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Background and Objective: The mitochondrion is a crucial organelle for aerobic respiration and 
energy metabolism. It undergoes dynamic changes, including changes in its shape, function, and distribution 
through fission, fusion, and movement. Under normal conditions, mitochondrial dynamics are in 
homeostasis. However, once the balance is upset, the nervous system, which has high metabolic demands, 
will most likely be affected. Recent studies have shown that the imbalance of mitochondrial dynamics 
is involved in the occurrence and development of various neurological diseases. However, whether the 
regulation of mitochondrial dynamics can be used to treat neurological diseases is still unclear. We aimed 
to comprehensively analyze mitochondrial dynamics regulation and its potential role in the treatment of 
neurological diseases.
Methods: A comprehensive literature review was carried out to understand the mechanisms and 
applications of mitochondrial dynamics in neurological diseases based on the literature available in PubMed, 
Web of Science, and Google Scholar.
Key Content and Findings: This review discusses the molecular mechanisms related to mitochondrial 
dynamics and expounds upon the role of mitochondrial dynamics in the occurrence and development of 
neurodegenerative diseases, epilepsy, cerebrovascular disease, and brain tumors. Several clinically tested 
drugs with fewer side effects have been shown to improve the mitochondrial dynamics and nervous system 
function in neurological diseases.
Conclusions: Disorders of mitochondrial dynamics can cause various neurological diseases. Elucidation 
of mechanisms and applications involved in mitochondrial dynamics will inform the development of new 
therapeutic targets and strategies for neurological diseases. Dynamin-related protein 1 (Drp1), as a highly 
relevant molecular for mitochondrial dynamics, might be a potential target for treating neurological diseases 
in the future.
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Introduction

Mitochondria are double membrane-bound organelles that 
contain DNA. The ancestor of mitochondria is believed to 
have invaded primitive single-celled organisms 1.5 billion  
years ago; most of the genetic material entered the nucleus, 
while a small part remained in the mitochondria (1). 
Mitochondria, the “energy factory” of the cells, produce 
adenosine triphosphate (ATP) with aerobic respiration. 
A study has also shown that mitochondria are the hub 
of material metabolism, reactive oxygen species (ROS) 
regulation, immune response, programmed cell death, and 
other processes (2).

Mitochondria are highly dynamic structures that change 
their shape, form, and number through fission and fusion. 
These dynamic changes can make mitochondria differ in 
shapes, appearing in the cytoplasm as dots, fragments, strips, 
lines, etc. It is believed that factors such as dynamin-related 
protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), 
Dynamin 2 (Dnm2), mitochondrial fission factor (MFF), 
mitochondrial dynamics protein (Mid), mitochondrial 
fusion protein (MFN), and optic atrophy 1 protein (OPA1) 
are involved in mitochondrial fission and fusion (3). The 
mitochondrial dynamics, regulated by various chemical 
enzymes and proteins, are closely related to the multiple 
functions of mitochondria, such as cell proliferation, 
metabolism, and migration. In neuronal cells, mitochondria 
are coupled to the dynein or kinesin-1 family motor 
proteins, enabling transport through the axoplasm to meet 
the neuron’s energy demands (4). Abnormal mitochondrial 
dynamics can affect the function of organ systems with high 
energy requirements, such as the nervous system.

With the aging of society, neurological diseases have 
become one of the leading causes of human death or 
disability, and it is difficult to fully restore the original 

neurological functions with existing treatments (5). An 
increasing amount of evidence shows that mitochondrial 
dynamics are involved in the occurrence and development 
of various neurological diseases (2). Our review reveals the 
different molecular mechanisms of mitochondrial dynamics 
and highlights their role in the emergence and development 
of various neurological disorders. Furthermore, our 
review summarizes the mitochondrial dynamics-related 
therapeutic drugs that can potentially shape to provide new 
therapeutic directions for neurological diseases. We present 
the following article in accordance with the Narrative 
Review reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-2401/rc).

Methods

We searched articles in PubMed, Web of Science, and Google 
Scholar published until March 20, 2022. The key search 
terms included “the mechanisms of mitochondrial fission and 
fusion”, “mitochondrial dynamics and neurological diseases”, 
and “mitochondrial dynamics and treatment strategy”. Sources 
are listed in Table 1 and Table S1.

