine CAC 
first and then obtain calcium scores (65). However, 1 study 
omitted the time-consuming step of determining CAC first, 
but directly regressed Agatston scores, completing the work 
in less than 0.3 seconds, with almost perfect consistency 
with manual results (65). U-Net, a more efficient algorithm, 
also known as fully CNN (FCN), is an extension of 
CNN to achieve more efficient learning in fewer training  
sets (66). The performance of DL based on U-Net 
architecture has been confirmed in a recent study, whose 
performance is very close to those of other algorithms in 
the same period (59). In detail, the U-Net proposed in 
this study correctly classified the risk classification of 86% 
of cases. In the remaining 14%, most of the errors were 
controlled in one class (59). Another study enabled the DL 
based on the U-Net to achieve the end-to-end and pixel-
wise performance, that is, to directly input a complete 
image without losing pixel information (62).
Enabling more devices to diagnose CAC
Compared with CSCT, non-electrocardiogram-gating CTs 
(NCTs) are more common worldwide (67). If the CAC 
information obtained by NCT is reliable, it will reduce 
unnecessary CT examination, not only reducing economic 
expenses but also reducing radiation exposure (68). It has 
been shown that the use of NCTs including low-dose chest 
CT, CCTA, positron emission tomography (PET)/CT, and 
radiotherapy planning CT for calcium scoring is clinically 
significant and theoretically feasible (65,67-71). However, 
more noise and various artifacts make it almost impossible to 
obtain CAC manually and accurately using NCTs (55,71,72).

AI has played a great role in the task of diagnosing 
CAC based on NCTs. Ten years ago, an ordinary ML 
algorithm was reported able to achieve an accuracy of 
82.2% in Agatston score in low-dose chest CT (71). In the 
past 5 years, the application of DL has promoted further 
development. Many researchers have been committed 
to noise and artifact reduction, as well as lessening the 
interference of non-calcified components such as stents 

on diagnosis, the DL algorithms developed by whom have 
improved the use value of low-quality images (67,72-74). In 
the latest study, DL improved the signal-to-noise ratio of 
low-dose CT by 27.7% (73), and the specificity of detecting 
CAC has been increased by 41% at most by means of 
removing blooming artifacts (74). Several other studies 
have also achieved noteworthy results. In order to solve the 
problem that the performance of network will be degraded 
if it is so deep due to a sea of information, a DL algorithm 
with ResNet architecture was adopted in a study, making 
complex work easier (68). Moreover, although the correct 
classification rate of scoring on NCTs in this work was only 
70%, the correlation coefficient of the quantification of 
CAC volume between AI and manual results was as high 
as 0.923, indicating that quantification of CAC volume is 
an alternative when CACS are not accurate enough (68). 
Another study found that when detecting CAC in non-
contrast chest CT, the sensitivity, specificity, and area under 
curve (AUC) of AI exceeded the manual results, suggesting 
that the performance of AI in NCTs can be better than 
that of human operators (47). Besides, a study validated the 
performance of AI in NCTs in 4 different centers, with high 
sensitivity and PPV in all datasets, further generalizing the 
achievement (75). In conclusion, the current performance 
of AI in diagnosing CAC based on NCTs is robust.

Notably, researchers have begun to expand the ability 
of AI to diagnose CAC in a wider range of radiological 
devices. Compared with NCTs, chest radiographs are more 
common (76). A study realized the classification of total 
calcium scores on chest radiographs using deep CNN, 
demonstrating the capability of chest radiographs to avoid 
CT examination in certain patients with regard to screening 
CAC (76). At length, for the detection of CAC in the study, 
the AUC reached 0.73 on the frontal radiographs and 0.7 
on the lateral (76). In this first attempt in chest radiographs, 
even if the data was not so excellent, it was still valuable. 
In addition, a study proposed a deep neural network that 
enabled the analysis of invasive coronary angiography 
images within seconds, detecting CAC with a F1 score of 
0.802 (77).

