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Andrographis paniculata ameliorates estrogen deficiency-related 
osteoporosis by directing bone marrow mesenchymal stem cell 
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Background: Although Andrographis paniculata (AP) exhibits various biological functions such as anticancer, 
anti-inflammatory, antimalarial, antimicrobial, antioxidant, cardioprotective and immunomodulatory, its role 
in estrogen deficiency-related osteoporosis remains unclear.
Methods: Ovariectomy (OVX)-induced estrogen deficiency-related osteoporotic mouse models and sham 
mouse models were established using 8-week-old female C57BL/6J mice. Micro-computed tomography 
(μCT) scanning was performed to assess the skeletal phenotype. The differentiation potential of bone 
marrow mesenchymal stem cells (BMSCs) from the OVX and sham groups was assessed by osteogenic or 
adipogenic induction medium in vitro. To verify the effects of AP, alizarin red S (ARS) staining, alkaline 
phosphatase (ALP) staining and oil red O (ORO) staining, reverse transcription assay and quantitative real-
time polymerase chain reaction were applied to detect the lineage differentiation ability of BMSCs.
Results: μCT scanning showed that AP treatment attenuated the osteoporotic phenotype in OVX-induced 
estrogen deficiency-related osteoporotic mice. The results of ARS staining, ALP staining, ORO staining and 
quantitative real-time polymerase chain reaction indicated that BMSCs from OVX-induced osteoporotic 
mice displayed a significant reduction in osteogenic differentiation and an increase in adipogenic 
differentiation, which could be reversed by AP treatment. 
Conclusions: Our findings suggested that AP regulated the differentiation potential of BMSCs and 
ameliorated the development of estrogen deficiency-related osteoporosis, which might be an effective 
therapeutic method for estrogen deficiency-related osteoporosis.
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Introduction

Bone marrow mesenchymal stem cells (BMSCs) are non-
hematopoietic stem cells and progenitor cells that have the 
potential to differentiate into various cell types, including 
osteoblasts, adipocytes, and chondrocytes (1,2). BMSCs are 
characterized by their abundance, high capacity for self-
renewal, pluripotency, weak immunogenicity, and ease of 
transfection (3), which makes them as an ideal source of 
stem cells for transplantation and they are broadly used 
for the treatment of bone-related diseases (4). There are 
multiple factors that regulate the osteogenic and adipogenic 
differentiation of bone marrow mesenchymal stem cells, 
including ageing, epigenetic modifications, source, 
autophagy, inflammatory environment and intracellular 
signals (5-10). The balance between osteogenesis and 
adipogenesis of BMSCs plays a vital role in maintaining 
bone homeostasis and is a determinant in the development 
of osteoporosis (11). For example, with aging, BMSCs 
exhibit a reduction in the ability to differentiate into 
osteoblasts rather than adipocytes, resulting in obvious bone 
loss and marked fat accumulation in the bone marrow (12,13). 
As well, estrogen deficiency-related osteoporosis, coupled 
with increased bone marrow fat, is caused by the imbalance 
between osteoblast and adipocyte differentiation of BMSCs. 

Therefore, novel therapeutic methods that decide the 
fate of BMSCs need to be further investigated. 

Andrographis paniculata (AP) is a prioritized medicinal 
plant that belongs to the family Acanthaceae and is 
widely distributed in southern Asia (14). It has a very 
bitter taste and is known as the “King of bitters”. The 
leaves and roots are usually applied for “cold property” 
to remove body heat and dispel toxins from the body. 
AP is often used in Indonesia for treating diabetes (15). 
Research has shown that AP exhibits biological activities, 
such as antidiabetic, anti-angiogenetic, antibacterial, 
anticancer, anti-inflammatory, antimalarial, antioxidant, and 
hepatoprotective activities (16). Its biological functions are 
related to bioactive compounds, including andrographolide, 
dehydroandrographolide, neoandrographolide, and 
deoxyandrographolide. AP is broadly used for the 
treatment of liver diseases, fever, common cold, acute 
diarrhea, hypertension, chicken pox, leprosy, hepatitis and  
malaria (17). Research has investigated whether AP 
could be used to prevent neutrophil accumulation and  
infiltration (18), and it has been demonstrated to enhance 
osteogenesis and chondrogenesis of mesenchymal stem cells 
from human suprapatellar fat pad tissues (19). However, 
the role of AP in the differentiation of BMSCs and the 
development of osteoporosis, especially estrogen deficiency-
related osteoporosis, remains unclear.