Discussion

Mechanisms of mitochondrial dynamics

Mitochondrial fission
Mitochondrial fission is a complex process in which 
mitochondria are fragmented through division and 
segregated into separate mitochondrial organelles. Drp1, 
a large GTPase protein belonging to the Dynamin family, 
plays a vital role during mitochondrial fission. It comprises 4 
distinct domains: an N terminal GTPase domain, a middle 
domain, a variable domain, and a C-terminal GTPase 

Table 1 The search strategy summary

Items Specification

Date of search March 20, 2022

Databases and other sources searched PubMed, Web of Science, and Google Scholar

Search terms used See Table S1 for details

Time frame Articles published between January 1, 2008 and March 20, 2022

Inclusion criteria English original publications (basic science and clinical), reviews and abstracts

Selection process In this review, WLJ and XL collected and organized the literature. They discussed with 
JQ and jointly selected the literature related to the core content of the review. Finally, 
all authors reached an agreement on the manuscript

https://atm.amegroups.com/article/view/10.21037/atm-22-2401/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-2401/rc
https://cdn.amegroups.cn/static/public/ATM-22-2401-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-2401-Supplementary.pdf
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effector domain (GED). The force that triggers membrane 
constriction is thought to arise from the conformational 
changes caused by GTPase-induced hydrolysis (1). One 
study suggested that Drp1 in the cytoplasm is recruited 
to the outer mitochondrial membrane (OMM) before 
fission, which binds to receptors such as MFF and Mid (6). 
Multiple Drp1 molecules aggregate and are distributed 
around mitochondria to form oligomeric rings, leading to 
constriction. The Fis1 protein was previously thought to 
be a Drp1 adaptor in mitochondrial fission but was later 
confirmed not to contribute directly to mitochondrial fission 
in normal cell homeostasis (7). However, Fis1 has been 
found to promote fission by inhibiting the GTPase activity 

of fusion-related proteins OPA1 and MFN (8,9). Ji et al. (10) 
found that Drp1 constantly formed and disassembled from 
the oligomeric ring structure regardless of mitochondrial 
fission, which could signal to induce and maintain Drp1 
oligomeric rings to constrict mitochondria. They also 
showed that actin filaments significantly activated Drp1 
by recruiting them to mitochondria and helping them to 
form oligomeric rings. Phosphorylation of Drp1 at ser616 
promotes mitochondrial fission (11), and phosphorylation 
of Drp1 at ser637 reduces the GTPase activity and inhibits 
Drp1 recruitment to mitochondria, thereby preventing 
mitochondrial fission (12).

Contact sites between mitochondria and the endoplasmic 
reticulum (ER) are essential for mitochondrial fission 
(13). The ER tubules surround mitochondria and induce 
actin nucleation and polymerization at mitochondrion-ER 
contact sites through ER-bound inverted formin 2 (INF2) 
and mitochondrial Spire1C. Polymerized actin, which might 
also recruit myosin II, then provides the mechanical force 
to drive the preconstriction of mitochondria (14). After 
the initial constriction by ER tubules, the mitochondrial 
diameter decreases from 300–500 to 150 nm, which allows 
Drp1 oligomeric rings to form (15). Finally, Dnm2 is 
recruited to the Drp1-mediated mitochondrial constriction 
neck and cuts off the membrane (Figure 1) (16).

One study has inferred that the contact between 
lysosomes and mitochondria also promotes mitochondrial 
fission, with RAB7 binding to GTP in lysosomes being one 
factor that initiates the coupling (17). Time-lapse confocal 
microscopy in Hela cells demonstrated that mitochondria 
fission occurs at the contact point between lysosomes and 
mitochondria, where both Drp1 and ER tubules aggregate. 
Furthermore, Fis1 was found to recruit TBC1D15, a RAB7 
GTPase-activating protein that can hydrolyze RAB7 GTP 
to untether lysosomes from the mitochondrial network. 
This finding suggests that the contact and reseparation 
of lysosomes and mitochondria might play a pivotal role 
during mitochondrial fission (17).

It was believed that the fission site of the mitochondrion 
is in the center of its long axis. However, a recent study 
observed hundreds of spontaneous mitochondrial fissions 
and found a bimodal distribution with mitochondrial 
fission either in the midzone (within the central 50% of 
the long axis of the mitochondria) or periphery (less than 
25% from a tip of the long axis of the mitochondria) (18). A 
further study found peripheral fission to be associated with 
increased ROS, decreased mitochondrial membrane potential 
(MMP), and high levels of calcium ions in the mitochondrial 