TAC
Compared with CAC, the accuracy of detecting TAC by 
CT cannot be significantly affected by cardiac motion (78) 
Some 12 years ago, researchers correctly detected 97.9% 
of TAC by using K-nearest neighbor algorithm combined 
with feature-based and atlas-based methods, which had 
a good correlation with manual results (78) In CT, TAC 
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is able to be detected simultaneously during coronary 
artery examination (50). In recent years, the application of 
DL has enabled the concurrent quantification of CAC in 
multiple branches and TAC (62,70,79). A study extended 
the conclusion above to a variety of CTs including CSCT, 
low-dose chest CT, PET/CT, radiotherapy plan CT, and 
so on, with the ICC ranging from 0.68 to 0.98 (80). A 
recent study succeeded to achieve a time of only 4 seconds 
per patient with pixel-wise performance (62). It is worth 
noting that a study using 6 CNNs to detect TAC alone 
achieved a sensitivity of 98.4%, not only classifying the 
TAC in ascending aorta, aortic arch and descending 
aorta respectively, but also quantifying the TAC risk  
scores (50). Therefore, with the assistance of AI, automatic 
quantification of CAC and TAC in unison becoming the 
routine work of radiology department is no longer difficult.

AAC
With the continuous progress of DL, automatic detection 
of AAC has been realized, which has been supported 
by 2 studies in recent years (49,81). Dual energy X-ray 
absorptiometry (DXA) is a device supported by many 
guidelines as a strategy for fracture risk assessment, the 
increase in whose use has created opportunities for the 
application of AAC automatic scoring; however, due to 
its high technical requirement, DXA has not been used 
for routine detection of AAC in the clinic (49,82,83). 
Researchers have achieved satisfactory AAC scores 
classification using CNN based on DXA, attaining 
high consistency with manual results, that is, a Kappa 
score of 0.71 (49). In the future, the ability of CNN to 
automatically detect AAC based on DXA needs to be 
verified in more centers. Compared with DXA, CT shows 
obvious advantages in quantifying the mural calcium 
of the aorta (81). Researchers successfully realized the 
automatic detection of AAC using abdominal CT in a 
population involving more than 9,000 patients, attributing 
to Mask Region-CNN, a type of CNN accurate in feature  
extraction (81). On the basis of reliable quantitative results, 
this study also assessed the population distribution of AAC, 
increasing the value brought by the assistance of AI (81). To 
sum up, whether it is X-ray machine or CT, the automatic 
quantification of AAC can be realized by AI, and then 
becomes a routine work.

Carotid artery calcification
Both extracranial carotid artery calcification and ICAC 
can now be automatically detected by CT attributing to 

AI (44,48). The latest study used 4 DL networks with 
structures similar to U-Net, with the detection accuracy of 
ICAC even better than that of trained manual evaluation, 
with a sensitivity of 83.8% and PPV of 88% (44). Manual 
annotation of ICAC is time-consuming, error prone, 
and vulnerable to structures with similar attenuation and 
appearance, such as bone and dural calcification, so the 
better accuracy shown by DL is crucial (44).

The most significant difference between carotid 
artery calcification and other vascular calcification is the 
application of MRI (14,48). In the past reports, the accuracy 
of identifying calcification was low when only MRI was  
used (48). However, the application of simultaneous 
non-contrast angiography and intraplaque hemorrhage 
(SNAP) sequence has improved the recognition ability of 
calcification by MRI (14). The SNAP sequence first inverts 
all signals by an inversion pulse, and then obtains a highly 
T1 weighted inversion recovery acquisition and a proton 
density weighted reference acquisition by 2 gradient echo, 
having an excellent effect in cranial and cervical vascular 
imaging (84). Although SNAP succeeds in detecting 
calcification, it will be affected by motion artifacts and 
its scanning time is relatively long, which may be solved 
by Goal-SNAP and fast SNAP (14,85,86). In this study, 
ordinary ML algorithms such as random forest are similar 
to ANN regards to the detection of calcification, but 
DL may perform better in the segmentation of vascular 
components, which needs further research (14).