In our study, we investigated the functions of AP in 
the osteogenesis and adipogenesis of BMSCs and the 
development of estrogen deficiency-related osteoporosis. 
We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1121/rc).

Methods

Isolation, culture and drug treatment

Following the isolation of murine BMSCs, the cells were 
cultured to the third passage as previously described (20). 
BMSCs were cultured in the medium containing α-MEM 
medium (Gibco, USA), 20% fetal bovine serum (FBS; 
ThermoFisher, USA), 2 mM L-glutamine (Invitrogen, 
USA), 100 U/mL penicillin and 100 U/mL streptomycin 
(Invitrogen, USA). The cells were maintained in an 
atmosphere of 5% CO2 at 37 ℃. BMSCs at the third 
passage were used for further analysis. AP reagent was 
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purchased from Sigma Aldrich, USA. The cells were treated 
with AP at 5, 10 and 20 μM, respectively. 

Osteogenic differentiation assay

To induce osteogenic differentiation, the BMSCs were 
maintained in osteogenic induction medium (α-MEM 
supplemented with 10% FBS, 100 IU/mL penicillin and 
100 μg/mL streptomycin, 10–8 M dexamethasone, 10–2 M 
β-glycerophosphate and 50 μg/mL L-ascorbic acid) for  
14 days. The medium was replaced every 3 days. 

Adipogenic differentiation assay

To induce adipogenesis, the BMSCs were maintained in 
adipogenic induction medium (α-MEM supplemented 
with 10% FBS, 100 IU/mL penicillin and 100 μg/mL 
streptomycin, 10–8 M dexamethasone and 6 ng/mL insulin) 
for 16 days. The medium was replaced every 3 days. 

Alizarin Red S (ARS) staining

ARS staining was applied to assess mineralization after  

14 days of osteogenic differentiation. BMSCs were washed 
three times with phosphate-buffered saline (PBS) to remove 
medium and fixed with 4% paraformaldehyde (PFA) for  
20 min at room temperature. The cells were then stained 
with 1% ARS (Sigma, USA) for 20 min. Quantitative 
parameters of the mineralized areas were analyzed as 
previously reported (21). Finally, the stained cells were 
examined using an inverted microscope (Nikon, Japan).

Alkaline phosphatase (ALP) staining

ALP staining was applied to assess the osteogenic 
differentiation of BMSCs. BMSCs were washed twice with 
PBS, and ALP staining was performed according to the 
protocol previously reported (21). Finally, the stained cells 
were examined using an inverted microscope (Nikon, Japan).

Oil Red O (ORO) staining 

ORO staining was conducted to detect the lipid droplet 
formation of BMSCs. ORO staining solution was prepared 
using 0.5 g ORO powder (Sigma, USA) and 100 mL of 
isopropanol. The solution was diluted with distilled water at 
the ratio of 3:2 and regarded as the working solution. The 
cells were washed three times with PBS to remove medium, 
and fixed with 4% PFA for 20 min at room temperature. 
The cells were stained with the ORO working solution for 
15 min. The positive area was observed and analyzed.

RNA isolation and quantitative real-time polymerase 
chain reaction (qRT-PCR) assay

The TRIzol reagent (Life Technologies, USA) was added to 
the samples and total RNA was prepared according to the 
manufacturer’s instructions (22). Then, reverse transcription 
assay and qRT-PCR assay were applied using Reverse 
Transcriptase (ABI, USA) and SYBRGreen qPCR Master 
Mix (Roche, Switzerland). The mRNA expression levels 
of genes were analyzed by the comparative cycle threshold 
method using GAPDH as control. The primers used for 
qRT-PCR amplification are listed in Table 1.