Figure 1 Mechanism of mitochondrial fission. (A) The ER 
tubules surround mitochondria, and then actin nucleation and 
polymerization are induced at mitochondria-ER interface points by 
the ER-bound INF2 and mitochondrial Spire1C. The mechanical 
force needed to propel mitochondrial preconstriction is provided 
by this mechanism. (B) MFF and Mid recruit Drp1 from the 
cytoplasm to the outer mitochondrial membrane. Multiple Drp1 
molecules aggregate and are distributed around mitochondria to 
form oligomeric rings constricting the mitochondria. (C,D) Dnm2 
is drawn to the Drp1-mediated mitochondrial constriction neck 
and breaks off the membrane. ER, endoplasmic reticulum; IMM, 
inner mitochondrial membrane; OMM, outer mitochondrial 
membrane; INF2, inverted formin 2; MFF, mitochondrial fission 
factor; Drp1, dynamin-related protein 1; Dnm2, dynamin 2.
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compartment (19). Compared to those in peripheral fission, 
mitochondria in midzone fission appear devoid of these 
changes. Mitochondrial-ER contacts lead to precontraction 
during midzone fission, where MFF proteins bind to Drp1 
and are distributed at the mitochondrial fission sites. The Fis1 
protein is mainly involved in peripheral mitochondrial fission, 
is distributed throughout the mitochondrial outer membrane, 
and is highly aggregated in the smaller daughter mitochondria 
but not at the fission site (18,19). After peripheral fission, the 
smaller daughter undergoes autophagy to be degraded, while 
the mitochondria after midzone fission are typically normal. 
Therefore, peripheral mitochondrial fission is asymmetric 
fission, in which the healthy daughter can continue to 
function, but the smaller daughter is degraded and reused. 
On the other hand, midzone fission is symmetrical fission, in 
which copies of the mitochondria are created. After midzone 
fission, the daughter can exist independently or function via 
fusion within the mitochondrial network (Figure 2) (20). 

Mitochondrial fusion
Mitochondrial fusion is the process by which 2 small 
mitochondria fuse into 1 large mitochondrion, which is 
the basis for the network distribution of mitochondria. 
First, the 2 mitochondria interact in reverse, contraction 
and fusion of the outer membrane occur, and finally, the 
inner membranes are fused (21). MFN1 and MFN2, 
composed of 4 distinct domains [a GTPase domain, 2 
transmembrane (TM) domains, HR1 (heptad repeat 1) 
domain, and HR2 (heptad repeat 2) domain], mediate the 
outer membrane fusion. During the fusion process, the 2 
MFNs are dimerized by the HR2 domain and embedded 
into mitochondrial outer membranes by the TM domains. 
Subsequently, the MFNs’ GTP hydrolysis induces the 
2 mitochondria to come into closer contact, and fusion 
of the outer membranes occurs (22). MFN1-KO (knock 
out) can cause mitochondrial fission and spherical 
swelling, and the expression of either of the MFNs can 
rescue the phenotype (23). This may be related to the 
robust GTP-dependent membrane tethering activity of 
MFN1 (24). However, a recent study has found that the 
human MFN C-terminus is exposed to the mitochondrial 
intermembrane space (IMS), suggesting that MFNs carry 
a single TM domain with conserved redox-regulated 
cysteine residues and exposure of the HR2 domain to the 
IMS (25). Thus, further research is necessary to examine 
the topology of the TM domain in MFNs.

OPA1 (optic atrophy 1 protein) mediates the fusion of 
the inner mitochondrial membrane. Knockdown of OPA1 
triggers mitochondrial fission, while its overexpression 
causes mitochondrial elongation (26). The structure of 
OPA1 is similar to that of MFNs, with both containing the 
TM and the GTPase domain. When the inner membrane 
is fused, the TM domain becomes embedded into the 
inner membrane, while the remaining OPA1 exists in the 
intermembrane space (27). The research conducted thus 
far does not indicate that the GTPase domain of OPA1 
plays a role in inner membrane fusion. OPA1 has multiple 
proteolytic cutting points, forming longer L-OPA1 and 
shorter S-OPA1 after hydrolysis. It has been substantiated 
that L-OPA1 can participate in mitochondrial inner 
membrane fusion alone, while S-OPA1 cannot (28). 
Cardiolipin (CL) is a negatively charged, mitochondrion-
specific lipid in the inner mitochondrial membrane (IMM) 
and is necessary to assemble the oxidative phosphorylation 
complexes (29). Experiments have shown that L-OPA1 
interacts synergistically with CL to enable inner membrane 
fusion and that S-OPA1 plays a regulatory role in this 

Figure 2 Different ways that mitochondrial fission leads to distinct 
outcomes. Damaged mitochondria are likely to undergo peripheral 
fission, whereas normal mitochondria are likely to undergo midzone 
fission. Drp1 and MFF participate in midzone fission, and Fis1 
participates in peripheral fission. After peripheral mitochondrial 
fission, the smaller daughter enters mitophagy for degradation 
and reuse. ROS, reactive oxygen species; MMP, mitochondrial 
membrane potential; Drp1, dynamin-related protein 1; MFF, 
mitochondrial fission factor; Fis1, mitochondrial fission protein 1. 
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process. However, the interaction between the 2 OPA1 
can only promote the formation of mitochondrial cristae 
but does not lead to fusion (30). One study has confirmed 
that the effect of OPA1 on IMM fusion is dependent on 
MFN1, revealing a close connection between the inner and 
outer membrane fusion process (31). Further experiments 
are required to understand the underlying mechanisms of 
mitochondrial fusion (Figure 3).