BAC 
BAC is imaged by mammograms, but its manifestation in 
images is quite various, which can be bifurcated, overlapped, 
truncated, and of different intensity (36,45,66,87). 
Such complexity makes manual quantification of BAC  
difficult (38). However, more than 40 million women in 
the United States are examined by mammograms every 
year, not to mention globally, providing a huge database for 
the application of AI (45). In the early stage, researchers 
proposed the ML idea of random walk for the complex 
expression of BAC, converting the extraction of calcium 
into a vessel tracking problem (87). In recent years, DL 
has been widely used, the common idea of which is to 
cut out mammograms into patches, for the image size is 
too large for direct input (36,45,66). A 12-layer CNN 
describes the detection of BAC as a 2-classification  
problem (36). Although it succeeded in distinguishing 
whether BAC existed or not, it failed in quantitative 
evaluation (36). Moreover, it was quite slow due to the 
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need to run separately for each patch (36,66). Subsequently, 
researchers improved CNN in view of these defects, 
proposing simple context U-Net (SCU-Net) and dense 
U-Net (DU-Net) (45,66). SCU-Net is a lightweight 
U-Net, which reduces the training amount by an order 
of magnitude on the basis of U-Net, overcoming the 
problem that BAC accounts for less than 1% of the images, 
leaving a sea of useless data to generate an army of invalid  
learning (45). DU-Net is also an improved way to avoid 
learning redundant features, greatly improving the 
efficiency of CNN, with an accuracy of 91.47% and 
sensitivity of 91.22% (66). To sum up, the DL used for 
automatic detection of BAC has reached an advanced 
level, but there is no reliable public data set to standardize 
this field, so relevant researchers need to make further 
contributions in the future (66).

Possible future directions 

As reviewed above, AI has gradually reached the ability to 
assist radiologists in diagnosing vascular calcification by 
playing a role in the preliminary screening and speeding up 
work efficiency. However, it still inevitably has limitations 
and some areas for additional work remain.

The accuracy of AI for diagnostic radiology mainly 
associates with the algorithm of AI itself  and the 
characteristics of images. From the conventional ML 
algorithms to the ever-expanding DL algorithms, the 
performance of AI itself has made great progress, and the 
diagnostic performance has improved accordingly (13,62). 

Over the years, with the progress of imaging technology, 
the image quality has been continuously upgraded, leading 
to the improvement of the diagnostic performance (40,84). 
In other words, AI’s ability is inseparable from high-quality 
training data, which can also benefit from the establishment 
of public databases or test platforms. Thus, in the future 
work, engineers and doctors should try to further promote 
the diagnostic performance of AI mainly from these 
two perspectives: AI algorithm itself and image quality. 
Radiology and AI are mutually reinforcing (1,6,9).

Notably, although AI has shown satisfactory effects in 
5 types of vascular calcification, it has potential value for 
other types of vascular calcification, such as renal artery 
calcification (RAC), the prognostic value of which in 
hypertension and proteinuria has been supported (88). 
Meanwhile, the quantity of research in AAC and carotid 
artery calcification is low, which needs to be supplemented 
through future efforts.

Besides the excellent performance of AI reviewed above, 
AI can be utilized in other links of diagnostic radiology 
of vascular calcification. AI has been able to assist CT 
positioning, thus reducing errors caused by manual 
operation (5). Moreover, it can automatically create views, 
such as curved multiplanar reformations (CPR), assisting 
in the intelligent post-processing of images (5). Thus, in 
future work, AI should be a routine part of the radiology 
work, with the specific working mode described in Figure 3. 
Under this new mode, the working efficiency and accuracy 
of radiologists is hoped to be improved, with the rate of 
missed diagnosis and misdiagnosis of vascular calcification 