Animals and establishment of estrogen deficiency-induced 
osteoporotic model

All animals were purchased from the Qinhuangdao Lvjia 
Agricultural Science and Technology Development Co., 
Ltd., China. All animals were housed under specific 

Table 1 Primers used for qRT-PCR amplification

Gene Primer sequence (5' to 3')

Runx2 (mouse) F: ACTTCCTGTGCTCCGTGCTG

R: TCGTTGAACCTGGCTACTTGG

Osterix (mouse) F: ACCAGGTCCAGGCAACAC

R: GCAAAGTCAGATGGGTAAGTAG

ALP (mouse) F: CGTCTCCATGGTGGATTATGC

R: TGGCAAAGACCGCCACAT

Pparg (mouse) F: GACCACTCGCATTCCTTT

R: CCACAGACTCGGCACTCA

Fabp4 (mouse) F: AAATCACCGCAGACGACA

R: CACATTCCACCACCAGCT

LPL (mouse) F: GGGAGTTTGGCTCCAGAGTTT

R: TGTGTCTTCAGGGGTCCTTAG

β-actin (mouse) F: CTGTCCCTGTATGCCTCTG

R: TGATGTCACGCACGATTT

qRT-PCR, quantitative real-time polymerase chain reaction; 
Runx2, runt-related transcription factor 2; ALP, alkaline 
phosphatase; Pparg, peroxisome proliferator activated receptor-g; 
Fabp4, fatty acid binding protein 4; LPL, lipoprotein lipase.
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pathogen-free conditions (22 ℃, 50–55% humidity, and 12 h  
light/dark cycles) with food and water easily accessible. The 
80 8-week-old female C57/BL6 mice were randomly divided 
into four groups (20 per group): sham group, ovariectomy 
(OVX) group, OVX + 50 mg/kg AP group and OVX  
+ 100 mg/kg AP group. The OVX-induced estrogen 
deficiency-related osteoporotic mouse model was established 
by bilateral OVX. AP was administered via oral gavage. 
After 8 weeks, the mice were humanely killed and their 
femurs were obtained for micro-computed tomography 
(μCT) scanning. Animal experiments were performed 
under a project license (No. 2021121) granted by the 
Ethics Committee of Tianjin Hospital, in compliance with 
institutional guidelines for the care and use of animals.

Micro-computed tomography analysis

Trabecular bone tissues obtained from the femurs of mice 
and were scanned by μCT (SCANCO Medical, Switzerland) 
using 10.5-μm voxel resolution. Three-dimensional 
morphological parameters, including bone volume/tissue 
volume (BV/TV), trabecular number (Tb.N), trabecular 
thickness (Tb.Th) and trabecular separation (Tb.Sp) were 
obtained and analyzed.

Statistical analysis

Data were analyzed using Graphpad and the results shown as 
mean ± SD. Student’s t-test was used to compare differences 
between groups. Comparisons of multiple groups were made 
using one-way ANOVA. All experiments were repeated at 
least three times, and representative experiments are shown. 
Data were considered significant at P<0.05.

Results

Effect of AP on accelerated bone loss in estrogen deficiency-
related osteoporotic mice

We used OVX-induced estrogen deficiency-related 
osteoporotic mice to investigate whether AP can ameliorate 
osteoporosis. After 8 weeks, the trabecular bone tissues 
were obtained from the femurs of mice in the OVX, OVX  
+ 50 mg/kg AP and OVX + 100 mg/kg AP groups and 
scanned by μCT, which showed that compared with the 
sham group, the BV/TV and Tb.N were much lower in the 
OVX group, and had been reversed after 50 mg/kg AP and 
100 mg/kg AP treatment (Figure 1A,1B). The results also 

showed that Tb.Th and trabecular separation Tb.Sp in the 
OVX group were much higher than in sham group, and had 
been reduced in the OVX + 50 mg/kg AP group and OVX + 
100 mg/kg AP group (Figure 1C,1D). These results verified 
the characteristics of accelerated bone loss in OVX-induced 
estrogen deficiency-related osteoporotic mice and showed 
that it could be counteracted by AP treatment. 

Isolation and characterization of BMSCs

To assess the identities of the isolated BMSCs, they were 
characterized by phenotype analysis. The BMSCs were 
morphologically defined by a fibroblast-like appearance 
(Figure 2A). ARS, ALP and ORO staining confirmed that 
BMSCs could be induced into osteoblasts and adipocytes 
after osteogenic and adipogenic differentiation induction 
(Figure 2B-2D).