Mitochondrial transport
In mature neurons, mitochondria move bidirectionally 
over long distances during processes. The kinesin-1 
family (KIF5A, B, and C) drive mitochondrial anterograde 
transport to distal axons, while the cytoplasmic dynein and 
the dynactin complex mediate retrograde transport from 
distal ends to the cell body. Syntaphilin (SNPH) holds 
axonal mitochondria stationary via its docking interaction 
with the microtubule (MT) network (4,32). Mitochondria 
redistribute in response to metabolic changes when neurons 
encounter physiological or pathological stress, thereby 
restoring energy homeostasis. The coordination of a 
group of MT-based transport and anchoring machinery 

composed of motors, adapters, and anchors is principally 
responsible for this highly dynamic redistribution of axonal 
mitochondria. The dynamic interaction of these motors, 
adaptors, and anchors enables long-distance bidirectional 
trafficking of axonal mitochondria and causes them to halt 
or become stationary, which leads to their re-mobilization 
and redistribution (33).

Mitophagy
Mitophagy is a crucial mitochondrial quality control system 
that keeps neurons healthy and functional by eliminating 
undesirable and damaged mitochondria. PTEN-induced 
kinase 1 (PINK1)/Parkin-dependent mitophagy is the 
most common and well-studied mitophagy pathway (34). 
The translocase of the outer membrane (TOM) imports 
PINK1 into the mitochondria under normal physiological 
circumstances (35). When the potential of the mitochondrial 
membrane decreases, PINK1 cannot be imported into the 
mitochondria and builds up on the OMM instead. PINK1 
is an upstream protein of Parkin and mediates mitophagy 
by activating Parkin (36). It was also reported that PINK1 
stabilized in depolarized mitochondria phosphorylates 
MFN2, which attracts and binds Parkin to promote 
mitophagy (37). Activated Parkin then polyubiquitinates 
multiple OMM protein substrates, including voltage-
dependent anion channel 1 (VDAC1), MFN1, and 
MFN2, which could be recognized by autophagy adaptor 
proteins P62/SQSTM1, which mediates the interaction 
with LC3 (38,39). These adaptors promote the formation 
of autophagosomes to engulf damaged mitochondria. 
Subsequently, lysosomes fuse with autophagosomes to 
degrade these mitochondria (40). Mitophagy prevents 
accelerated cellular senescence and programmed cell death 
under physiological conditions, while excessive mitophagy 
is detrimental to cellular homeostasis.

Mitochondrial dynamics and neurological diseases

The disruption of mitochondrial dynamics contributes to 
the pathogenesis of various neurological diseases (41). We 
describe the recent clinical and experimental observations 
on mitochondrial dynamics in various neurological diseases, 
focusing on the role of Drp1.

Mitochondrial dynamics and neurodegenerative 
diseases
Alzheimer disease (AD)
AD, one of the most common neurodegenerative diseases, 

Figure 3  The structure of MFNs and the mechanism of 
mitochondrial fusion. (A) During the fusion process, the 2 MFNs 
are dimerized by HR2 and embedded into the mitochondrial 
outer membranes by the transmembrane domain, promoting the 2 
mitochondria to come into closer contact by GTP hydrolysis and 
then fusing the outer membranes. (B) L-OPA1 interacts with CL to 
promote inner membrane fusion, and S-OPA1 plays a regulatory role 
in this process. However, the interaction between the 2 OPA1 only 
induces the formation of mitochondrial cristae but does not play a 
role in fusion. IMM, inner mitochondrial membrane; OMM, outer 
mitochondrial membrane; MFNs, mitochondrial fusion protein; HR2, 
heptad repeat 2; TM, transmembrane; GTP, guanosine triphosphate; 
CL, cardiolipin; OPA1, optic atrophy 1 protein. 
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is characterized by progressive loss of neurons in the brain 
leading to cognitive impairment. Excessive production of 
β-amyloid peptide (Aβ) is one of the leading causes of this 
disease.

In one study, the size and number of neuronal 
mitochondria seen in biopsied brain tissue of those with AD 
appeared increased, with mitochondrial fragmentation and 
reduced aspect ratio (41). In related biochemical experiments, 
the expressions of fission and fusion-related proteins, such as 
Drp1, OPA1, and MFNs, appeared decreased, but the fission 
factor Fis1 was significantly increased (42).

The amyloid precursor can be cleaved to Aβ. Overexpression 
of the amyloid precursor leads to mitochondrial fission, which 
can be blocked by lyase inhibitors. Experimental results (41) 
indicate that Aβ can stimulate mitochondrial fission, and 
fission inhibitors can rescue mitochondrial fragmentation 
caused by amyloid precursors and neuronal dysfunction.