Clinical issuance 
of imaging

Clinicians give 
priority to 

imaging to check 
vascular 

calcification

Select imaging 
methods due to 

the types of 
vascular 

calcification

Assist in image 
processing and 
provide results
for reference

Radiologists 
make the final 

diagnosis based
on the results 
provided by AI

Imaging
examination

Pretreatment 
with Al

Final diagnosis 
from 

radiologists

Figure 3 In future work, the new mode of collaboration between AI and radiology is shown in the figure. AI, artificial intelligence.
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reduced. Especially for CAC and TAC able to be detected 
simultaneously, the screening efficiency is likely to be 
significantly improved. Moreover, AAC, carotid artery 
calcification and BAC, which are not indicators of routine 
clinical screening, may have chance to be well utilized as the 
burden on radiologists is not significantly increased.

AI promotes the joint development of multiple 
disciplines, attributed to the automatic diagnosis of vascular 
calcification. Recently, the automatic quantification of CAC 
and TAC has been used to promote the mechanism research 
of cardiotoxicity caused by cancer treatment (89-91). In 
the future, the research efficiency of more cardiovascular 
diseases is bound to be improved.

Last but not least, the solution to the black box nature 
should also be a vital goal of future work, which means AI 
fails to interpret the logic of its output, and outputs based 
only on its learning from features (12). A solution may be 
better visualization techniques performed by DL, showing 
heat maps to help describe the principles (6,65). Moreover, 
AI’s such lack of the ability to use the emotional brain to 
conduct clinical analysis of calculation results makes it 
doom to be only an aid to radiologists, rather than replace 
them. Meanwhile, even though AI can surpass humans in 

speed and accuracy, it can never give patients the humanistic 
care that real doctors can give for now (6,10,11).

Conclusions

AI has performed brilliantly in the diagnostic radiology 
of vascular calcification. Besides improving accuracy and 
efficiency, the pixel-wise performance is more powerful 
than the naked eyes. The comparison of AI in the 
diagnostic radiology of each type of vascular calcification 
is shown in Table 4. In general, AI has achieved the ability 
to assist radiologists in automatically diagnosing vascular 
calcification, but there is still room for improvement. It is 
hoped that radiology can be better developed with the help 
of AI.
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Table 4 The comparison of AI application progress in the diagnostic radiology of 5 types of vascular calcification 

Type of vascular 
calcification

Quantity of 
research

Whether X-ray 
is involved

Whether CT 
is involved

Whether MRI  
is involved

Latest application of DL

Coronary artery 
calcification

Great and 
sufficient

Yes Yes No Pixel-wise and end-to-end DL together with GAN 
reduces noise and artifacts makes reliable automatic 
CACS based on CSCT and enables credible CAC 
quantification in NCTs and more radiological device 

Thoracic artery 
calcification

Medium No Yes No DL enables automatic TAC quantification together 
with CAC, as well as quantification in sections 
including the ascending aorta, aortic arch, and 
descending aorta

Abdominal artery 
calcification

Few, needs 
more

Yes Yes No More advanced DLs including Mask R-CNN enable 
accurate AAC quantification in both DXA and CT, 
with contributions to the population study of AAC

Carotid artery 
calcification

Quite few, 
needs more

No Yes Yes The performance of DL seems to be close to that of 
ML, but surpasses that of humans, with the first and 
only attempt to involve MRI

Breast artery 
calcification

Medium Yes No No U-Net, SCU-Net, DU-Net and other advanced DLs 
overcome the complexity of manual BAC evaluation

AI, artificial intelligence; CT, computed tomography; MRI, magnetic resonance imaging; DL, deep learning; GAN, generative adversarial 
network; CACS, coronary artery calcium scoring; CSCT, calcium scoring computed tomography; CAC, coronary artery calcification; NCTs, 
non-electrocardiogram-gating CTs; TAC, thoracic aortic calcification; Mask R-CNN, mask region-convolutional neural network; AAC, 
abdominal aortic calcification; DXA, dual energy X-ray absorptiometry; SCU-Net, simple context U-Net; DU-Net, dense U-Net.
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