Effect of AP on decreased mineralization capability of 
BMSCs from osteoporotic mice

BMSCs p lay  key  ro les  in  bone  homeostas i s  and 
regeneration, and reduced osteogenic ability of BMSCs is 
critical for osteoporosis (23-25). To directly assess the role 
of AP in the osteogenic potential of BMSCs, those from the 
OVX mice were isolated and treated with AP at different 
concentrations, and then cultured in osteogenic-inducing 
medium for 14 days. As exhibited by ARS staining and 
ALP staining, BMSCs from the sham group demonstrated 
reduced osteogenic  d i f ferent iat ion,  with weaker 
mineralization capability and reduced areas of mineralized 
nodules (Figure 3A-3D). Importantly, compared with 
the sham group, the BMSCs from the OVX group were 
dramatically defective in their mineralization capability, as 
quantified by ALP activity and quantitative parameters of 
ARS staining (Figure 3A-3D). Notably, the results of ARS 
and ALP staining showed that the mineralization ability 
of BMSCs from osteoporotic mice was increased by AP 
administered at 5, 10 and 20 μM, which suggested that 
AP treatment substantially rescued the osteogenic decline 
of BMSCs from OVX mice (Figure 3A-3D). The results 
proved that AP reversed the decreased mineralization 
capability of BMSCs from osteoporotic mice.

Effect of AP on the expression of osteogenic marker genes 
of BMSCs from osteoporotic mice

During the osteogenic induction process, several genes 
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Figure 1 AP treatment and bone loss in osteoporotic mice. (A-D) Quantitative micro-computed tomography analysis of trabecular bone 
microarchitecture in femurs from sham, OVX, OVX + 50 mg/kg AP and OVX + 100 mg/kg AP groups of mice. n=6 per group. Data are 
presented as mean ± SD. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. AP, Andrographis paniculata; BV/TV, bone volume/tissue 
volume; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; OVX, Ovariectomy; SD, standard deviation.

of terminal osteoblastic differentiation, including runt-
related transcription factor 2 (Runx2), Osterix and alkaline 
phosphatase (ALP), play key roles in the osteogenesis of 
BMSCs and exhibit much higher expression levels (26-28). 
As shown by qRT-PCR analysis, compared with BMSCs 
from the sham group, those derived from OVX-induced 
osteoporotic mice demonstrated significantly decreased 
expression levels of the osteoblast marker genes (Runx2, 
Osterix and ALP) (Figure 4A-4C). The reduced expressions 
of Runx2, Osterix and ALP were upregulated by AP 
administered at 5, 10 and 20 μM, and expression peaked at 
20 μM (Figure 4A-4C). Taken together, these data suggested 
that AP beneficially affected osteoblast maturation in OVX-
induced estrogen deficiency-related osteoporotic mice.

Effect of AP on osteoporosis-induced fat accumulation of 
BMSCs

To detect the effect of AP on BMSCs as a functional 
investigation, BMSCs from OVX-induced osteoporotic mice 
were treated with AP at 5, 10 and 20 μM and subsequent 
induction of adipogenic differentiation. After 16 days of 
differentiation, the induced adipocytes were stained with 
ORO. As shown in Figure 5A, BMSCs from the OVX group 
exhibited more lipid droplet formation than those form 
the sham group (Figure 5A,5B). The amount of lipid was 
reversed by all three concentrations of AP (Figure 5A,5B). 

We also performed qRT-PCR analysis of the expression 
of master transcription factors during adipogenesis. 
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A B