Aβ-induced S-nitrosylation of Drp1 has also been shown 
to trigger mitochondrial fission, synapse loss, and neuronal 
damage in AD (43). One study has also suggested that Aβ-
induced calcium flux leads to increased phosphorylation of 
Drp1 at ser616 through CaMKII-dependent Akt activation, 
resulting in the recruitment of Drp1 to mitochondria and 
enhancement of mitochondrial fission (44). The Drp1 
inhibitor, Mdivi-1, protects the mitochondrial structure 
and function in the cytoplasmic hybrid neurons of those 
with AD (45). According to Manczak et al. (46), aberrant 
mitochondrial dynamics, mitochondrial fragmentation, and 
synaptic damage are caused by increased Aβ production 
and its interaction with Drp1 in patients with AD. To 
lessen mitochondrial fragmentation, neuronal and synaptic 
damage, and cognitive impairment in patients with AD, it 
might be beneficial to block these aberrant interactions.

Drp1-regulated fission may be used to excise the 
damaged mitochondria for mitophagy. Moreover, a 
reduction in Drp1 recruits Parkin, which could increase 
mitochondrial fission or fusion (47). Tau is a member of 
the microtubule-associated protein (MAP) family and is 
involved in the occurrence of AD. Increased levels of Aβ, 
phosphorylation-Tau, and their abnormal interactions with 
Drp1 can induce increased mitochondrial fragmentation 
and reduce mitochondrial fusion in AD (48). In the neurons 
of those with AD, these aberrant interactions lead to 
the growth of dysfunctional mitochondria. An increased 
accumulation of Aβ and phosphorylation-Tau in the 
cytoplasm could deplete Parkin and PINK1 levels, reducing 
the effective number of autophagosomes targeted to the 
dysfunctional mitochondria. In AD, these occurrences 

ultimately result in a reduction in the clearance of dead and 
dying mitochondria (49).

In addition, oxidative stress, impaired energy metabolism, 
and impaired axonal mitochondrial transport are also closely 
related to AD (50-52). Considering the interaction of Drp1 
with Aβ and Drp1 with Tau, the development of Drp1-
based therapeutics for AD patients would be promising.
Parkinson disease
Parkinson disease (PD) is the second most common 
neurodegenerative disease globally. It is characterized by the 
loss of dopaminergic neurons and the formation of Lewy 
bodies with α-synuclein (α-syn).

Overexpression of α-syn in rats leads to its aggregation, 
abnormal mitochondrial dynamics, and oxidative stress, 
thereby inducing neurodegeneration. Furthermore, the 
Drp1 inhibitor, Mdivi-1, can rescue the above changes, 
suggesting that Mdivi-1 may have the potential to treat 
PD (53).

Mitochondrial dynamics and the development of PD are 
closely related. Patients with OPA1 gene mutations show 
symptoms of PD, and the fibroblasts of these patients show 
a decrease in OPA1 protein level. Conversely, mitochondrial 
fission and mitophagy increase, suggesting that mutations 
in the mitochondrial fusion genes might be involved in the 
occurrence of PD (54).

Impaired mitophagy mediated by mutations in PINK1 
may contribute to early-onset autosomal recessive PD (55). 
One study reported that PINK1-deficient mouse tissues 
showed significantly reduced phosphorylation of Drp1 
at ser616, independent of Parkin inactivation. Similarly, 
PINK1-mutated PD patients and sporadic PD patients 
exhibited a decrease in the phosphorylation of Drp1 at 
ser616, suggesting that PINK1 may act independently 
on the phosphorylation of Drp1 at ser616 to affect the 
development of PD (56).
Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) leads to progressive 
and selective loss of motor neurons in the brain and spinal 
cord. One study reported that mitochondrial fission was 
highly enhanced in muscles and motor neurons of TDP-
43-, FUS-, and TAF15-induced fly models of ALS and 
that overexpression of OPA1 or knockdown of Drp1 
restored mitochondrial morphology (57). VPS54 gene 
mutation has also been shown to cause ALS. In mutant 
mice, the researchers observed an abnormal distribution of 
mitochondria, in which the mitochondria became smaller 
and the mitochondrial cristae disappeared; moreover, 
the expression of MFN2 and OPA1 was lower, and the 
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phosphorylation of Drp1 at ser616 was higher than that in 
the wild type mice (58). Tau is involved in the occurrence 
of ALS and has been shown to interact with Drp1, with 
a synchronous increase in phosphorylated tau and Drp1 
leading to increased mitochondrial fission (59).
Huntington disease
Huntington disease (HD) is a fatal genetic disease 
characterized by a progressive loss of medium spiny neurons 
(MSN). HD is caused by expanded polyglutamine repeats in 
exon 1 of the HD gene (60).

Huntingtin protein (HTT), a product of the HD gene, 
is ubiquitously expressed in the brain and peripheral tissues. 
The mutant huntingtin protein (mHTT) has been shown 
to affect Drp1 GTPase activity, increasing mitochondrial 
fission (61). Song et al. (62) found that mHTT interacts 
with Drp1 in vivo and that mHTT binds Drp1 directly with 
greater affinity than does wild-type HTT. Compared to 
wild-type HTT, mHTT showed a significant increase in 
the enzymatic activity of Drp1. These results suggest that 
mHTT triggers mitochondrial fragmentation by interacting 
with Drp1.

Increased expression of Drp1 and Fis1 and decreased 
expression of Mfn1, Mfn2, and OPA1 were found in 
patients with HD relative to healthy controls (63). In 
BACHD (bacterial artificial chromosome Huntington 
disease)transgenic neurons that express the full-length 
human mHTT gene, it has been found that the number 
of mitochondria moving anterograde is significantly  
decreased (64). These changes might be responsible for 
abnormal mitochondrial dynamics in the cortex of patients 
with HD and may contribute to their neuronal damage.

Mitochondrial dynamics and epilepsy
Epilepsy is a disease in which abnormal discharge of 
neurons leads to brain dysfunction. Studies have shown 
that changes in mitochondrial dynamics are closely related 
to epilepsy. Transport kinesin 1 (TRAK1) is essential for 
the axonal transport of mitochondria in neurons. A related 
study in patients with epilepsy and animal models found 
that TRAK1 expression is decreased in the temporal 
lobe. Knockout of TRAK1 results in increased MFF and 
a greater number of seizures, while exogenous TRAK1 
supplementation can rescue this dysfunction (65).

Mutations in the Drp1 gene can also cause neurological 
symptoms. In a case report, mutations in the Drp1 GTPase 
domain resulted in psychomotor retardation, muscle 
weakness, and paroxysmal myotonia (66). A thorough 
literature search illustrated that, among the different cases 

of Drp1 mutation, 77.8% had psychomotor retardation, 
66.7% had limb paralysis, 82.8% had dystonia, and 59.4% 
had epilepsy (66). Status epilepticus (SE; a series of closely 
occurring seizures) induces apoptosis of dentate gyrus 
astrocytes and fragments and reduces mitochondrial length 
in male rats. The Drp1 inhibitor, Mdivi-1, can effectively 
mitigate astrocyte apoptosis. Further research found that 
the changes in mitochondrial dynamics are closely related 
to the phosphorylation of Drp1 but not of OPA1 (67). SE 
reduces the S-nitrosylation of Drp1in hippocampal CA1 
neurons and reduces protein disulfide isomerase (PDI) 
expression and mitochondrial length. Knockdown of PDI, 
in turn, reduces S-nitrosylation of Drp1 and restores 
mitochondrial size. Therefore, Lee et al. (68) hypothesized 
that PDI-mediated S-nitrosylation of Drp1 is partly 
responsible for the altered mitochondrial dynamics in SE.

Mitochondrial dynamics and cerebrovascular diseases
Cerebrovascular diseases have become one of the leading 
causes of disability or death in adults. The timely and 
effective removal of hemodynamic barriers is the primary 
mode of treatment for the disease. A recent study has 
shown that mitochondrial dynamics can affect the 
pathogenesis and prognosis of cerebrovascular diseases (69).  
Blood flow in patients with ischemic stroke can be restored 
after thrombolysis or intravascular thrombectomy. 
During reperfusion, a large amount of oxygen is used by 
mitochondria to generate many oxygen radicals. However, 
oxidative stress occurs if the antioxidants present cannot 
neutralize the free radicals, and severe oxidative stress can 
lead to apoptosis (69). Baicalin treatment in oxygen-glucose 
deprivation/reperfusion (OGD/REP) PC12 cells inhibits 
Drp1 expression, decreases mitochondrial fission, promotes 
MFN2 generation, increases Drp1 Ser637 phosphorylation, 
and elevates MMP via the suppression of ROS production. 
These results suggest that baicalin protects against 
ischemia-reperfusion injury (70).

Global cerebral ischemia in rats transiently increases 
the phosphorylation of Drp1 at ser616 in the hippocampal 
CA1 region, suggesting that excessive mitochondrial fission 
is involved during the process of cerebral ischemia (71). 
After an ischemia-reperfusion injury, the mitochondrial 
fusion protein OPA1 is excessively cleaved, decreasing the 
level of active L-OPA1. Restoring the level of L-OPA1 by 
lentiviral transfection can alleviate neuronal death, restore 
mitochondrial morphology, and reduce infarct size (72).