C D

Figure 2 Characterization of BMSCs. (A) Morphology of BMSCs observed by light microscope (×40). (B-D) Differentiation capability of 
BMSCs into osteoblasts and adipocytes evaluated by Alizarin Red S staining (B: ×100), alkaline phosphatase staining (C: ×100) and Oil Red 
O staining (D: ×200). BMSCs, bone marrow mesenchymal stem cells.
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Figure 3 AP and osteogenic differentiation of BMSCs in osteoporotic mice. (A) ARS staining of BMSCs treated with AP on day 14 of 
differentiation (×100); (B) histograms of quantification of ARS staining; (C) ALP staining of BMSCs after AP treatment (×100); (D) quantification 
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Figure 5 Effect of AP on adipogenic differentiation of BMSCs from osteoporotic mice. (A) Representative images of ORO staining of lipid 
droplets of BMSCs in the presence of AP (×200); (B) quantification analysis of ORO staining; (C-E) relative levels adipogenic gene markers: 
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marrow mesenchymal stem cells; Fabp4, fatty acid binding protein 4; Pparg, peroxisome proliferator activated receptor-g; LPL, lipoprotein 
lipase; ORO, Oil Red O; qRT-PCR, quantitative real-time polymerase chain reaction.
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The mRNA levels of three important adipocyte genes, 
peroxisome proliferator activated receptor-g (Pparg), 
fatty acid binding protein 4 (Fabp4) and lipoprotein lipase 
(LPL), were upregulated in BMSCs from osteoporotic mice 
(Figure 5C-5E). After the BMSCs derived from osteoporotic 
mice were treated with AP, the pro-adipogenic effects of 
osteoporosis were abolished, indicating that AP can target 
BMSCs to inhibit adipocyte formation (Figure 5C-5E). 
Taken together, these findings suggested that AP impaired 
osteoporosis-induced fat accumulation of BMSCs.

Discussion

Osteoporosis is a systemic skeletal disorder characterized 
by reduced bone mass, impaired microstructure of bone 
tissue and increased bone fragility and risk of fracture 
(29,30). Currently, some effective treatments are used 
for osteoporosis. Anti-resorptive methods, such as 
bisphosphonates and denosumab, could improve the 
bone mineral density (BMD) and decrease the risks of 
osteoporotic fractures by about 20% to 70%. Bone-forming 
and dual-action therapies can promote the bone formation 
and improve the BMD and the effects are better than the 
anti-resorptive methods. It has been demonstrated that 
these two current treatments are superior to anti-resorptive 
methods in the prevention of fractures in osteoporotic 
patients. Bone-forming methods and dual-action methods 
should be performed after the anti-resorptive treatments to 
reduce the fracture risks. The BMD gains in osteoporotic 
patients treated with bone-forming and dual-action 
treatments are much greater in patients treated with anti-
resorptive treatments. However, the anti-fracture efficacy 
seems to be preserved. Osteoporosis is a type of chronic 
condition, which might need long-term management plans 
with personalized approaches to treatment.

Disruption in bone remodeling resulting in increased 
adipogenesis and reduced osteogenesis of BMSCs can 
lead to osteoporosis (31). BMSCs can differentiate into a 
variety of cell types, such as osteoblasts, chondrocytes and 
adipocytes (32). Reports have indicated that BMSCs exhibit 
decreased abilities of osteogenic differentiation when 
osteoporosis occurs (33,34). In the current study, BMSCs 
isolated from OVX-induced estrogen deficiency-related 
osteoporosis mice exhibited decreased osteogenic and 
increased adipogenic potentials, which was consistent with 
results from a previous study (32). Thus, the application of 
BMSCs in bone regeneration and targeting BMSCs fate is a 
promising strategy to cure bone loss-related diseases such as 

osteoporosis.
There is mounting evidence of the biological functions 

of AP, such as anticancer, anti-inflammatory, antimalarial, 
ant imicrobia l ,  ant ioxidant ,  cardioprotect ive  and 
immunomodulatory activities (35-37), but not of its role in 
estrogen deficiency-related osteoporosis. Our study results 
verified the characteristics of accelerated bone loss in OVX-
induced estrogen deficiency-related osteoporotic mice and 
showed that it could be counteracted by AP treatment. 
Additional analysis indicated that AP reversed the decreased 
mineralization capability and impaired the osteoporosis-
induced fat accumulation of BMSCs from osteoporotic 
mice. Our study provides the first demonstration that 
AP affected the imbalance between osteogenesis and 
adipogenesis of BMSCs from osteoporotic mice. 

Conclusions

In summary, AP treatment prevented both the bone loss and 
impaired osteogenesis of BMSCs in estrogen deficiency-
related osteoporotic mice. AP also reversed the increased 
adipogenesis of BMSCs from osteoporotic mice. These 
findings strongly suggested that AP might prevent the 
development of osteoporosis by regulating the osteogenesis 
and adipogenesis of BMSCs. AP shows promise as a 
treatment for osteoporosis, but more research into the 
regulatory mechanism is needed.
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