Vascular smooth muscle cell (VSMC) activation 
and hyperproliferation are closely associated with 
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atherosclerotic stenosis. Moreover, platelet-derived 
growth factor (PDGF)-induced mitochondrial fission 
triggers VSMC proliferation during vascular remodeling. 
Knockdown of the exchange protein activated by cAMP1 
(Epac1), localized in the mitochondria of VSMCs can 
attenuate PDGF-induced mitochondrial fission and 
alleviate VSMC hyperproliferation. These findings suggest 
that the inhibition of mitochondrial fission might reduce 
the possibility of arterial stenosis (73).

Mitochondrial dynamics and neural tumors
Mitochondrial dynamics play an essential role in the 
process of brain tumors. Mitochondria are involved in 
cellular processes such as proliferation, differentiation, 
metastasis, and apoptosis. Glioblastoma (GBM) is a highly 
aggressive, recurrent, and lethal brain tumor, involving 
the presence of brain tumor-initiating cells (BTICs) in its 
microenvironment. BTICs not only promote tumor growth 
and tumor recurrence after multimodal therapy but also 
contribute to the invasion of GBM (74). In contrast to those 
of non-BTICs cells, the mitochondria of the BTICs cells 
are more fragmented, and the phosphorylation of Drp1 
at ser616 is greater than that at ser637, which increases 
Drp1 activity. One study showed that inhibiting AMP-
activated protein kinase (AMPK) could rescue the slow 
growth of BTICs induced by Drp1 inhibition (75). It was 
suggested that AMPK might be a downstream regulatory 
molecule of Drp1. In BTIC tumor cells, roscovitine, a 
nonspecific inhibitor of cyclin-dependent kinase (CDK) 
1/2/5, can inhibit the phosphorylation of Drp1 at ser616 
and mitochondrial fragmentation, while the CDK1/2 
inhibitor BMS265246 has no effect. This suggests that 
CDK5 may affect the phosphorylation of Drp1 at ser616. In 
non-BTIC tumor cells, inhibition of calcium/calmodulin-
dependent protein kinase 2 (CAMK2) was shown to 
inhibit the phosphorylation of Drp1 at ser616, resulting in 
mitochondrial fragmentation. It has been further speculated 
that CDK5 activates the phosphorylation of Drp1 at ser616 
to trigger mitochondrial fission in BTICs and that CAMK2 
activates the phosphorylation of Drp1 ser637 to inhibit 
mitochondrial fission in non-BTIC tumor cells (75).

One study reported that nuclear factor κB (NF-κB)-
inducible kinase (NIK) is associated with the formation 
of pseudopodia with extensive cell membrane bulges that 
promote the invasiveness of gliomas (76). Mitochondria 
are translocated to the pseudopodia front to meet the 
energy demands for the invasion, leading to a faster and 
more directional migration of cells (77). During this 

process, NIK recruits Drp1 to mitochondria, regulates the 
phosphorylation of Drp1, promotes mitochondrial fission, 
and increases tumor invasiveness (78). These findings 
highlight the importance of NIK in tumor pathogenesis 
and invite new therapeutic strategies that attenuate 
mitochondrial dysfunction through the inhibition of NIK 
and Drp1.

Potential therapeutic drugs

As discussed above, an imbalance in mitochondrial 
dynamics is involved in the occurrence and development 
of various neurological diseases. Consequently, improving 
mitochondrial dynamics might be an effective treatment for 
neurological disorders. Recently, several compounds have 
been demonstrated to enhance mitochondrial dynamics, 
but most are still in the preclinical stages. Here, we focus 
on those drugs that have been clinically tested and shown to 
have fewer side effects. Although these drugs were initially 
used to treat other diseases, they have also been shown to 
improve mitochondrial dynamics.

Leflunomide
Leflunomide is an anti-inflammatory drug that can treat 
autoimmune diseases such as rheumatoid arthritis and 
lupus nephritis by regulating T cell functions. Its primary 
mechanism involves inhibiting mitochondrial inner 
membrane dihydroorotate dehydrogenase (DHODH), 
limiting pyrimidine’s de novo synthesis. A lack of pyrimidine, 
in turn, limits the expansion of antibody-producing cells by 
blocking cell cycle transition (79).

Miret-Casals  e t  a l .  (80)  used high-throughput 
screening to prove that leflunomide is an activator of 
MFN2. Further research found that leflunomide can 
deplete pyrimidine stocks through DHODH inhibition, 
triggering cell cycle arrest and upregulating MFN2 
expression. This also promotes mitochondrial elongation 
and fusion, conferring antiapoptotic activity to cells (80). 
The ability of leflunomide to improve mitochondrial 
dynamics has been used to treat pancreatic cancer and 
mitral aortic valve disease. Enhanced mitochondrial 
fission inhibits metastasis in triple-negative breast cancer, 
and leflunomide has been shown to counteract this 
inhibitory effect (81-83).

Currently, no direct evidence suggests that leflunomide 
improves mitochondrial dynamics in neurological disorders; 
however, given its favorable effect on neuroinflammation, 
leflunomide might be a direction of future research (84).
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Pioglitazone
Pioglitazone is an agonist of peroxisome proliferator-
activated receptor γ (PPAR-γ) and is commonly used to 
treat diabetes. Mitochondrial disorders play a significant 
role in neuropathy in patients with Down syndrome, in 
which PPAR-γ coactivator-1α (PGC-1α) is the primary 
mediator that coordinates mitochondrial biogenesis, 
cellular respiration, and energy metabolism. Pioglitazone 
can upregulate PGC-1α as well as mitochondrial fusion 
factors such as OPA1 and MFN1. Moreover, it can improve 
mitochondrial dynamics, reduce ROS production, and 
increase ATP production (85). Using a diabetic rabbit 
model, researchers found that pioglitazone enhanced 
cardiomyocyte mitochondrial biogenesis, increased 
kinetics-related protein expression, improved mitochondrial 
structure and function, and reduced atrial remodeling (86). 
Paraoxonase 2 (PON2) enhances mitochondrial function 
against oxidative stress and has therapeutic potential for 
those with PD. Pioglitazone increases PON2 expression, 
inhibits neuroinflammation in patients with PD, prevents 
neurodegeneration and loss of dopaminergic cells in the 
substantia nigra region, and improves mitochondrial 
dynamics and function (87,88). Pioglitazone also reduces 
Aβ-induced neurotoxicity and modulates blood-brain 
barrier function in AD models (89,90). However, a 
controlled trial showed that pioglitazone did not delay 
the onset of cognitive disorder in patients with AD (91). 
Therefore, more detailed studies are required to understand 
the effectiveness of pioglitazone in AD treatment.

Tolfenamic acid
Tolfenamic acid, a nonsteroidal anti-inflammatory drug 
(NSAID), attenuates learning and memory impairments in 
AD and reduces specificity protein 1 (SP1)-mediated cyclin-
dependent kinase 5 (CDK5) expression (92). It has been 
confirmed that CDK5 can regulate the phosphorylation 
of Drp1 at ser537 and affect mitochondrial fission, which 
may be one of the mechanisms by which tolfenamic acid 
regulates mitochondrial dynamics (93). In a mouse model, 
tolfenamic acid pretreatment attenuated the toxicity 
induced by intraperitoneal injection of 3-Nitropropionic 
acid, restored mitochondrial dynamics and function, and 
improved neurological symptoms (94). However, a different 
study reported that tolfenamic acid can localize to the 
mitochondria of yeast cells, causing mitochondrial damage 
and ROS generation, thus inhibiting cell growth (95). 
Further research is needed to understand tolfenamic acid’s 
possible usages in improving mitochondrial dynamics in the 

treatment of neurological diseases.

Summary

Mitochondrial dynamics is one mechanism by which 
mitochondrial function adapts to different environments 
and energy demands. Nervous systems with high metabolic 
demands are highly dependent on mitochondrial function; 
therefore, neuronal activity is strongly influenced by 
mitochondrial dynamics. Disorders in mitochondrial 
dynamics, especially alterations in Drp1, can cause various 
neurological diseases. In preclinical experiments, several 
compounds restored proper mitochondrial dynamics and 
nerve function. Our review focuses on a few drugs with 
fewer side effects than these compounds and those that have 
passed clinical trials. Restoration of proper mitochondrial 
dynamics using these drugs might be a promising 
therapeutic strategy for neurological diseases in the future.

As discussed above, alterations in Drp1 are necessary 
for mitochondrial dynamics and are involved in the 
occurrence and development of various neurological 
diseases. We speculate that Drp1 might be highly correlated 
with neurological diseases, even though the alterations 
of Drp1 are distinct in each disease type. Based on these 
considerations, the main questions that remain to be 
elucidated in future studies are as follows: (I) are the 
alterations of Drp1 common causes of neurological diseases? 
(II) Are changes in Drp1 secondary or primary? (III) Would 
the treatments targeting Drp1 affect other mitochondrial 
dynamics molecules and dampen efficacy? Further studies 
exploring these questions will help to identify more ideal 
therapeutic targets.
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Table S1 Example of the detailed search strategy (PubMed) 

Items Specification

Selection process 215 references were found. After our carefully discussion and selection, 88 references were included in this 
study

Search terms Drp1; mitochondria; MFN; Alzeimer’s disease; Parkinson’s disease; FIS1; epilepsy; leflunomide; tolfenamic 
acid; autophagy

Filters Studies did not focus on autophagy
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